滚动轴承保持架缺陷案例及其振动特征的原因分析

合集下载

轴承损伤的12个典型案例,原因分析及解决方案

轴承损伤的12个典型案例,原因分析及解决方案

轴承损伤的12个典型案例,原因分析及解决方案轴承在运转中无法直接观察,但通过噪音、振动、温度、润滑剂的消耗等状况可以察觉轴承异常。

应及时检查分析故障原因,避免更大的损失。

本文分享轴承损伤的12个代表案例。

1、裂纹缺陷部分缺口有裂纹。

原因:主机的冲击负荷过大,主轴与轴承配合过盈量大;也有较大的剥离摩擦引起裂纹;安装时精度不良;使用不当(用铜锤、卡入大异物)和摩擦裂纹。

解决措施:应检查使用条件,同时设定适当过盈及检查材质,改善安装及使用方法,检查润滑剂以防止摩擦裂纹。

2、滚道表面金属剥离运转面剥离。

剥离后呈明显凹凸状。

原因:轴承滚动体和内、外圈滚道面上均承受周期性脉动载荷作用,产生周期变化的接触应力。

当应力循环次数达到一定数值后,在滚动体或内、外圈滚道工作面上就产生疲劳剥离。

如果轴承的负荷过大,会使这种疲劳加剧。

另外,轴承安装不正、轴弯曲也会产生滚道剥离现象。

解决措施:应重新研究使用条件和选择轴承及游隙,并检查轴和轴承箱的加工精度、安装方法、润滑剂及润滑方法。

3、烧伤轴承发热变色,进而烧伤不能旋转。

原因:一般是润滑不足,润滑油质量不符合要求或变质,以及轴承装配过紧等。

另外游隙过小和负荷过大(预压大),滚子偏斜。

解决措施:选择适当的游隙(或增大游隙),要检查润滑剂的种类,确保注入量,检查使用条件,以防定位误差,改善轴承组装方法。

4、保持架碎裂铆钉松动或断裂,滚动体破碎。

原因:力矩负荷过大,润滑不足,转速变动频繁、振动大,轴承在倾斜状态下安装,卡入异物。

解决措施:要查找使用条件和润滑状态是否适宜,注意轴承的使用,研究保持架的选择是否合适和轴承箱的刚性是否负荷要求。

5、蠕变内径面或外径面打滑,造成镜面或变色,有时卡住。

原因:配合处过盈不足,套筒紧固不够,异常升温,主机负荷过大等。

解决措施:要重新研究过盈量是否合适,检查使用条件,检查轴和轴承箱的精度。

6、生锈腐蚀表面局部或全部生锈,滚动体变线条状生锈。

原因:保管状态不良,包装不当,防锈剂不足,水分酸溶剂等侵入,直接用手拿轴承。

轴承保持架碎裂原因分析

轴承保持架碎裂原因分析

轴承保持架碎裂原因分析保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。

轴承虽然由很多部件轴承组成,轴承最先损坏(失效)的部件是往往是保持架,保持架可以说是轴承“血管”了,可以把内圈、外圈、滚动体均匀有序的分布好,稍有差错就容易使轴承的使用寿命大缩短,甚至损坏。

那么造成轴承保持架碎裂的原因是什么呢?轴承保持架破损原因有:1、轴承润滑不足。

润滑油或脂干掉,没有及时添加(维护保养),润滑油或脂用的标号不对。

2、轴承的冲击负载。

冲击负载中激烈的震动产生滚动体对保持架的撞击。

3、轴承的清洁度。

轴承在轴承箱里密封不好,有粉尘进入,加要滚动体与保持架的磨擦,从而使保持架损坏。

4、安装问题。

轴承安装不正确,在安装时就损伤保持架。

5、轴承蠕变现象蠕变多指套圈的滑动现象,在配合面过盈量不足的情况下,由于滑动而使载荷点向周围方向移动,产生套圈相对轴或外壳向圆周方向位置偏离的现象。

6、轴承保持架异常载荷安装不到位、倾斜、过盈量过大等易造成游隙减少,加剧摩擦生热,表面软化,过早出现异常剥落,随着剥落的扩展,剥落异物进入保持架兜孔中,导致保持架运转阻滞并产生附加载荷,加剧了保持架的磨损,如此恶化的循环作用,便可能会造成保持架断裂。

7、轴承保持架材料缺陷裂纹、大块异金属夹杂物、缩孔、气泡及铆合缺陷缺钉、垫钉或两半保持架结合面空隙,严重铆伤等均可能造成保持架断裂8 、轴承硬质异物的侵入外来硬质异物或其他杂质东西的侵入,加剧了保持架的磨损。

针对以上种种原因进行解决,轴承的寿命一定会很长。

很多轴承损坏的原因不是轴承本身寿命到了,而是很多外部环境造成的,如润滑不足,粉尘进入,安装错误,负载过大,温度过高,联轴器不对中等。

9、其它原因。

如联轴器不对中产生轴承歪斜,受力不均;皮带安装过紧;环境问题等等都有可能损坏轴承或保持架。

针对以上种种原因进行解决,轴承的寿命一定会很长。

但是,富海合精工机械建议:对于轴承保持架破损的原因还得具体问题具体分析,要看你用的是什么类型的轴承,装在哪种设备上,工况是怎样的等等。

滚动轴承常见的失效形式和原因分析范文

滚动轴承常见的失效形式和原因分析范文

滚动轴承常见的失效形式及原因分析+浪逐风尖2008-11-05 10:55滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:A、制造因素1、产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。

电机滚动轴承保持架失效原因分析

电机滚动轴承保持架失效原因分析

电机滚动轴承保持架失效原因分析【摘要】圆柱滚子槽形保持架轴承的失效形式主要是保持架早期磨损。

针对造成该问题的几种因素:保持架加工工艺、滚子倒角尺寸、装配工艺和表面处理工艺进行了改进和控制,有效解决了保持架早期失效问题,提高了槽形保持架轴承的使用寿命。

【关键词】保持架;滚子轴承;磨损;寿命;工艺保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。

滚动轴承在工作时,由于滑动摩擦而造成轴承发热和磨损,特别是在高速运转的条件下,由于离心力的作用,加速了摩擦磨损与发热,严重时会造成保持架烧伤和断裂,致使轴承不能正常使用。

保持架损坏在轴承失效形式中占有较大的比例。

下面以6201- 2RZ轴承的保持架为研究对象。

某轴承企业生产的6201- 2RZ 轴承装在某型电机上使用不到2天就发生抱死,且此类现象频现。

在对电机进行分解后发现:轴承外表面有变色的油脂,用手转动轴承完全卡死,轴承密封盖打开后可观察到轴承内部较黑,剩余油脂已全部碳化,轴承保持架有一处断裂;轴承清洗后可见大量片状碎屑,在钢球与内滚道间居多,防尘盖附着的油脂中也混有部分碎屑。

一、故障特征鉴于轴承已经发生止转失效,部分零件已经损坏严重,轴承的旋转精度及尺寸精度完全丧失,已无法测量,故直接对轴承外圈切割将轴承进行分解,发现有以下几个特征:1.一粒钢球从断裂的兜孔中脱离,挤压到相邻兜孔,两个兜孔都已变形;钢球表面已经失去光泽,朝外一侧严重磨损(图1)。

图1 钢球从断裂的兜孔中脱离2.内外沟道的工作轨迹均偏离沟道中心位置,且内圈工作轨迹较宽,约占沟道宽度的3/5。

内、外沟道均发现有多个轴向压痕,工作轨迹表面出现了粗糙度下降的情况;内沟道黏有大量金属铁屑,连续铺满约180°的内沟道表面,铁屑已被碾压成片状。

3.保持架内径与外径方向均有明显磨损,兜孔边缘可见挤压变形;七个兜孔中有五个兜孔保持基本完整,一片半保持架在两个相邻的损坏的兜孔间的铆钉孔处断裂,断裂处铆钉已不可见,断口卷曲变形(无脆性断裂特征);另一片半保持架在对应位置有挤压变形,铆钉孔内径方向磨豁。

滚动轴承保持架损坏的原因分析

滚动轴承保持架损坏的原因分析

滚动轴承保持架损坏的原因分析
1、润滑不良。

润滑对于轴承是必不可少,适当的润滑可以延长轴承的使用寿命以及减少噪音。

但若如果没有润滑剂或者润滑不到位的话,易形成粘着磨损,使工作表面状态恶化,粘着磨损产生的异物,回进入保持架,可能造成保持架断裂,另外,也会造成严重磨损。

2、轴承蠕变。

轴承的滚动蠕变是指当配合面上产生间隙时,轴承配合面之间的相对滑动。

发生蠕变的配合面呈现明亮或黑暗的镜面,有时是由擦伤引起的。

滚动轴承蠕变有两种:内圈蠕变和外圈蠕变,产生套圈相对轴或外壳向圆周方向位置偏离的现象。

3、安装维护不当。

不正确的安装或维护也会导致轴承保持架损坏,如果轴承保持架安装不当,会导致轴承保持架在运行过程中受到非预期的应力,使其损坏。

例如,如果安装螺栓松动或错误的调整,轴承保持架就会受到不均匀的压力,导致破裂,此外,维护是轴承保持架长寿的关键。

如果维护不足,轴承保持架会受到腐蚀、积灰和其他损坏。

这些问题会使轴承保持架结构变得脆弱,导致破裂,因此,在使用轴承保持架时,应该注意正确的安装和定期维护。

4、硬物杂物侵入。

平时应保持轴承的干净和密封状况,如果有外来硬物杂物混入会增加保持架与轴承外圈的摩擦系数,有可能造成轴承散架。

5、承受负荷不宜。

造成此种情况的原因很多,过盈力太大、轴承内部温度过高、杂物混入等都会导致保持架的动转受到阻力并加重转动负何,促使了保持架的磨损,如此的恶性循环,就有可能导致轴承保
持架的断裂。

滚动轴承故障诊断分析与典型案例

滚动轴承故障诊断分析与典型案例
2020/1/8 8:53:09.488
五、滚动轴承故障案例
案例2—某电厂#3炉B吸风机推力轴承故障
2019年12月28日,生产实时数据#3锅炉B吸风机振动值在逐步增大。2020年1月7日, 风机在线水平振动为6.1mm/s(轴承箱),而就地测量振动值为1.8mm/s(机壳)。于8 日7点14分停风机进行检查,未发现故障点,叶轮上有少量积灰,予以清理,8日22点41 分启动风机运行,在线振动值在5.0mm/s左右。
风机解体发现的主要问题
1、吸风机推力轴承滚动体、内圈、外圈有较大的麻坑。 2、检查轴承箱,底部有金属屑。 3、解体轮毂,发现#6叶片对应的叶柄轴承,滚珠有一道沟痕,长×宽×深约
15×2×2mm。 4、振动测点信号线老化。
五、滚动轴承故障案例
案例2—某电厂#3炉B吸风机推力轴承故障
检修主要内容及更换的备品配件
— *—
三、滚动轴承故障特征频率
滚动轴承故障频率 计算经验公式:
外环故障频率:
BPFOr≌ 0.4Nn
内环故障频率: BPFIr≌ 0.6Nn
保持架故障频率: FTFr≌ 0.4N n=滚动体数目; N=轴的转速。
— *—
三、滚动轴承故障特征频率
轴承故障特征频率特点:
1、轴承的故障频率与其他故障频率不同; 2、轴承故障频率是转速频率的非整数倍; 3、内外环故障频率的和频=“轴承滚动体通过频率”(滚动体个数×RPM); 4、轴承内环故障频率往往伴有1X转速频率的边带; 5、轴承外环故障频率的幅值高于轴承内环故障频率的幅值; 6、轴承故障一般在发展到滚动体和保持架出现故障之前首先出现的是内环或外环故障频率;
五、滚动轴承故障案例
案例1—#8机A凝结水泵轴承故障

轴承振动特征分析

轴承振动特征分析

06 结论与建议
结论总结
轴承故障诊断的准确性得 到提高
通过分析振动信号,可以更准确地判断轴承 的运行状态,及时发现潜在的故障。
故障模式识别更加明确
振动特征分析有助于识别轴承的故障模式,如内圈 、外圈或滚动体的故障,为后续的故障原因分析和 修复提供依据。
定量评估轴承性能
通过分析振动信号的频谱、幅值等信息,可 以对轴承的性能进行定量评估,为轴承的维 护和更换提供决策依据。
原因
主要包括轴承座刚度不足、安装 不良、基础松动等。
振动特征分析方法
通过频谱分析、波形分析、轴心 轨迹分析等方法,对轴承座的振 动信号进行采集、处理和分析, 提取出轴承座的振动特征。
实例分析结果
轴承座的振动特征主要表现为低 频振动信号,其频率与轴承座的 结构和基础有关,通过分析这些 特征可以判断轴承座的工作状态 和故障类型。
轴承振动概述
轴承振动是指轴承在运转过程中产生的振动 现象,其产生的原因主要包括轴承内部元件 的相互作用、轴承座的不稳定以及外部激励 等。
轴承振动特征分析主要通过采集轴承的 振动信号,利用信号处理技术提取特征 ,进而对轴承的工作状态进行评估。
轴承振动通常采用振动烈度来描述, 其评价指标包括加速度、速度和位移 等。
02 轴承振动产生的原因
制造误差
材料不均匀
轴承材料内部存在不均匀性,导 致在运转过程中受力不均,引起 振动。
热处理不当
轴承的热处理工艺不佳,导致材 料内部存在残余应力,在运转过 程中产生振动。
装配误差
安装位置不准确
轴承在安装过程中位置不准确,导致运转过程中受力不均, 引起振动。
装配间隙不当
轴承的装配间隙过小或过大,都会影响轴承的正常运转,产 生振动。

轴承保持架损坏的原因

轴承保持架损坏的原因

轴承保持架损坏的原因
1. 过载,轴承在承受超过其额定负荷的重压时,保持架容易受
到过大的压力而损坏。

这可能是由于机器设备设计不当、工作条件
变化或操作错误导致的。

2. 不良润滑,轴承在运行时需要充分的润滑以减少摩擦和磨损,如果润滑不良或润滑油脱落,会导致轴承保持架因摩擦过大而损坏。

3. 污染物,如果轴承工作环境中存在杂质或污染物,这些颗粒
会进入轴承内部,导致保持架受损。

4. 装配不当,轴承在安装过程中,如果装配不当或者安装配合
间隙过大,会导致轴承保持架受到不必要的振动和冲击,从而损坏。

5. 腐蚀,轴承在潮湿、腐蚀性环境中工作,保持架可能会因腐
蚀而受损。

6. 高温,长期在高温环境中工作会导致轴承保持架的材料强度
下降,从而容易发生损坏。

7. 震动和冲击,机器设备在运行过程中产生的震动和冲击会对
轴承保持架造成损坏,尤其是在频繁启动和停止的情况下。

综上所述,轴承保持架损坏的原因涉及到多个方面,包括过载、不良润滑、污染物、装配不当、腐蚀、高温以及震动和冲击等因素。

为了减少轴承保持架的损坏,需要在设计、安装和维护过程中加以
注意和控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滚动轴承保持架缺陷案例及其振动特征的原因分析
1.设备概况
棒材生产线8架轧机减速机电机功率是630KW,轧制转速777rpm—
955rpm(联调轧制);一轴联轴端轴承型号为:352130。

测点分布如下:
2.简述
2019年4月12日发现8架减速机一轴联轴端双列圆锥轴承保持架缺陷,一直跟踪监测直到2019年4月29日更换减速机。

在跟踪的过程中我觉得这个测点加速度波形的变化很有意思,很值得拿来与大家讨论。

3.振动分析
对了,补充一句,该测点温度未见明显异常。

列举2019年4月12日;4月16日;4月18日;4月23日;4月26日;4月28日一轴联轴端水平加速度波形图。

4月12日3Ha波形图,波形图中存在间隔为保持架特征频率的高频冲击。

4月16日3Ha波形图,间隔为保持架特征频率的冲击能量增长明显。

峰值能量达到121m/s²。

4月23日3Ha波形图,间隔为一轴转频的冲击开始崭露头角。

从4月23日开始,3Ha测点的通频值能量逐步升高。

4月26日3Ha波形图。

到4月26日间隔为一轴转频的能量已经很明显了。

且峰值能量升高。

4月28日3Ha波形图,这个时候波形图中满屏都是间隔为一轴转频的冲击。

如果测振周期正好落在这个时间断内,我们还能准确判断轴承缺陷的位置是保持架吗?
4.检修验证
先看验证结果,2019年4月29日更换减速机,线下解体,发现一轴联轴端双列圆锥轴承保持架每个兜口都磨损严重,内外滑道,滚动体未见明显缺陷。

5.关于滚动轴承保持架缺陷发展到后期所体现的加速度波形形态的一些想法。

当初比较幸运,可以在轴承保持架缺陷早期就通过测振发现其缺陷并观察保持架缺陷的劣化过程。

但如果测振周期正好落在了轴承保持架缺陷的后期(即4月28日的时间段),我们还能准确判断轴承缺陷位置是保持架吗?
保持架的特征频率是保持架的旋转频率,也就是滚动体绕轴的公转频率。

所以在滚动轴承保持架早期缺陷时可以在加速度波形中看到间隔为保持架特征频率的高频冲击并不难理解。

因为滚动体在从非承载区到承载区的过程中,内圈与滚动体的摩擦力增大,滚动体在进入承载区瞬间会有一个加速过程,在正常轴承中,有油膜将滚动体与保持架隔开。

但是如果保持架兜口磨损,产生锐边,油膜难以形成,滚动体在加速过程就会冲击保持架。

所以在本案例中,早期保持架缺陷可以在加速度波形中清晰的看到间隔保持架特征频率的高频冲击。

当保持架缺陷发展到后期,由于轴承保持架兜口大量磨损,且磨损严重,使得轴承游隙变大,特别是本案例中的双列圆锥轴承。

因为转轴都会有一定的离心力,在重力与离心力的共同作用下,轴承过大的间隙,转轴每转一圈就会产生一次冲击。

(个人觉得具体的受力分析与王总总结的轴承跑圈产生转频冲击的受力分析类似,在这里就不详细赘述了。

感兴趣的星友可以关注王少峰公众号查看该文章。

)又因为轴承保持架兜口已经严重磨损,其本身的特性是不均匀的,转频的冲击力随保持架旋转到不同角度产生的冲击力不一样,所以在本案例中转频的冲击被保持架特征频率所调制。

由于轴承保持架所有兜口都有磨损,它相当于时域包络线较宽的脉冲,这就使得我们在看到4月28日的加速度波形时只看到了表象即间隔为转频的冲击。

6.关于想法的证明。

为了验证这个想法,我将4月28日3Ha的原始数据导入MATLAB中,利用在MATLAB中编写的程序将原始数据转换成peakvue,以窥探轴承具体缺陷的根源,来证明上面的想法。

虽然受制于本人matlab的使用水平,采样频率也达不到102400HZ,但还是可以窥见一二的。

如上图,绿色箭头与红色箭头的频率间隔是为6.25HZ很接近该双列圆锥轴承的保持架频率。

通过peakvue的频谱图也证明了上面的想法,即在轴承保持架缺陷发展到后期,保持架特征频率会调制该轴转频。

个人理解这种情况只会发生在水平放置的轴系中,对于垂直放置的转轴,不会产生这种情况。

7.补充
4月12日,4月28日3Hv对比如下:
4月12日3Hv
4月28日3Hv
4月28日3Hv频谱图中可以看见转频的谐波。

有轻微的松动缺陷。

相关文档
最新文档