现代控制理论 7-2 变分法求泛函极值问题(上)

现代控制理论 7-2 变分法求泛函极值问题(上)
现代控制理论 7-2 变分法求泛函极值问题(上)

()

t x x =()[]

t J J x =

t

y 泛函的变分

e e

a c

c

试求下列性能泛函达到极值的必要条件

10-1 试求下列性能泛函达到极值的必要条件 dt t x x g x J f t t ),,()(0 ?? = 给定边界条件为:f f f t x t x x t x ,)(,)(00==自由. 10-2 已知状态初值和终值为: 1,4)(,100>==f t t x t 但自由,,试求试下列性能泛函达到极值的极值曲线 )(t x * dt t x t x x J f t t ? ? +=0 )](2 1)(2[)( 10-3 试利用变分公式 0)]([ =+?? =εεσε σx x J J 求泛函 dt x x x F x J f t t ),,()(0 ? ???= 的变分,并写出欧拉方程。 10-4 求通过x(0)=1,x(1)=2,使下列性能指标为极值的曲线 dt x x J f t t )1()(20 +=? ? 10-5 设x=x(t),10≤≤t ,求从x(0)=0到x(1)=1间的最短曲线.Unknown 求性能指标 dt x x J )1()(210 +=? ? 在边界条件x(0)=0,x(1)自由情况下的极值曲线. 10-6 已知性能指标函数为 dt t tx t x x J )]()([)(21 0+=? 试求:(1)J δ的表达式; (2)当t x t t x 1.0,)(2==δ和t x 2.0=δ时的变分1J δ和2J δ的值. 10-7 试求下列性能指标的变分J δ dt x x t x J f t t )()(22 20 ?++ =? 10-8 试求泛函 dt x x x J )()(222 -=? ?π 在满足边界条件x(0)=1,2)2 (=π x 的极值曲线. 10-9 设泛函

泛函和泛函的极值

泛函和泛函的极值 泛函是指某一个量,它的值依赖于其它一个或者几个函数。 变分法的基本问题是求解泛函的极值。 作为变分法的简单例题。考察x,y 平面上连接两个定点的所有曲线中,求满足边界条件的任意曲线y(x)中最短曲线。 设P 1(x 1,y 1)和P 2(x 2,y 2)为平面上给定的两点,y (x )为连接两点的任意曲线。于是,这一曲线的长度为 连接P 1,P 2两点的曲线有无数条,每一条曲线都有一个L 值与其对应。满足边界条件的y (x )称为容许函数,问题是要从这些曲线,容许函数中找出使得曲线长度L 最小的一条。 根据上式,L [y ]依赖于y (x ),而y (x )是x 的函数,因此称y (x )为自变函数;L [y ]是倚赖于自变函数的函数,称为泛函。 求解最短程线问题,即在满足边界条件 在x =x 1时, y (x )=y 1 y'(x 1)= y'1 在x =x 2时, y (x )=y 2 y'(x 1)= y'1 的函数y (x )中,求使得泛函L [y ]为极值的特定函数。因此 y (x )称为容许函数。 上述问题应用变分法可以概括为求解泛函 在边界条件 y (x 1)=y 1, y (x 2)=y 2的极小值问题。

假设函数y(x)是使得泛函L[y]为最小的特定函数(真实的)。变分法有兴趣研究的是邻近于y(x)的任意容许函数引起泛函L []的改变。设 其中ε 为小参数,而η (x)为边界值为零的任意函数。当x固定时,容许函数 与y(x)的差 δ y称为泛函自变函数的变分,即 类似地,容许函数的斜率与y(x)斜率的差δ y', 称为泛函自变函数斜率的变分,即 应该注意δ y与函数y(x)的微分d y之间的差别,d y是自变量x的改变量d x 引起的y(x)的无穷小增量。而变分δ y是y(x)的任意一个微小的改变量。设泛函增量

变分法简介(简单明了易懂)(可编辑修改word版)

? §1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696 年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比· 伯努利( Jacob Bernoulli 1654-1705)、莱布尼茨( Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard , 1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在 1690 年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题(The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线, 从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在 1646 年(当时 17 岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到 1691 年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以 62 岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 ? d 2 y ? dx 2 a 1+ ( dy )2 dx ? y (0) = y ? ? ? 解此方程并适当选取参数,得 y '(0) = 0 即为悬链线。 y = 1 2a (e ax + e -ax ) (1) 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变 = 0

第二章-泛函极值及变分法(补充内容)

第二章 泛函极值及变分法(补充内容) 2.1 变分的基本概念 2.1.1 泛函和变分 泛函是一种广义的函数,是指对于某一类函数{y (x )}中的每一个函数y (x ),变量J 有一值与之对应,或者说数J 对应于函数y (x )的关系成立,则我们称变量J 是函数y (x )的泛函,记为J [y (x )]。 例1:如果表示两固定端点A (x A ,y A ),B (x B ,y B )间的曲线长度J (图2.1.1),则由微积分相关知识容易得到: dx dx dy J B A x x ? += 2)/(1 (2.1.1) 显然,对于不同的曲线y (x ),对应于不同的长度J ,即J 是函数y (x )的函数,J =J [y (x )]。 图2.1.1 两点间任一曲线的长度 例2:历史上著名的变分问题之一——最速降线问题,如果2.1.2所示。设在不同铅垂线上的两点P 1与P 2连接成某一曲线,质点P 在重力作用下沿曲线由点P 1自由滑落到点P 2,这里不考虑摩擦作用影响,希望得到质点沿什么样的曲线滑落所需时间最短。 图2.1.2 最速降线问题 选取一个表示曲线的函数y (x ),设质点从P 1到P 2沿曲线y =y (x )运动,则其运动速度为:

ds v dt == 其中,S 表示曲线的弧长,t 表示时间,于是: dt = 设重力加速度为g ,则gy v 2=。 因为P 1和P 2点的横坐标分别为x 1到x 2,那么质点从P 1到P 2所用时间便为: 1 [()]x x J y x =? 2 1 1/2 211[()]2[()()]x x y x dx g y x y x ??'+=??-?? ? (2.1.2) 则最速降线问题对应于泛函J [y (x )]取最小值。 回顾函数的微分: 对于函数的微分有两种定义: 一种是通常的定义,即函数的增量: ),()()()(x x x x A x y x x y y ?+?=-?+=?ρ (2.1.3) 其中A (x )与?x 无关,且有?x →0时ρ(x ,?x )→0,于是就称函数y (x )是可微的,其 线性部分称为函数的微分()()dy A x x y x x '=?=?,函数的微分就是函数增量的主部。 函数微分的另外一种定义: 通过引入一小参数ε,对)(x x y ?+ε关于ε求导数,并令ε→0的途径得到,即: dy x x y x x x y d x x dy =?'=??+'=?+→→)()() (00 εεεε ε (2.1.4) 上式说明)(x x y ?+ε在ε=0处关于ε的导数就是函数y (x )在x 处的微分。相应地,在泛函J [y (x )]中,变量函数y (x )的增量在其很小时称为变分,用δy (x )或δy 表示,

变分法简介(简单_明了_易懂)

§1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到1691年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以62岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 解此方程并适当选取参数,得 )(21ax ax e e a y -+= (1) 即为悬链线。 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变???????='=+=0)0()0()(10222y y y dx dy a dx y d

Matlab建模教程-变分法简介

§1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到1691年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以62岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 解此方程并适当选取参数,得 )(21ax ax e e a y -+= (1) 即为悬链线。 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变 ???????='=+=0)0()0()(102 2 2y y y dx dy a dx y d

泛函条件极值

§6.3 泛函的条件极值 一、泛函条件极值问题的提出(等周问题) 求在连接A 、B 长度为L 的所有曲线中与直线AB 所围成面积最大的曲线? AB 弧长:dx y L b a ∫+=2'1 (1) 曲线AB 与直线AB 所围成面积:()∫=b a dx x y S (2) 边界条件:()()0,0== b y a y (3) 在满足约束条件(1)和边界条件(3)的情况下,寻找满足由方程(2)的构成泛函问题的极小曲线函数。 二、一般泛函条件极值的E-L 方程 其中[][]()()2120,,,y b y y a y b a C y y y D ==∈=。 设()x y 是所求泛函的极值函数,取任意光滑函数()[]b a C x ,2 0∈η ()()()x x y x y εη+=1,()()0,0==b a ηη 从而构成一元函数 ()[]()∫++=+=b a dx y y x F y J '',,εηεηεηε? ()L dx y y x G b a =++∫'',,εηεη 利用拉格朗日乘子法,定义新的泛函 ()()()[]∫+++++=Φb a dx y y x G y y x F '',,'',,,εηεηλεηεηλε (4) 其中,λ为常数。 泛函()λε,Φ取极值,即需() 0,0=Φ=εελεd d () ()0'''',''''''''''0=???????+?=??++??+=+++=+++=Φ∫∫∫∫∫∫∫∫∫∫=b a y y y y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y y y y dx G dx d G F dx d F dx G dx d G dx G dx F dx d F dx F dx G dx G dx F dx F dx G G F F d d ηλληληληληηηηληληηηληληηε λεε

泛函的极值word版

第2章 泛函的极值 在讨论泛函的极值以前, 我们先来回顾一下函数的极值问题。 2.1函数的极值性质 2.1.1 函数的连续性 任意一个多元函数12(),(,,...,)T n n f x x x R =∈x x , 0>?ε, 如果0)(>=?εδδ, 当0δ-

第2章泛函的极值

第2章 泛函的极值 在讨论泛函的极值以前, 我们先来回顾一下函数的极值问题。 2.1函数的极值性质 2.1.1 函数的连续性 任意一个多元函数12(),(,,...,)T n n f x x x R =∈x x , 0>?ε, 如果0)(>=?εδδ, 当 0δ-

第十八章 变分法模型

-218- 第十八章 动态优化模型 动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方法。 §1 变分法简介 变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值原理。 1.1 变分法的基本概念 1.1.1 泛函 设S 为一函数集合,若对于每一个函数S t x ∈)(有一个实数J 与之对应,则称J 是对应在S 上的泛函,记作))((t x J 。S 称为J 的容许函数集。 通俗地说,泛函就是“函数的函数”。 例如对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函))((x y J 。由微积分知识不难写出 dx x y x y x y J x x )('1)(2))((2 12?+=π (1) 容许函数集可表示为 })( ,)(],,[)(|)({2211211y x y y x y x x C x y x y S ==∈= (2) 最简单的一类泛函表为 ?=2 1 ),,())((t t dt x x t F t x J (3) 被积函数F 包含自变量t ,未知函数x 及导数x 。(1)式是最简泛函。 1.1.2 泛函的极值 泛函))((t x J 在S t x ∈)(0取得极小值是指,对于任意一个与)(0t x 接近的 S t x ∈)(,都有))(())((0t x J t x J ≥。所谓接近,可以用距离ε<))(),((0t x t x d 来度量, 而距离定义为 |})()(||,)()({|max ))(),((0002 1t x t x t x t x t x t x d t t t --=≤≤ 泛函的极大值可以类似地定义。)(0t x 称为泛函的极值函数或极值曲线。 1.1.3 泛函的变分 如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。作为泛函的自变量,函数)(t x 在)(0t x 的增量记为 )()()(0t x t x t x -=δ 也称函数的变分。由它引起的泛函的增量记作 ))(())()((00t x J t x t x J J -+=?δ 如果J ?可以表为

泛函和变分

第1章 泛函和变分 1.1引言 以前我们在微积分中遇到的都是类似下面的函数极值问题: 一个足够光滑的连续函数 12(,,...,)n y f x x x =,其在区域n R Ω?内任何一点12(,,...,)T n x x x =x 都可以作以下的 Taylor 展开 2 12 1 2()()()()(|| ||)(),,...,T T T T n f f f f o f f f f x x x +?=+?+??+??????= ? ?????x x x x x x D x x x x ?? (1.1.1) 22221121222 212...()...n n n n f f f x x x x x f f f f x x x x x ??????? ?????? ?? ?=???????????????? D x 函数在某一点有极值的必要条件是 12 ,, 0 n f f f f x x x ?? ???== ??????? 但是,我们这们课程中要讨论的则是另一类极值问题—泛函的极值问题(泛函简单地讲, 就是函数的函数,详细见后面)。 例1.1 一个简单的变分问题: 最短线问题 图1.1最短线问题 假设经过,A B 两点距离最短的曲线方程为 *()y y x = (1.1.2) 另有一任意的连续可导函数()x ηη=,()x η满足两端固定的边界条件 01()()0x x ηη== (1.1.3) 显然()()y y x x αη=+依旧是过固定两点,A B 的连续曲线,其对应的长度为

1 2()1('')d x x L y x ααη=++? (1.1.4) 当0α=,()y y x =时()L α取到极小值,也就是说 0d () |0d L ααα == (1.1.5) 把(1.1.4)代入(1.1.5), 展开后有 ()() 10 1 1 1 000110 000 222233 222 d ()('|d |d 1('') '''d |d 1'1'1'''''''''d d 1'1'1'0 x x x x x x x x x x x x L y x y y y y x x y y y y y y y y x x y y y αααααηηηη===++'?? ?==- ?+++?? ???=--=- ?+ ?++??=????? (1.1.6) 由于(1.1.6) 对于任意的()x ηη=都成立,根据变分引理(见2.2.2节), 我们可以得到 ( ) 3 2 '' 01'y y =+ (1.1.7) 意味着 12y C x C =+ (1.1.9) 因此, 在平面上过固定两点距离最近的光滑曲线是直线。 下面我们来看几类比较典型的变分问题。 例1.2 最速降线问题 图1.2最速降线问题 我们在该铅直平面上取一直角坐标系,以A 为坐标原点,水平为x 轴,向下为y 轴。曲线的方程为()y y x =, A 点坐标00(,)(0,0)x y =, B 点坐标11(,)x y 。曲线上任意一点P 时的速度为 d 2d s v gy t = = (1.1.10)

使用变分法的理由

在热力学系使用变分法的理由及结果 摩尔熵分布函数”的导出 摘 要:当热力学体系达到平衡态时,具有“无耗散”( 即“无熵产”)的特点。本文就依据这一“平衡态原理”( “熵增原理”)使用了“变分法”进行“泛函分析”;导出了“欧勒方程”的解──“比熵平衡方程”,还给出了“即使在外场中处于密度不均匀的无‘熵产’状态,类似于最大熵状态时,体系仍然保持着均匀的......‘比.熵.’分.布”.. 这个新结果。同时,这都因为大胆地在 “热统”领域引进了“间接变分法”的结果,这增强了对体系“熵函数”的探讨能力;最后还作了一些展望。 1.引言 若有一绝热封闭的刚性壁容器,内盛有一摩尔单原子理想气体,在桌面上静置了一百年;试问该容器内不同高度上的气体密度、压力、温度这三个热力学参量沿着高度的分布情况究竟是怎样的?依据经验,假如容器处在无外力场中且保持惯性运动状态, 则容器内气体必将有0=?P ,0=?ρ,0=?T ,这只是经验认识;对此,笔者一直心存余悸,在惯性空间,究竟当热力学体系达到平衡态时,虽然可以肯定体系的熵达到了极大值,但体系的密度、温度、压力是否真的会均匀分布,这决不能满足于主观臆测,必须建立相应的数学模型进严格的

规范的推导求证。 波尔兹曼早就用统计力学的方法推导出,无论体系是否处在外力场中,体系的平衡态都将保持温度均匀分布的状态;所以教科书将温度均匀分布作为物系达到平衡态的标志。 笔者试图另辟蹊径,依据“最大熵原理”借用“(间接)变分法”(破解相应的“欧勒方程”)首先解出惯性空间的热力学平衡态体系的参量分布函数,接着再导出当存在外场(即当g≠0)时,热力学平衡态体系的参量分布函数…… 2.对热力学体系尝试“变分法”的理由 其实上面的问题可以归结为,当体系的“熵产生率”等于零或曰热孤立体系的总熵不再增长时(最大熵原理),惯性空间中的热力学体系各点介质的‘比熵’(即某小局域的熵与该小局域所含介质的摩尔数的比值)将保持什么样的关系问题;或曰热力学参量的分布函数将是怎样的?这个问题一直困扰着笔者……久思不得其解;思来想去一筹莫展(无从下手)。经过长期的沉思……笔者突然联想到人们在寻求极限条件下的尝试函数,常常运用“变分法”进行泛函分析……譬如在力学中为了寻求最快捷的下滑轨道方程(函数),使用了“间接变分法”,求解“欧勒方程”;也就是说欲使某一滑块从某一点下滑到另一点需要的时间最短,其路径(轨迹曲线)的方程(函数)是怎样的(即“捷线问题”)?“捷线问题”与本文的问题颇为相似。本文的问题就是指一摩尔理想气体在特定的绝热封闭的刚性容器中经过长期静置,试问其最终死寂(平静)状态时的密度、温度、压

《变分法基础》习题2

习题2 2.1 设函数1)',,(C y y x F F ∈=,2)(C x y y ∈=,试求 (1) 微分F d ;(2) 变分F δ。 2.2 试求下列函数的一阶变分,其中a 、b 、c 和d 均为常数。 (1) 22'dy cy by ax F +++=;(2) 2'1y y F +=;(3) 2''cy by a F ++=。 2.3 试求下列泛函的一阶变分 (1) ?++=10 d )'''(][2x x x cy by ay y J ;(2) ?+=1 d '1][22x x x y y y J ; (3) ?--=10 d )cosh 2'(][22x x x x y y y y J ;(4) ?++=1 d )''(][22x x x c bxy y ax y J ; (5) ?-+=1 d )'2(][22x x x y y y xy y J 。 2.4 求泛函?+=1 02d )12'(][x xy y y J 的极值曲线,边界条件为0)0(=y ,1)1(=y 。 2.5 求泛函?π-=20 22d )'(][x y y y J 的极值曲线,边界条件为0)0(=y ,12=?? ? ??πy 。 2.6 求泛函?+=1 d )'1('][2x x x y x y y J 的极值曲线。 2.7 求泛函?+=1 d )'(][2x x x y xy y J 的极值曲线。 2.8 求泛函?+=1 d )'2(][2x x x xy y y J 的极值曲线,边界条件为00)(y x y =,11)(y x y =。 2.9 求泛函?+=1 d '1 e ][2x x x x y y J 的极值曲线。 2.10 求泛函?-=2 12d )'(][x y xy y J 的极值曲线,边界条件为0)1(=y ,1)2(=y 。 2.11 求泛函?=1 d '][2 x x k x x y y J 的极值曲线,式中0>k 。 2.12 求泛函?++=2 122d )'2'(][x y yy y y J 的极值曲线,边界条件为1)1(=y ,0)2(=y 。 2.13 求泛函?=1 02d '][x yy y J 的极值曲线,边界条件为1)0(=y ,34)1(=y 。 2.14 求泛函?π-+=022d )'co s 4(][x y y x y y J 的极值曲线,边界条件为0)0(=y , 0)(=πy 。 2.15 求泛函?+=e 12d )''(][x yy xy y J 的极值曲线,边界条件为0)1(=y ,1(e)=y 。 2.16 求泛函?+=1 02d )'(][x y x y J 的极值曲线,边界条件为1)0(=y ,2)1(=y 。 2.17 求泛函?+=1 022d )'(][x y y y J 的极值曲线,边界条件为0)0(=y ,1)1(=y 。 2.18 求泛函?+=1 022d )4'(][x y y y J 的极值曲线,边界条件为2e )0(=y ,1)1(=y 。 2.19 求泛函?-=1 d )'(][22x x x y x y y J 的极值曲线,边界条件为a x y =)(0,b x y =)(1。 2.20 求泛函?-=1 2 d ) '(][x x y x xy y y J 的极值曲线,边界条件为a x y =)(0,b x y =)(1。 2.21 求泛函?+=1 d )'(][2x x x by ay y J 的极值曲线,边界条件为00)(y x y =,11)(y x y =。

相关文档
最新文档