线 性 规 划 算 法 详 解
第三章线性规讲义划模型

Min W= Yb
YA - YS= C Y,YS≥0
➢ 若两个互为对偶问题之一有最优解,则另一个必有最优解, 且目标函数值相等(Z*=W*),最优解满足CX*=Y*b。
第三章 线性规划模型
▪ 线性规划问题的提出 ▪ 线性规划问题的建模 ▪ 典型特征和基本条件 ▪ 一般模型和标准模型 ▪ 线性规划的图解方法 ▪ 影子价格与敏感分析 ▪ 线性规划模型的应用
第三章 线性规划模型
• 对偶问题的提出
某厂生产甲、乙两 种产品,消耗A、B两 种原材料 。生产一件 甲产品可获利2元,生 产乙产品获利3元。问 在 以 下条件下如何安 排生产?
设备 A 设备 B 设备 C 利润(元/件)
产品 产品 产品 产品 甲乙丙丁 1.5 1.0 2.4 1.0 1.0 5.0 1.0 3.5 1.5 3.0 3.5 1.0 5.24 7.30 8.34 4.18
设备能力 (小时)
2000 8000 5000
第三章 线性规划模型
▪ 建立的模型如下:
z=12737.06(元)
▪ 请注意最优解中利润率最高的产品丙在最优生产计 划中不安排生产。说明按产品利润率大小为优先次 序来安排生产计划的方法有很大局限性。尤其当产 品品种很多,设备类型很多的情况下,用手工方法 安排生产计划很难获得满意的结果。另外,变量是 否需要取整也是需要考虑的问题。
第三章 线性规划模型
用线性规划制订使总利润最大的生产计划。
每件产品占用的 产品 产品 产品 产品 设备能力
机时数(小时/件) 甲 乙 丙 丁 (小时)
设备 A
1.5 1.0 2.4 1.0
2000
设备 B
1.0 5.0 1.0 3.5
运筹学-第一章

Operations Research
授课老师:郑黎黎
邮箱:zlldtq1024@
2021/4/6
1
考试方式:闭卷考试
课堂纪律:手机关机、不要讲话
考
不要睡觉
试 与
关键词:了解、理解、掌握、
要
熟练掌握
求
运筹学的产生和发展
运筹学的定义与特点
绪
运筹学解决问题的过程
运筹学的主要研究内容
田忌赛马
的
齐王要与大臣田忌赛马,双方各出
产
上、中、下马各一匹,对局三次,
生
每次胜负1000金。田忌在好友、著
和
名的军事谋略家孙膑的指导下,实
发
施的对策为:
展
齐王 上 中 下
田忌 下 上 中
最终净胜一局,赢得1000金。
运筹学思想的出现可以追溯到很
运 筹 学
的 产 生
和 发
早以前—“田忌齐王赛马”(对策 论)、“丁谓修宫 ” (网络计 划 )等都体现了优化的思想。
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
② 50年代初期至50年代末期——成长 时期
产
生
和
发
展
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
② 50年代初期至50年代末期——成长 时期
它可以用来预测发展趋势,制定
行动规划或优选可行方案。
运 筹 学
的
还有人:运筹学是一门应用科学, 它广泛应用现有的科学技术知识 和数学方法,解决实际问题中提 出的专门问题,为决策者选择最 优决策提供定量依据。
优化物流路线规划与管理

优化物流路线规划与管理第1章物流路线规划基础 (4)1.1 物流与供应链管理概述 (4)1.1.1 物流的概念与功能 (4)1.1.2 供应链管理的发展 (4)1.2 路线规划的重要性 (4)1.2.1 降低物流成本 (4)1.2.2 提高物流效率 (4)1.2.3 提升服务水平 (4)1.3 路线规划的基本原理 (4)1.3.1 运输距离最短原则 (4)1.3.2 货物集中配送原则 (5)1.3.3 时间窗约束原则 (5)1.3.4 网络优化原则 (5)1.3.5 面向客户原则 (5)第2章物流运输网络构建 (5)2.1 运输网络结构设计 (5)2.1.1 运输网络基本构成要素 (5)2.1.2 运输网络结构设计原则 (5)2.1.3 运输网络结构设计方法 (6)2.2 运输网络优化方法 (6)2.2.1 运输问题求解方法 (6)2.2.2 运输网络优化策略 (6)2.3 运输网络案例分析 (6)2.3.1 案例一:某电商企业物流运输网络优化 (6)2.3.2 案例二:某跨国公司全球物流运输网络构建 (6)2.3.3 案例三:某城市公共交通网络优化 (7)第3章货运车辆路径问题 (7)3.1 货运车辆路径问题概述 (7)3.1.1 定义与背景 (7)3.1.2 分类 (7)3.1.3 研究意义 (7)3.2 车辆路径问题的求解方法 (7)3.2.1 启发式算法 (7)3.2.2 精确算法 (8)3.2.3 元启发式算法 (8)3.3 车辆路径问题的优化策略 (8)3.3.1 集中配送策略 (8)3.3.2 分区配送策略 (8)3.3.3 多车型协同配送策略 (8)3.3.4 考虑时间窗的配送策略 (8)3.3.5 绿色配送策略 (8)第4章时间窗约束下的物流路线规划 (8)4.1 时间窗约束概述 (8)4.2 带时间窗的车辆路径问题 (9)4.3 时间窗约束下的路径优化算法 (9)第5章多目标物流路线规划 (9)5.1 多目标优化概述 (9)5.1.1 多目标优化的定义与意义 (9)5.1.2 多目标优化方法与策略 (9)5.2 多目标物流路线规划方法 (9)5.2.1 基于遗传算法的多目标物流路线规划 (9)5.2.2 基于粒子群算法的多目标物流路线规划 (9)5.2.3 基于蚁群算法的多目标物流路线规划 (10)5.3 多目标优化算法应用 (10)5.3.1 多目标优化算法在物流配送中的应用 (10)5.3.2 基于多目标优化算法的物流网络设计 (10)5.3.3 多目标优化算法在跨境电商物流中的应用 (10)第6章集成物流路线规划与调度 (10)6.1 集成物流管理概述 (10)6.1.1 集成物流管理的概念 (10)6.1.2 集成物流管理的重要性 (10)6.2 路线规划与调度集成方法 (10)6.2.1 车辆路径问题(VRP)概述 (10)6.2.2 集成遗传算法与禁忌搜索的路线规划方法 (11)6.2.3 集成粒子群优化与模拟退火算法的车辆调度方法 (11)6.3 集成优化策略与应用 (11)6.3.1 集成优化策略概述 (11)6.3.2 集成优化策略在物流领域的应用 (11)6.3.3 集成优化策略的发展趋势 (11)第7章绿色物流与路径规划 (11)7.1 绿色物流概述 (11)7.1.1 绿色物流的定义与内涵 (11)7.1.2 绿色物流的发展背景与意义 (11)7.1.3 绿色物流的核心要素与挑战 (11)7.2 考虑碳排放的物流路线规划 (11)7.2.1 碳排放与物流活动的关系 (11)7.2.2 碳排放核算方法在物流领域的应用 (11)7.2.3 考虑碳排放的物流路线规划模型 (12)7.2.4 碳排放约束下的物流路线优化策略 (12)7.3 绿色物流路径优化方法 (12)7.3.1 节能减排的物流路径规划方法 (12)7.3.1.1 节能型车辆选用与调度 (12)7.3.1.2 低碳运输方式选择与协同 (12)7.3.1.3 路径规划中的能耗评估与优化 (12)7.3.2 基于可持续发展理念的物流路径规划方法 (12)7.3.2.1 可持续发展目标下的物流路径规划原则 (12)7.3.2.2 多目标优化方法在物流路径规划中的应用 (12)7.3.2.3 生态补偿机制在物流路径优化中的作用 (12)7.3.3 基于大数据分析的绿色物流路径优化方法 (12)7.3.3.1 大数据在物流路径规划中的应用 (12)7.3.3.2 数据驱动的绿色物流路径优化策略 (12)7.3.3.3 基于实时交通信息的物流路径动态调整 (12)7.3.4 基于物联网技术的绿色物流路径优化方法 (12)7.3.4.1 物联网技术在物流路径规划中的应用 (12)7.3.4.2 智能配送系统与路径优化 (12)7.3.4.3 物联网环境下物流路径规划的挑战与对策 (12)第8章基于大数据的物流路线优化 (12)8.1 大数据在物流领域的应用 (12)8.1.1 大数据的定义与特征 (12)8.1.2 物流行业大数据的来源与类型 (12)8.1.3 大数据在物流行业的价值体现 (12)8.1.4 大数据技术在物流领域的应用现状 (12)8.2 基于大数据的路径规划方法 (12)8.2.1 数据预处理技术 (12)8.2.2 路径规划算法 (13)8.2.3 基于大数据的路径规划模型 (13)8.3 数据驱动的物流路线优化策略 (13)8.3.1 实时动态路径规划 (13)8.3.2 货运车辆调度优化 (13)8.3.3 集成物流信息平台 (13)8.3.4 大数据技术在物流配送中的应用案例分析 (13)第9章智能物流与路径规划 (14)9.1 人工智能技术概述 (14)9.2 智能物流路径规划方法 (14)9.3 机器学习在物流路径优化中的应用 (14)第10章物流路线规划与管理的实践与展望 (14)10.1 物流路线规划与管理案例分析 (14)10.1.1 案例选取与背景介绍 (14)10.1.2 物流路线规划实践过程 (14)10.1.3 物流路线管理策略分析 (14)10.1.4 案例成果与经验总结 (14)10.2 物流路线规划与管理的挑战与机遇 (14)10.2.1 国内外物流市场环境分析 (14)10.2.2 物流路线规划与管理的核心问题 (14)10.2.3 面临的主要挑战及其成因 (15)10.2.4 把握物流产业发展机遇 (15)10.3 未来发展趋势与展望 (15)10.3.1 物流路线规划技术的创新 (15)10.3.2 物流管理模式的变革 (15)10.3.3 绿色物流与可持续发展 (15)10.3.4 智能化、信息化在物流路线管理中的应用 (15)10.3.5 跨境电商与物流路线规划的新需求 (15)10.3.6 物流路线规划与国家战略的融合 (15)第1章物流路线规划基础1.1 物流与供应链管理概述1.1.1 物流的概念与功能物流作为现代企业运营的重要组成部分,涉及原材料的采购、产品的生产、仓储、配送以及售后服务等多个环节。
如何进行线形工程量测算与统计分析

如何进行线形工程量测算与统计分析线形工程量的测算与统计分析是在工程领域非常重要的一项工作。
准确的测算和分析能够为工程项目的规划、设计和施工提供重要的参考依据。
本文将探讨如何进行线形工程量的测算与统计分析,包括测算方法、统计分析的指标和方法等。
一、线形工程量的测算方法线形工程量的测算是指根据工程项目的设计图纸或现场实际情况,通过对工程线形进行测量,计算出相应的工程量。
线形工程量通常包括路基、路面、排水、交通设施等方面的工程量。
1.1 路基工程量的测算方法路基工程量的测算主要是指道路的开挖和填方量。
测算方法一般有平面测量法和剖面测量法两种。
平面测量法是通过在道路布置测量控制点,利用全站仪进行距离和高差测量,然后计算各个测量截面的面积,最终得到开挖和填方量。
剖面测量法是通过在道路横断面上布置一定数量的测量点,在每个测量点上进行高程测量,然后计算每个测量点的填挖方量,最后累加得到总的开挖和填方量。
1.2 路面工程量的测算方法路面工程量的测算主要是指路面材料的用量和面积。
测算方法一般有直接测算法和母线法两种。
直接测算法是通过在路面布置测量控制点,利用全站仪进行面积测量和高程测量,然后根据标准设计厚度计算路面材料的用量。
母线法是在道路纵断面上布置一定数量的测量点,然后通过对这些测量点的高程测量,计算出道路纵断面的曲线形状,最后根据标准设计厚度计算路面材料的用量。
二、线形工程量的统计分析指标线形工程量的统计分析是指对测算得到的工程量进行合理的分析和统计,以便为工程项目的施工和管理提供参考依据。
常用的统计分析指标包括工程量累计曲线、施工进度分析和工程量变化趋势等。
2.1 工程量累计曲线工程量累计曲线反映了工程项目的施工进度和完成情况。
通过绘制工程量累计曲线,施工管理者可以清晰地了解到工程量的完成情况和施工进度的变化趋势,以便及时采取相应的措施调整施工进度。
2.2 施工进度分析施工进度分析是对工程项目的施工进度进行定量分析和评估。
线性规划基础

(3)、以此表为基础,请求出最优生产方案。
4.根据单纯形表判断解的类型。
(1)
Cj
0
0
0
0
-1
CB
XB
b
x1
x2
x3
x4
x5
0
x1
10
1
1
1
0
0
-1
x5
20
0
-1
-2
-1
1
Zj
0
1
2
1
-1
Cj-Zj
0
-1
-2
-1
0
其中x5为人工变量,目标为max Z。
(2)
Cj
三.简答题
1.针对不同形式的约束(≥,=,≤)简述初始基本可行解的选取方法。
2.简述如何在单纯型表上判别问题是否具有唯一解、无穷多解、无界解或无可行解。
3.简述若标准型变为求目标函数最小,则用单纯形法计算时,如何判别问题已取得最优解。
四、解答题
1.找出下列线性规划问题的一组可行解和基本可行解。
(1)max Z = 40x1+45x2+24x3(2)min Z =x1-2x2+x3-3x4
15
20
25/ 3
0
0
CB
XB
b
x1
x2
x3
x4
x5
20
x2
20
0
1
-1/3
1
-2/3
15
x1
20
1
0
1
-1
1
Zj
15
20
25/3
5
划线工具及其使用方法

划线工具及其使用方法常用的划线工具:有钢直尺、划线平台、划针、划线盘、高度游标卡尺、划规、样冲、V型架、角尺和角度规及千斤顶或支持工具等。
1. 钢直尺:主要用来量取尺寸、测量工件以及作划直线时的导向工具。
钢直尺是一种简单的尺寸量具。
在尺面上刻有尺寸刻线,最小刻线距为0.5mm,其长度规格有150mm,300mm,1000mm等多种。
2. 划线平台(划线平板)用来安放工件和划线工具:(1) 划线平台的制造材料:划线平台一般由铸铁制成,工作表面经过精刨或刮研等精加工,作为划线时的基准平面。
划线平台—般在平板支架上搁置,放置时应使平台工作表面处于水平状。
(2) 划线平台的使用要求:①工作表面应保持水平安装,划线平台要使表面保持水平状态,以免倾斜后在长期的使用状态下发生变形。
使用时要随时保持平台工作表面清洁,避免铁屑、灰砂等污物在划线工具或工件的拖动下划伤平台表面,影响划线精度。
用后要擦拭干净,并涂上机油防锈。
②要轻拿轻放物品,防止撞击平台工作表面,工件和工具在平台上都要轻拿轻放,尤其要防止重物撞击平台和在平台上进行敲击而损伤平台工作面。
3.划针用来在工件上划线条:(1)划针的制造材料:划针通常是用弹簧钢丝或高速钢制成,一般直径为3~5mm,长度约为200~300mm,尖端磨成15°~20°的尖角,并经热处理淬火使之硬化,这样就不容易磨损变钝。
有的划针在尖端部位焊有硬质合金,耐磨性更好。
(2)划针的使用要求:①针尖要紧靠导向工具的边缘,上部向外侧和划线方向倾斜划线用划针划线时,针尖要紧靠导向工具的边缘,压紧导向工具,避免滑动面影响划线的准确性。
划针的握法与用铅笔划线相似,上部向外侧倾斜15°~20°,向划线移动方向倾斜约45°~75°。
在用钢尺和划针划连接两点的直线时,应先用划针和钢尺定好后一点的划线位置,然后凋整钢尺使与前一点的划线位置对准,再开始划出两点的连接直线。
控制性详细规划讲义

– 道路红线、地块界线、面积、性质、建筑密度、 高度、容积率等指标,地块编号
• 6、工程管线规划图
– 平面位置、管径、控制点坐标和标高等
(三)文本要求
• 1、总则
– 规划目的、依据、原则、范围、适用范围、强 制性内容、执行主体、管理权限等。
• 2、规划目标、功能定位、规划结构 • 3、土地使用
1.中国特色的法定规划
借鉴区划技术,变革传统详细规划形成的具有中国 特色的规划类型,基本方法是“地块指标”加“图 则”;
城乡规划法明确的法定规划之一; 反映各个利益主体在城市建设中的利益关系; 地方政府控制和引导土地开发的依据,建设主管部
门做出建设项目规划许可的依据(行政许可法范 畴); 公众参与最具实效性的内容; 法律严肃性越来越高; 编制技术不断探索与进步。
– 重点地段建筑物高度、体量、风格、色彩、群体组合 控制与引导、历史文化遗传保护的原则和措施
• 9、土地使用、建筑建造通则
– 土地使用规划、建筑容量规划、建筑建造规划等的控 制规定
• 10、其他
– 成果组成、附图、附表、附录等
(四)说明书要求
• 1、前言 • 2、概况 • 3、背景、依据 • 4、目标、指导思想、功能定位、规划结构 • 5、土地使用规划 • 6、公共服务设施规划
– 各类用地界线、分类和性质、道路网络、公共 设施、等
图件成果要求
• 4、道路交通及竖向规划图
– 道路走向、线型、横断面、交叉口坐标标高、 停车场位置、地坪规划标高等
• 5、公共设施规划图
– 位置、类别、等级、分布、服务半径等
• 6、工程管线规划图
– 平面位置、管径、控制点坐标和标高等
第二章--控制性详细规划的编制内容与方法

控制性详细规划指标:
编号
指标
1
用地性质
2
用地面积
3
建筑密度
4
容积率
5
建筑高度/层数
6
绿地率
7
公建配套项目
8
建筑后退道路红线9 Nhomakorabea建筑后退用地边界
10 社会停车场库
11 配建停车场库
12 地块出入口方位、数量和允许
开口路段
13 建筑形体、色彩、风格等城市
设计内容
分类 规定性 规定性 规定性 规定性 规定性 规定性 规定性 规定性 规定性 规定性 规定性 规定性
引导性
注解
用于一般建筑/住宅建筑
用于研道路的地块 用于地块之间 用于城市分区、片的社会停车 用于住宅、公建地块的停车场
用于重点地段、文物保护区、历史街区、 特色街道、公园等开放空间地区
• 一.城市整体密度分区原则法
• 根据微观经济学区位理论,从宏观、中观、微观三个层 面,确定城市开发总量和城市整体强度(即核心指标建筑 密度和容积率),建立城市强度分区的基准模型和修正模 型,进行各类主要用地的强度分配,为确定地块容积率, 制定地块密度细分提供原则性指导。此方法优点是在区位 理论基础上,将分区管理控制向系统化、数据化、精细化 方向大大推进,使城市规划控制管理中各项指标的确定更 具有严密性,进一步提高控制性详细规划编制,指标制定 的科学性。——但分区推导模型内容体系构建尚待进一步 探讨,模型中各项因子选择和推导过程中各因子所占比重 的确定等因素,对于分区控制合理性程度、密度分配结果 有很大影响。
• 三.典型实验法
• 根据规划意图,进行有目的的形态规划,依据 形态规划平面计算出相应的规划控制指标,再根 据经验指标数据,选择相关控制指标,两者权衡 考虑,用作地块的控制指标。这种方法的优点是 形象性,直观性强,便于掌握,对研究空间结构 布局较有力,缺陷在于工作量大并存在局限性和 主观性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Java基础算法详解查找和排序算法是算法的入门知识,其经典思想可以用于很多算法当中。
因为其实现代码较短,应用较常见。
所以在面试中经常会问到排序算法及其相关的问题。
但万变不离其宗,只要熟悉了思想,灵活运用也不是难事。
一般在面试中最常考的是快速排序和归并排序,并且经常有面试官要求现场写出这两种排序的代码。
对这两种排序的代码一定要信手拈来才行。
还有插入排序、冒泡排序、堆排序、基数排序、桶排序等。
面试官对于这些排序可能会要求比较各自的优劣、各种算法的思想及其使用场景。
还有要会分析算法的时间和空间复杂度。
通常查找和排序算法的考察是面试的开始,如果这些问题回答不好,估计面试官都没有继续面试下去的兴趣都没了。
所以想开个好头就要把常见的排序算法思想及其特点要熟练掌握,有必要时要熟练写出代码。
冒泡排序冒泡排序是最简单的排序之一了,其大体思想就是通过与相邻元素的比较和交换来把小的数交换到最前面。
这个过程类似于水泡向上升一样,因此而得名。
举个栗子,对5,3,8,6,4这个无序序列进行冒泡排序。
首先从后向前冒泡,4和6比较,把4交换到前面,序列变成5,3,8,4,6。
同理4和8交换,变成5,3,4,8,6,3和4无需交换。
5和3交换,变成3,5,4,8,6,3.这样一次冒泡就完了,把最小的数3排到最前面了。
对剩下的序列依次冒泡就会得到一个有序序列。
冒泡排序的时间复杂度为O(n^2)。
实现代码:*@Description:冒泡排序算法实现public class BubbleSort {public static void bubbleSort(int[] arr) {if(arr == null || arr.length == 0)for(int i=0; i) {for(int j=arr.length-1; ji; j--) {if(arr[j]arr[j-1]) {swap(arr, j-1, j);public static void swap(int[] arr, int i, int j) { int temp = arr[i];arr[i] = arr[j];arr[j] = temp;抑或简单理解一点的正向排序public class BubbleSort {public static void bubbleSort(int[] arr) {if(arr == null || arr.length == 0)for(int i=1;iarr.length-1;i++) {for(int j=0; jarr.length-i; j++) {if(arr[j]arr[j+1]) {swap(arr, j+1, j);public static void swap(int[] arr, int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;选择排序选择排序的思想其实和冒泡排序有点类似,都是在一次排序后把最小的元素放到最前面。
但是过程不同,冒泡排序是通过相邻的比较和交换。
而选择排序是通过对整体的选择。
举个栗子,对5,3,8,6,4这个无序序列进行简单选择排序,首先要选择5以外的最小数来和5交换,也就是选择3和5交换,一次排序后就变成了3,5,8,6,4.对剩下的序列一次进行选择和交换,最终就会得到一个有序序列。
其实选择排序可以看成冒泡排序的优化,因为其目的相同,只是选择排序只有在确定了最小数的前提下才进行交换,大大减少了交换的次数。
选择排序的时间复杂度为O(n^2)。
实现代码:*@Description:简单选择排序算法的实现public class SelectSort {public static void selectSort(int[] arr) {if(arr == null || arr.length == 0)int minIndex = 0;for(int i=0; i--只需要比较n-1次minIndex = i;for(int j=i+1; j--从i+1开始比较,因为minIndex默认为i 了,i就没必要比了。
if(arr[j] arr[minIndex]) {minIndex = j;if(minIndex != i) { --如果minIndex不为i,说明找到了更小的值,交换之。
swap(arr, i, minIndex);public static void swap(int[] arr, int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;插入排序插入排序不是通过交换位置而是通过比较找到合适的位置插入元素来达到排序的目的的。
相信大家都有过打扑克牌的经历,特别是牌数较大的。
在分牌时可能要整理自己的牌,牌多的时候怎么整理呢?就是拿到一张牌,找到一个合适的位置插入。
这个原理其实和插入排序是一样的。
举个栗子,对5,3,8,6,4这个无序序列进行简单插入排序,首先假设第一个数的位置时正确的,想一下在拿到第一张牌的时候,没必要整理。
然后3要插到5前面,把5后移一位,变成3,5,8,6,4.想一下整理牌的时候应该也是这样吧。
然后8不用动,6插在8前面,8后移一位,4插在5前面,从5开始都向后移一位。
注意在插入一个数的时候要保证这个数前面的数已经有序。
简单插入排序的时间复杂度也是O(n^2)。
实现代码:*@Description:简单插入排序算法实现public class InsertSort {public static void insertSort(int[] arr) {if(arr == null || arr.length == 0)for(int i=1; i--假设第一个数位置时正确的;要往后移,必须要假设第一个。
int target = arr[i]; --待插入的while(j 0 target ]) {arr[j] = arr[j-1];arr[j] = target;快速排序快速排序一听名字就觉得很高端,在实际应用当中快速排序确实也是表现最好的排序算法。
快速排序虽然高端,但其实其思想是来自冒泡排序,冒泡排序是通过相邻元素的比较和交换把最小的冒泡到最顶端,而快速排序是比较和交换小数和大数,这样一来不仅把小数冒泡到上面同时也把大数沉到下面。
举个栗子:对5,3,8,6,4这个无序序列进行快速排序,思路是右指针找比基准数小的,左指针找比基准数大的,交换之。
5,3,8,6,4 用5作为比较的基准,最终会把5小的移动到5的左边,比5大的移动到5的右边。
5,3,8,6,4 首先设置i,j两个指针分别指向两端,j指针先扫描(思考一下为什么?)4比5小停止。
然后i扫描,8比5大停止。
交换i,j位置。
5,3,4,6,8 然后j指针再扫描,这时j扫描4时两指针相遇。
停止。
然后交换4和基准数。
4,3,5,6,8 一次划分后达到了左边比5小,右边比5大的目的。
之后对左右子序列递归排序,最终得到有序序列。
上面留下来了一个问题为什么一定要j指针先动呢?首先这也不是绝对的,这取决于基准数的位置,因为在最后两个指针相遇的时候,要交换基准数到相遇的位置。
一般选取第一个数作为基准数,那么就是在左边,所以最后相遇的数要和基准数交换,那么相遇的数一定要比基准数小。
所以j指针先移动才能先找到比基准数小的数。
快速排序是不稳定的,其时间平均时间复杂度是O(nlgn)。
实现代码:*@Description:实现快速排序算法public class QuickSort {--一次划分public static int partition(int[] arr, int left, int right) {int pivotKey = arr[left];int pivotPointer = left;while(left right) {while(left = pivotKey)right --;while(left pivotKey)swap(arr, left, right); --把大的交换到右边,把小的交换到左边。
swap(arr, pivotPointer, left); --最后把pivot交换到中间 return left;public static void quickSort(int[] arr, int left, int right) {if(left = right)int pivotPos = partition(arr, left, right);quickSort(arr, left, pivotPos-1);quickSort(arr, pivotPos+1, right);public static void sort(int[] arr) {if(arr == null || arr.length == 0)quickSort(arr, 0, arr.length-1);public static void swap(int[] arr, int left, int right) { int temp = arr[left];arr[left] = arr[right];arr[right] = temp;其实上面的代码还可以再优化,上面代码中基准数已经在pivotKey中保存了,所以不需要每次交换都设置一个temp变量,在交换左右指针的时候只需要先后覆盖就可以了。
这样既能减少空间的使用还能降低赋值运算的次数。
优化代码如下:*@Description:实现快速排序算法public class QuickSort {* @param arr* @param left* @param right* @returnpublic static int partition(int[] arr, int left, int right) {int pivotKey = arr[left];while(left right) {while(left = pivotKey)right --;arr[left] = arr[right]; --把小的移动到左边while(left pivotKey)arr[right] = arr[left]; --把大的移动到右边arr[left] = pivotKey; --最后把pivot赋值到中间return left;* 递归划分子序列* @param arr* @param left* @param rightpublic static void quickSort(int[] arr, int left, int right) {if(left = right)int pivotPos = partition(arr, left, right);quickSort(arr, left, pivotPos-1);quickSort(arr, pivotPos+1, right);public static void sort(int[] arr) {if(arr == null || arr.length == 0)quickSort(arr, 0, arr.length-1);总结快速排序的思想:冒泡+二分+递归分治,慢慢体会。