水通道蛋白

合集下载

说说“水通道蛋白”

说说“水通道蛋白”
[ 4 ] 翟中和 , 王喜忠 , 丁明孝 . 2 0 0 0 . 细胞生 物学. 北京 : 高等教育 出版 杜, 2 3 4
细胞表达系统 中研究了其水 通道 功能 5, 从 而证 实细 胞膜上存在转运水 的通道 蛋 白。随着更 多 C H I P 2 8同 系物 的发现 , 水 通 道蛋 白家 族被 命 名为 A q u a p o r i n , 而
C H I P 2 8也随之改称为 A q u a p o r i n一1 ( A Q P 1 ) 【 6 J 。A g r e

6 O・
生 物学 教学 2 0 1 5 年( 第4 0 卷) 第6 期
说说“ 水 通 道 蛋 白’ ’
邓 鹏 杨晓霜 ( 广 东 省 深 圳 市 科 学 高 中5 1 8 1 2 9 )
摘 要 水通道蛋白普 遍存在 于动、 植 物及微生 物细胞 中, 是构成 水分运输 的特异性通道 。本文 以哺乳 动物 为例 , 对水 通道蛋 白 水通道蛋 白 水分 跨 膜运输 细胞膜
1 . 1 一级结 构 水通 道蛋 白 的一级 结构是 由两个 同
半环在折 叠 中形 成一 个 可 以运输 水 分 子 的孔 道 … 。
A Q P三级结构在脂双层 两侧开 口处较 宽 , 而通 道 中心 较窄 , 因此被称为 “ 沙漏 ” 模型 。1 9 9 7年 , Wa l z和 u 对 水通道蛋 白电子摄 像和 三维结 构进行 分 析报 道 , 印证 了“ 沙漏 ” 模 型【 9 , 1 0 J 。

之间存在着密切 的、 精确 的 、 严 格调控 的生物学 机 制 ,
共同控制着生物 的遗传 。
主 要 参 考 文 献
1 7 3
【 3 ] 王镜岩 , 朱圣庚 , 徐 长法 . 2 0 0 2 . 生物化学下 册 ( 第 3版) . 北京 : 高

铁死亡 水通道蛋白

铁死亡 水通道蛋白

铁死亡水通道蛋白-概述说明以及解释1.引言1.1 概述铁死亡是一种与水通道蛋白功能紧密相关的现象,它在生物体内产生了广泛的研究兴趣。

铁作为生物体内重要的营养元素,参与了许多生理过程的调节和维持,包括氧运输、能量代谢和DNA合成等。

水通道蛋白则是一类跨膜蛋白,主要负责水的跨膜运输。

它们的关系影响着生物体内水分平衡、细胞内外渗透压的维持以及许多其他重要的生物过程。

本文旨在探讨铁与水通道蛋白之间的关联,并分析铁死亡对生物体的影响。

我们将首先回顾铁的重要性,介绍其在生物体内的作用与功能。

随后,我们将重点讨论水通道蛋白的功能及其在维持细胞内外渗透压平衡中的作用。

在此基础上,我们将深入探讨铁与水通道蛋白之间的关系,并阐述铁对水通道蛋白的调控机制。

接下来,我们将详细讨论铁死亡对生物体的影响。

铁死亡是指铁的水平过高或过低导致的一系列生理和病理变化。

我们将重点探讨铁死亡对水通道蛋白的损害,以及由此引发的水分失衡和细胞功能障碍等问题。

最后,我们将对铁死亡的意义进行归纳和总结,并探讨水通道蛋白在疾病治疗和生物技术领域的潜在应用。

同时,我们还将提出一些对策和建议,以有效预防或治疗铁死亡引起的相关问题。

通过对这一重要领域的深入研究,我们可以更好地理解铁与水通道蛋白之间的相互作用,为相关疾病的治疗和新药开发提供科学依据。

相信本文的内容将对相关领域的学者和研究人员具有一定的参考和指导价值。

1.2 文章结构文章结构:本文采用以下结构进行组织和呈现。

首先,在引言中概述了本文的主要内容和目的,以及将要讨论的问题。

接下来,正文部分分为四个章节,具体涵盖了铁的重要性、水通道蛋白的功能、铁与水通道蛋白的关系以及铁死亡的影响。

在每个章节中,将以相关的研究和实例来说明所探讨的问题。

最后,在结论部分总结了本文的重点观点,并提出了关于铁死亡意义、水通道蛋白潜在应用、对策和建议等方面的讨论。

在整篇文章中,通过理论探讨和实证研究相结合的方式,旨在深入剖析铁死亡和水通道蛋白的相关知识,并探讨其在生物学和医学领域中的重要性和应用前景。

水通道蛋白的名词解释

水通道蛋白的名词解释

水通道蛋白的名词解释水通道蛋白是一类存在于生物体细胞膜上的蛋白质,其主要功能是调节细胞内外水分的平衡。

这些蛋白质以其独特的细胞膜通透性,通常被形容为“细胞的水渠”。

尽管细胞膜对水具有一定的渗透性,但水通道蛋白的出现使得水分的跨膜运输变得更加高效和方便。

水通道蛋白主要通过形成一个微小的通道,让水分子直接穿过细胞膜,从而加速细胞内外的水分交换。

水通道蛋白最早被发现于红细胞膜,其中最为著名的是被称为Aquaporin-1(AQP1)的蛋白质。

AQP1被发现能够高效地传输水分子,使其成为研究者们研究水通道蛋白的重要起点。

此后,越来越多的水通道蛋白被发现,它们在各种生物体的细胞膜上广泛存在。

水通道蛋白家族主要包括两类:小分子量蛋白(20~35kDa)和大分子量蛋白(约为50~90kDa)。

小分子量蛋白包括AQP1、AQP2和AQP4等,它们主要负责水分子的传输。

大分子量蛋白则包括AQP0、AQP5和AQP6等,除了与水分交换有关,这些蛋白质还可能参与其他细胞功能的调节。

水通道蛋白在生物体中具有广泛而重要的作用。

例如,在人体内,水通道蛋白在器官和组织中起着维持水分平衡的关键作用。

当体内水分过多或过少时,水通道蛋白能够根据需要调整细胞膜的通透性,控制水分大量吸收或排泄。

这一过程在保持人体内部环境稳定方面非常重要。

此外,水通道蛋白还在植物、昆虫、微生物等生物体中发挥着类似的功能。

在植物体内,水通道蛋白不仅参与了水分的吸收和输送,还对维持细胞渗透稳定性和调节植物生长发育起到了重要作用。

在昆虫和微生物中,水通道蛋白也发挥着类似的水分调节作用,确保它们能够在不同环境下生存和繁衍。

随着科学技术的发展,研究人员对水通道蛋白进行了深入的研究。

他们通过结构生物学、细胞生物学以及分子生物学等多种手段,揭示了水通道蛋白的分子结构和生理功能,并进一步研究了其与疾病之间的关系。

例如,某些疾病,如肾脏功能障碍、肿瘤、水肿等,与水通道蛋白的异常表达或功能失调密切相关。

水通道蛋白

水通道蛋白

水通道蛋白水通道蛋白是介导水跨膜转运的一大膜蛋白家族,分布于高等脊椎动物上皮细胞或内皮细胞。

结构上由28-KDa 亚单位组成四聚体,每个亚单位构成孔径约的水孔通道,在渗透压驱动下实现水双向跨膜转运【1】。

目前11 种亚型已经在哺乳动物中被确定,各种亚型的体内分布具有组织特异性,其中水通道蛋白-4 (Aquaporin 4,AQP4)以极化形式集中分布于中枢神经系统脑毛细血管周边的星形胶质细胞足突或室管膜细胞【2】。

血脑屏障为脑内另一调控水平衡的复合体,由无窗孔的脑毛细血管内皮细胞及细胞间紧密连接、基底膜、星形胶质细胞等组成,介于血液和中枢神经系统之间,限制血液中某些离子、大分子物质转移到脑实质,此屏障作用为维持CNS 内环境稳定、保障脑功能正常行使提供了重要保障。

BBB 分化发育过程中脑毛细血管内皮细胞间紧密连接的形成虽被认为是其成熟的标志,但BBB 生理功能的实现有赖于各组成成分间的相互作用。

近来对星形胶质细胞调控BBB 物质交换和脑内水平衡方面的作用日益受到重视,并认为与AQP4 表达有关。

本文就AQP4 与血脑屏障发育及其完整性关系的研究进展作一综述。

分化发育过程中AQP4 的表达目前由于对鸡胚视顶盖中血管及BBB 分化的研究已较完善,因此常被用于BBB 的研究模型。

Nico 及其同事【3】采用免疫细胞化学、分子生物学技术研究了鸡胚视顶盖AQP4 在BBB 分化发育过程的动态表达。

免疫电镜显示鸡胚视顶盖发育第9 d,BBB仅由不规则的内皮细胞组成,内皮细胞间紧密连接尚未形成,AQP4 未见表达。

待发育至第14 d,Western blot 技术首次在约30 kDa 链附近检测出AQP4 的免疫活性,电镜下显示短的内皮细胞间紧密连接已形成,并串联构成BBB 的微血管,星形胶质细胞间断黏附于血管壁,AQP4 不连续地表达于血管周边,血管周围仍然存在小空隙。

发育第20 d BBB 成熟,内皮细胞间紧密连接形成,BBB 微血管被星形胶质细胞紧紧包被,血管周边星形胶质细胞足突上的AQP4 呈现强阳性表达,且冷冻断裂研究显示AQP4 的正交排列阵也同步形成。

细胞膜上的水通道蛋白

细胞膜上的水通道蛋白

细胞膜上的水通道蛋白作者:Marokko摘要:物质的跨膜运输是细胞维持正常生命活动的基础之一。

主要分为被动运输,主动运输,胞吞作用及胞吐作用。

但是事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。

离子、葡萄糖、核苷酸等物质有的是通过质膜上的运输蛋白的协助,按浓度梯度扩散进入质膜的,有的则是通过主动运输的方式进行转运。

而维持细胞之间的跨膜运输的膜转运蛋白则主要分为载体蛋白与通道蛋白。

其中通道蛋白(channel protein)是跨膜的亲水性通道,允许适当大小的离子顺浓度梯度通过,故又称离子通道。

有些通道蛋白长期开放,如钾泄漏通道;有些通道蛋白平时处于关闭状态,仅在特定刺激下才打开,又称为门通道(gated channel).而水扩散通过人工膜的速率很低,所以人们推测膜上有水通道.1991年Agre发现第一个水通道蛋白CHIP28 (28 KD ),目前在人类细胞中已发现的此类蛋白至少有11种,被命名为水通道蛋白(Aquaporin,AQP)。

水通道蛋白广泛存在于生物体中的各组织部位,影响着生物机体水代谢的过程。

随着分子生物学技术的进步,对水通道蛋白的基础研究已经比较深入和成熟。

目的可以利用水通道蛋白研究的基础成果,阐释临床水代谢障碍类疾病的发病机理提供可能的解决思路。

关键词:跨膜运输,通道蛋白,水通道蛋白正文:包括人类在内的大多数生物都是由细胞组成的。

单个细胞就像一个由城墙围起来的微小城镇,有用的物质不断被运进来,废物被不断运出去。

早在100多年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允许特定的分子或离子出入。

这就是细胞之间的跨膜运输。

物质的跨膜运输主要分为被动运输,主动运输,胞吞作用及胞吐作用。

而事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。

下图分别为载体蛋白与通道蛋白。

水通道蛋白在动物疾病发生过程中的作用研究进展

水通道蛋白在动物疾病发生过程中的作用研究进展

动物医学进展,021,42(3)=102-105Progress in Veterinary Medicine水通道蛋白在动物疾病发生过程中的作用研究进展张玉婷,张琪,郭抗抗,许信刚*,周宏超*(西北农林科技大学动物医学院,陕西杨凌712100)摘要:水通道蛋白(AQP)是细胞上存在的一种膜孔道蛋白。

动物、植物、微生物细胞上均有水通道蛋白的表达,其主要功能是参与机体的水与电解质代谢。

近年来,针对水通道蛋白在机体所发挥的功能方面研究较多,发现水通道蛋白不仅参与机体生理方面的调控,而且在一些疾病的发生发展过程中也发挥重要的作用。

综述概括了水通道蛋白在脑、肺、肾脏、肠道等组织器官的定位;重点阐述了水通道蛋白在动物脑部疾病、肺部疾病、肾脏疾病、肠道疾病发展过程中所发生的变化。

旨在为患病动物出现水与电解质代谢紊乱症状时,对水通道蛋白发生的变化研究提供参考。

关键词:水通道蛋白;脑水肿;肺动脉高压;肾损伤;腹泻中图分类号:S852.2文献标识码:A 文章编号=^^5038^1)3-0102-0.-1水通道蛋白(aquaporin,AQP)作为一种水转运蛋白在机体各个部位广泛分布,尤其在涉及水液输送的组织细胞内分布量较多,例如在大脑、胃、肠道,肾脏及膀胱等器官均有表达,水通道蛋白在保持机体内环境稳态方面发挥重要作用,增强了机体的代谢能力[]。

研究发现,哺乳动物体内所表达的水通道蛋白已经有13种亚型,分别为AQP0、AQP1、AQP2、AQP3、AQP4、AQP5、AQP6、AQP7、AQP8、AQP9、AQP10、AQP11、AQP12。

水通道蛋白家族根据各个亚型在机体发挥的功能不同,可分为3类:①单纯的水通道蛋白,如AQP1,AQP2,AQP4, AQP5;②水甘油通道蛋白,如AQP3,AQP9、AQP10;③超级水通道蛋白,如AQP6,AQP8, AQP11、AQP12[]。

近年来,某些疾病的发生与水通道蛋白异常表达现象,得到了广泛的关注。

水通道蛋白综述与展望

水通道蛋白综述与展望

水通道蛋白水通道- 从原子结构到临床医学生物膜的透水性在生理学上是一个长期存在的问题,但负责此类蛋白质的蛋白质仍然未知,直到发现水通道蛋白1(AQP1)水通道蛋白。

AQP1由渗透梯度驱动的水选择性渗透。

人类AQP1的原子结构最近被定义。

四聚体的每个亚基含有允许水分子单文件通过但中断氢键通过质子所需的单独水孔。

已经鉴定了至少10种哺乳动物水通道蛋白,并且它们被水(水通道蛋白)或水加甘油(水甘油聚糖)选择性渗透。

表达位点与临床表型密切相关,从先天性白内障到肾源性尿崩症。

在植物,微生物,无脊椎动物和脊椎动物中发现超过200个水通道蛋白家族成员,并且它们对这些生物体的生理学的重要性正在被揭开。

在20世纪20年代发现脂质双层提供了当沐浴在较低或较高pH或含有毒性浓度的Ca2 +或其他溶质的细胞外液中时细胞如何维持其最佳细胞内环境的解释。

从1950年代开始发现离子通道,交换剂和共转运体为溶质的跨膜运动提供了分子解释。

然而,长期以来,假定水的输送是由于通过脂质双层的简单扩散。

来自具有高膜渗透性的多个实验系统的观察,例如两栖膀胱和哺乳动物红细胞,表明通过脂质双层的扩散不是水跨越膜的唯一途径。

虽然提出了各种解释,但直到10年前发现AQP1才能知道分子水- 特异性转运蛋白(Preston等,1999)。

现在人们普遍同意扩散和通道介导的水分运动都存在。

通过所有生物膜以相对较低的速度发生扩散。

水通道蛋白水通道发现于上皮细胞的一部分10至100倍的水渗透能力。

值得注意的是,水通道蛋白水通道的选择性非常高,甚至质子(H3O +)被排斥。

在大多数组织中,扩散是双向的,因为水进入细胞并从细胞释放,而水通道蛋白介导的体内水流则由渗透或液压梯度引导。

扩散的化学抑制剂是未知的,扩散发生在高Ea(Arrhenius活化能)。

相比之下,大多数哺乳动物水通道蛋白受汞的抑制,Ea等同于大量溶液中水的扩散(〜5 kcal mol_1)。

水通道蛋白的发现说明了偶发性在生物学研究中的重要性,并且引起了上游流体运输过程中水如何穿过生物膜的范式的完全转变。

水通道蛋白

水通道蛋白

水通道蛋白的发现
Agre等(1988)在分离纯化红细胞膜上的Rh多肽时,发现 了一个28 kD的疏水性跨膜蛋白,称为形成通道的整合膜 蛋白28(channel-forming inte—gral membrane protein, CHIP28),1991年完成了其eDNA克隆(Verkman,2003)。 但当时并不知道该蛋白的功能,在进行功能鉴定时,将体 外转录合成的CHIP28 eDNA注入非洲爪蟾的卵母细胞中, 发现在低渗溶液中,卵母细胞迅速膨胀,并于5 min内破 裂。为进一步确定其功能,又将其构于蛋白磷脂体内,通 过活化能及渗透系数的测定及后来的抑制剂敏感性等研究, 证实其为水通道蛋白。从此确定了细胞膜上存在转运水的 特异性通道蛋白,并称CHIP28为Aquaporinl(AQPl)。

20世纪80年代中期,美国科学家彼得· 阿格雷研究了不 同的细胞膜蛋白,经过反复研究,他发现一种被称为水通 道蛋白的细胞膜蛋白就是人们寻找已久的水通道。为了验 证自己的发现,阿格雷把含有水通道蛋白的细胞和去除了 这种蛋白的细胞进行了对比试验,结果前者能够吸水,后 者不能。为进一步验证,他又制造了两种人造细胞膜,一 种含有水通道蛋白,一种则不含这种蛋白。他将这两种人 造细胞膜分别做成泡状物,然后放在水中,结果第一种泡 状物吸收了很多水而膨胀,第二种则没有变化。这些充分 说明水通道蛋白具有吸收水分子的功能,就是水通道。
学奖。
Peter Agre
Roderick MacKinnon
• 2000年,阿格雷与其他研究人员
一起公布了世界第一张水通道蛋 白的高清晰度立体照片。照片揭 示了这种蛋白的特殊结构只允许 水分子通过。 • 水通道的发现开辟了一个新的研 究领域。目前,科学家发现水通 道蛋白广泛存在于动物、植物和 微生物中,它的种类很多,仅人 体内就有11种。它具有十分重要 的功能,比如在人的肾脏中就起 着关键的过滤作用。通常一个成 年人每天要产生170升的原尿, 这些原尿经肾脏肾小球中的水通 道蛋白的过滤,其中大部分水分 被人体循环利用,最终只有约1 升的尿液排出人体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水通道蛋白
水通道蛋白(Aquaporin),又名水孔蛋白,是一种位于细胞膜上的蛋白质(内在膜蛋白),在细胞膜上组成“孔道”,可控制水在细胞的进出,就像是“细胞的水泵”一样。

水通道是由约翰霍普金斯大学医学院的美国科学家彼得·阿格雷所发现,他与通过X射线晶体学技术确认钾离子通道结构的洛克斐勒大学霍华休斯医学研究中心的罗德里克·麦金农共同荣获了2003年诺贝尔化学奖。

水分子经过Aquaporin时会形成单一纵列,进入弯曲狭窄的通道内,内部的偶极力与极性会帮助水分子旋转,以适当角度穿越狭窄的通道,因此Aquaporin的蛋白构形为仅能使水分子通过之原因
水通道蛋白的发现
编辑
Agre等(1988)在分离纯化红细胞膜上的Rh多肽时,发现了一个28 kD的疏水性跨膜蛋白,称为形成通道的整合膜蛋白28(channel-forming inte—gral membrane protein,CHIP28),1991年完成了其cDNA克隆(Verkman,2003)。

但当时并不知道该蛋白的功能,在进行功能鉴定时,将体外转录合成的CHIP28 mDNA 注入非洲爪蟾的卵母细胞中,发现在低渗溶液中,卵母细胞迅速膨胀,并于5 min 内破裂。

为进一步确定其功能,又将其构于蛋白磷脂体内,通过活化能及渗透系数的测定及后来的抑制剂敏感性等研究,证实其为水通道蛋白。

从此确定了细胞膜上存在转运水的特异性通道蛋白,并称CHIP28为Aquaporinl(AQPl)。

水通道蛋白分类
编辑
AQP0
AQP0最初称之为主体内在蛋白(major intrinsic protein,MIP),在晶状体纤维中细胞中表达丰富,与晶状体的透明度有关.AQpo的突变可能导致晶状体水肿和白内障。

小鼠缺乏AQPO将患先天性白内障[61]。

AQP1
AQP1是1988年发现的,开始将这种蛋白称为通道形成整合蛋白(CHIP),是人的红细胞膜的一
种主要蛋白。

它可以使红细胞快速膨胀和收缩以适应细胞间渗透性的变化。

AQP1蛋白也存在于
其他组织的细胞中。

AQP1及它的同系物能够让水自由通过(不必结合),但是不允许离子或是其他
的小分子(包括蛋白质)通过。

AQP1是由四个相同的亚基构成,每个亚基的相对分子质量为28kDa,每个亚基有六个跨膜结构
域,在跨膜结构域2与3、5与6之间有一个环状结构,是水通过的通道。

另外,AQP1的氨基端和羧基端
的氨基酸序列是严格对称的,因此,同源跨膜区(1,4、2,5、3,6)在质膜的脂双层中的方向相反。

AQP1
对水的通透性受氯化汞的可逆性抑制,对汞的敏感位点是结构域5与6之间的189位的半胱氨酸。


他几种AQP1与肾功能有关。

Peter Agre教授因发现水通道蛋白获得2003年诺贝尔化学奖
AQPl在质膜中以四聚体的形式存在,每个单体都由6个贯穿膜两面的长a螺旋构成基本骨架,其间还有两个嵌入但不贯穿膜的短a螺旋[4]。

每个单体蛋白的中空部分都形成具有高度选择性的通道,只允许水分子跨膜运输而不允许带电质子或其他离子通过,在功能上都可以作为一个独立水通道
存在位置
哺乳类动物中的水通道蛋白
目前已知哺乳类动物体内的水通道蛋白有十三种,其中六种位于肾脏,但科学家对于其他水通道蛋白的存在仍有疑虑。

最受关注的几项水通道蛋白比较如下:种类位置功能
水通道蛋白1肾脏(apical ly)近端小管曲部(PCT)近端小管直部(PST)
亨利氏环下降细端(tDLH)
水分再吸

水通道蛋白2肾脏(apical ly) ICTCCTOMCDIMCD
对抗利尿
激素
作出重吸
收反应
水通道蛋白3肾脏(basolaterally) medullary collecting duct
水分再吸

水通道蛋白4肾脏(basolaterally) medullary collecting duct
水分再吸
收。

相关文档
最新文档