李雅普诺夫指数综述
李雅普诺夫方法

李雅普诺夫方法
李雅普诺夫方法(Lipunov Method)是一种分析系统的动力学性质的方法,它可以用来估计系统的稳定性和收敛性。
它也被称为“Lyapunov函数”或者“Lyapunov理论”。
这种方法最初是由俄罗斯物理学家谢尔盖·李·雅普诺夫(Sergi Lyapunov)提出的。
李雅普诺夫方法是一种可以用来评估系统的稳定性和收敛性的动态分析方法,它是基于系统中用于表示系统状态的状态变量的无穷级数而设计的。
这种方法被广泛应用于工程、科学和数学领域,用于对各种动力学系统的性能进行研究。
在李雅普诺夫方法中,通常使用一个叫做Lyapunov函数的函数来表示系统的状态。
Lyapunov函数是一个满足特定条件的函数,它表示系统当前状态与其原始状态之间的差异。
Lyapunov函数的计算依赖于系统中的状态变量,因此,通过计算Lyapunov函数,可以检测出系统内部是否存在不稳定性(即状态变量的变化率大于期望)。
李雅普诺夫方法可以用来识别系统的稳定性,以及在系统状态发生变化时,系统的性能如何受到影响。
在工程和科学应用中,李雅普诺夫方法可用于模拟和分析系统的行为,以及系统的性能如何受到不确定性因素的影响。
李雅普诺夫方法有许多优点,其中最重要的是它可以用来判断系统的稳定性和收敛性,并评估系统性能的变化情况。
此外,它还可以用来分析系统中存在的非线性关系,以及系统在非线性环境下的行为。
它也可以帮助人们更好地理解系统的行为,从而改善系统的性能。
总之,李雅普诺夫方法是一种用于分析系统的动力学性质的有效方法,它可以用来估计系统的稳定性和收敛性,并且可以分析系统的行为,从而改善系统的性能。
第5章李雅普诺夫稳定性分析

第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷
李雅普诺夫Lyapunov稳定性理论李雅普诺夫

表示向量 x 到x e的距离 n2 x xe ( x1 x1e ) 2 ( x2 x2e ) 2 c
表示状态空间中,以 x e为圆心,半径为c的圆
n3
x xe ( x1 x1e ) 2 ( x2 x2e ) 2 ( x3 x3e ) 2 c
0
方程的解(运动或状态轨线)为: x(t; x 初始状态向量
, t0 )
初始时刻
x(t0 ; x 0 , t0 ) x 0
f (x, t ) x
平衡状态:各分量相对于时间不再发生变化
e f (x e , t ) 0 x
所有状态的变化速度为零,即是静止状态 线性定常系统:
x2
S ( )
xe
S ( )
x1
近,直至到达平衡状态后
停止运动。
3、大范围渐近稳定 当初始条件扩展到整个状态空间,且平衡状态均具 有渐近稳定性时,称此平衡状态是大范围渐近稳定的。 几何意义:
系统不管在什么样的初始状态下,经过足够长的时间总
能回到平衡状态附近并且向平衡状态靠拢。 大范围渐近稳定的必要条件是状态空间中只能有一个平 衡状态。
1
1
极点位于s左半平面,s=2的极点被对消掉了。系统是有 界输入有界输出稳定的。
(2)求系统的特征方程:
6 det(I A) ( 2)( 3) 0 1 1
求得:1 2,2 3
系统不是渐近稳定的。
例 : 用间接法判断下列系统的稳定性 x1 x2 x1 x1 x2 x1 x1 x2 1 ) , 2) , 3) x2 x1 x2 x1 x2 x2 x1 x2
李雅普诺夫能量函数

李雅普诺夫能量函数
李雅普诺夫能量函数是控制系统理论中的一种重要方法,可以用于描述非线性系统的稳定性。
该函数的名称来源于19世纪俄罗斯数学家亚历山大·米哈伊洛维奇·李雅普诺夫。
在控制系统中,我们经常需要研究一些非线性系统,例如非线性电路、非线性机械系统等。
这些系统具有复杂的特性,很难通过直接的方法来分析其稳定性。
因此,我们需要一些更为有效的方法来描述这些系统的稳定性和动态特性。
李雅普诺夫能量函数就是这样一种方法。
李雅普诺夫能量函数是指一个非负的、可微的函数,通常用V(x)表示,其中x表示系统状态。
该函数可以描述系统的能量状态,通过分析它的变化情况,我们可以判断系统的稳定性。
具体来说,李雅普诺夫函数可归纳为如下几种类型:
指数型李雅普诺夫函数的形式为:
V(x) = e^(αx)
其中α是一个正实数。
指数函数具有单调递增的性质,因此V(x)也是单调递增的。
当系统状态x趋近于无穷大时,函数值也会趋近于无穷大,表示系统不稳定。
反之,当系统状态x趋近于零时,函数值也会趋近于零,表示系统稳定。
在使用李雅普诺夫能量函数进行稳定性分析时,我们通常会采用李雅普诺夫定理,它可以判断系统的稳定性。
具体来说,李雅普诺夫定理有如下几个方面:
1. 如果李雅普诺夫函数是严格单调递减的,那么系统是渐近稳定的。
需要注意的是,使用李雅普诺夫能量函数进行稳定性分析还需要满足一些前提条件,例如系统需要是局部可观测和可控的。
此外,我们还需要选择合适的李雅普诺夫函数,以便更准确地描述系统的稳定性。
n维离散系统李雅普诺夫指数

n维离散系统李雅普诺夫指数
在数学和动力系统理论中,n维离散系统的李雅普诺夫指数(Lyapunov exponent)是一种描述系统稳定性和混沌性质的重要指标。
它衡量了在系统的相空间中初始条件微小变化的指数增长率。
对于一个n维离散系统,设其状态变量为x=[x1, x2, ..., xn],时间步长为τ。
考虑一个由初始条件x0引起的微小扰动,用δx 表示,表示初始条件发生微小变化后得到的新状态变量。
通过迭代系统的动力学方程,可以得到δx的演化方程:
δx(t+τ) ≈ J(t) δx(t)
其中,J(t)表示系统在时间t处的雅可比矩阵,其定义为系统状态变量对于时间的导数。
李雅普诺夫指数λ定义为:λ = lim (1/t)log‖J(t)δx(0)‖
其中,t趋近于无穷大,‖‖表示向量的模。
李雅普诺夫指数的值可以为正、负或零,分别表示系统的指数增长、指数衰减或者不变。
n维离散系统的李雅普诺夫指数对于系统的稳定性和混沌性有着重要的意义。
当所有的李雅普诺夫指数都为负时,系统是稳定的;当至少一个李雅普诺夫指数为正时,系统是混沌的;而当所有的李雅普诺夫指数为零时,系统是边界稳定的或周期性的。
通过计算和分析系统的李雅普诺夫指数,可以揭示系统的
动力学性质,例如系统的稳定性、周期性还是混沌性质,并对系统的行为进行预测和控制。
因此,李雅普诺夫指数在动力系统理论和非线性科学领域有着广泛的应用。
第五章 控制系统的李雅普诺夫稳定性分析汇总

Re(i ) 0, (i 1, 2,..., n) lim x(t ) 0, 系统渐近稳定。
t
如果只有一个(或一对)特征值的实部等于0,其余特征值实 部均小于0,则系统仅仅可能是李亚普诺夫意义下的稳定性。
线性定常系统的特征值判据: 系统 x Ax 渐近稳定的充要条件是A的特征值均具有负实 部,即:Re( i ) 0 (i 1,2,, n) 证明:假定A有相异特征值 1 ,..., n 根据凯莱哈密顿定理:矩阵指数eAt为 e1t ,..., ent的线性组合
e At R1e1t ... Rn ent
x xe ( x1 xe1 ) 2 ... ( xn xen ) 2
2
2
2
由范数的定义可知,向量 ( x xe ) 的范数可写成
通常又将 x xe 称为 围之内时,则记为
x 与 xe 的距离。当向量 ( x xe ) 的范数限定在某一范
x xe
0
xe
与经典控制理论的区别: 1. 2. 3. 4. 5. 6. 平衡点/BIBO; 状态稳定/输出稳定; 经典控制的稳定大致对应于现代控制的渐进稳定; 即便输出稳定,状态可能不稳定; 李雅普诺夫意义下的稳定在经典中是不稳定的; 经典控制不需要一致性、全局性概念。
5.2 李雅普诺夫稳定性理论 一、李雅普诺夫第一方法 李雅普诺夫第一法的基本思想是利用状态方程解的性质来 判断系统的稳定性。通常又称为间接法。它适用于线性定常系 统以及线性时变系统和非线性系统可以线性化的情况。
意义:当系统运动到xe点时,系统状态各分量将维持平衡, 不再随时间变化。 平衡点:由系统状态在状态空间中所确定的点 求法:1、线性定常系统
李雅普诺夫(Lyapunov)函数分析.pdf

讲义81. 李雅普诺夫(Lyapunov )函数分析本讲中,对于一些有*E (,)0t S r w ⎡⎤=⎣⎦的*γ,我们研究1(,)t t t t t r r S r w γ+=+的收敛性。
回顾一下确定性实例中的Lyapunov 函数分析,我们选取了函数()V r 使得** ()0, ,()()0, , ()0.T V r r V r S r r r V r •≥∀•∇<≠•∇=如收敛性的论证为:我们发现()t V r 随时间减小并且有下限,因此,()t V r 收敛。
对V 和S 采用技术条件,可以证明*t r r →。
现在转到随机实例,用t F 表示到t 时刻的过程历史记录,显然,t F 可表示为{},,,,,,.t l l t r l t w l t l t γ=≤<≤F注意,步长t γ依赖于随机的历史记录,而步依赖于扰动t w 。
定义欧几里德范数122()T V V V =。
定理1 假设V ∃使得(a )()0, ,V r r ≥∀(b )L ∃使得22()()V r V r L r r ∇−∇≤−(李普希茨连续Lipschitz continuity) (c )12,K K ∃使得221222E (,)(),t t t t S r w K K V r ⎡⎤≤+∇⎣⎦F(d )c ∃使得22()E (,)().T t t t t t V r S r w c V r ∇⎡⎤≤−∇⎣⎦F 则,如t γ满足0t t γ∞==∞∑和20t t γ∞=<∞∑,有z ()t V r 收敛。
z lim ()0t t V r →∞∇=z 每一个t r 的极限点r 满足()0V r ∇=我们将证明某特例的收敛性,该特例对于一些*r 有2*122()V r r r =−。
定理2 假设2*122()V r r r=−满足(a )12,K K ∃使得2122E (,)(),t t t t S r w K K V r ⎡⎤≤+⎣⎦F(b )c ∃使得()E (,)().T t t t t t V r S r w cV r ∇⎡⎤≤−⎣⎦F则,如t γ满足0t t γ∞==∞∑和20t t γ∞=<∞∑,有*t r r →, w.p.1(以概率1)我们用下面的上鞅收敛定理证明定理2。
李雅普诺夫指数的综述

李雅普诺夫指数• 1.李雅普诺夫指数的定义• 2. 李雅普诺夫指数的划分意义• 3. 李雅普诺夫指数用在混沌中,如何应用一李雅普诺夫指数的定义李雅普诺夫指数是指在相空间中相互靠近的两条轨线随着时间的推移,按指数分离或聚合的平均变化速率。
李雅普诺夫指数的定义:首先考虑一维映射假设初始位置附近有一点,则经过一次迭代后,这两点之间的距离为:(1)并利用微分中值定理有:(2)n次迭代后,并利用微分中值定理,这两点之间的距离为:(3)由(3)式可得:(4)又由复合函数的微分规则有:其中那么式(4)就变为:(5)则称(6)为Lyapu nov指数。
一维映射就对应一个李雅普诺夫指数,而且当时,该系统具有混沌特性。
当时,对应着分岔点或系统的周期解,既系统出现周期现象。
时,系统有稳定的不动点,即此时对应的是一个点。
而对于多维系统则有多个李雅普诺夫指数。
Lyapun ov 特性指数沿某一方向取值的正负和大小表示长时间系统在吸引子中相邻轨线沿该方向平均发散或收敛i的快慢程度,仅从数学角度考虑,Lyapun ov特性指数无量纲。
n维系统具有 n个Lyapun ov 特性指数,形成指数谱。
其中数值最大的被称为最大Lyapun ov 特性指数。
最大Lyapun ov 指数定义为其中,表示时刻最邻近零点间的距离;M为计算总步数。
最大Lyapun ov指数不仅是区别混沌吸引子的重要指标,也是混沌系统对于初始值敏感性的定量描述。
其中一维系统只有一个指数,二维系统有两个指数来表征。
在实际计算中,要计算所有的Lyapu n ov指数,计算量较大,尤其当系统维数L较大时更为突出.所以注意力集中在计算系统的最大L y apun ov指数λm上.二李雅普诺夫指数的物理意义系统的Lya punov指数谱可有效地表征变量随时间演化时,系统对初值的敏感性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
李雅普诺夫指数
一、李雅普诺夫指数的提出与历史
1961年冬季的一天,为了考察一条更长的序列,洛伦兹走了一条捷径。
他在进行天气模式计算时没有从头开始运行,而是从中途开始。
作为计算的初值,他直接输入了上次运算的输出结果,然后他穿过大厅下楼,清净的去喝一杯咖啡。
一个小时之后他回来时,看到了出乎意料的事。
从几乎相同出发点开始,洛伦兹看到他的计算机产生的天气模式差别愈来愈大,终至毫无相似之处。
就是这件事播下了一门新科学的种子。
稳定体系的相轨线相应于趋向某个平衡点,如果出现越来越远离平衡点,则系统是不稳定的。
系统只要有一个正值就会出现混沌运动。
判断一个非线性体统是否存在混沌运动时,需要检查它的李雅普诺夫指数λ是否为正值。
二、李雅普诺夫指数的定义
Lyapunov 指数是描述时序数据所生成的相空间中两个极其相近的初值所产生的轨道,随时间推移按指数方式分散或收敛的平均变化率。
任何一个系统,只要有一个Lyapunov 大于零,就认为该系统为混沌系统。
李雅普诺夫指数是指在相空间中相互靠近的两条轨线随着时间的推移,按指数分离或聚合的平均变化速率。
李雅普诺夫指数的定义: 首先考虑一维映射假设初始位置附近有一点,则经过一次迭代后,这两点之间的距离为:
(1)
并利用微分中值定理有:
(2)
n次迭代后,并利用微分中值定理,这两点之间的距离为:
(3)
由(3)式可得:(4)又由复合函数的微分规则有:
其中
那么式(4)就变为:
(5)
则称(6)为Lyapunov指数。
一维映射就对应一个李雅普诺夫指数,而且当时,该系统具有混沌特性。
当时,
对应着分岔点或系统的周期解,既系统出现周期现象。
时,系统有稳定的不动点,
即此时对应的是一个点。
而对于多维系统则有多个李雅普诺夫指数。
Lyapunov 特性指数沿某一方向取值的正负和大小表示长时间系统在吸引子中相邻轨线
沿该方向平均发散或收敛i的快慢程度,仅从数学角度考虑,Lyapunov特性指数无量纲。
n 维系统具有 n 个 Lyapunov 特性指数,形成指数谱。
其中数值最大的被称为最大 Lyapunov 特性指数。
最大 Lyapunov 指数定义为
其中,表示时刻最邻近零点间的距离;M为计算总步数。
最大 Lyapunov指数不仅是区别混沌吸引子的重要指标,也是混沌系统对于初始值敏感性的定量描述。
其中一维系统只有一个指数,二维系统有两个指数来表征。
在实际计算中,要计算所有的Lyapunov指数,计算量较大,尤其当系统维数L较大时更为突出.所以注意力集中在计算系统的最大Lyapunov指数λm上.
三、李雅普诺夫指数的物理意义
系统的Lyapunov指数谱可有效地表征变量随时间演化时,系统对初值的敏感性。
指数小于零说明体系的相体积在该方向上是收缩的,此方向的运动是稳定的;
而正的指数值则表明了体系的相体积在该方向上不断膨胀和折叠,以致吸引子中本来邻近的轨线变得越来越不相关,从而使初态对任何不确定性的系统的长期行为成为不可预测,即所谓的初值敏感性。
进一步意义:设某一系统的指数谱为
(从大到小排列),若该系统具有混沌吸引子,则必须同时满足以下条件
(1)至少存在一个正李雅普诺夫指数
(2)至少存在某一指数为0
(3)指数谱之和为负。
混沌运动的基本特点是运动状态对初始条件的高度敏感性。
两个极为靠近的初值所产生的轨道,随时间推移按指数形式分离,Lyapunov指数是定量描述这一现象的量。
对所讨论的Duffing振子,若它的Lyapunov指数均小于零, :若存在一个Lyapunov特性指数大于零,就说明系统是处于混沌状态。
这种判别方法计算简单,物理意义明确,误差小。
四、计算此指数的几种方法
用Logistic映射产生的模拟时间序列数据,采用两种从实验数据时间序列恢复动力学的方法,计算混沌吸引子的Lyapunov指数。
一种方法是S.J.Chang和J.Wright提出的混合嫡法〔8一〕,这种方法特别适合一维的实验系统。
另一种方法是A.wolf提出的重构吸引子法〔7〕,这种方法可以推广到相空间维数及
动力学规律都不知道的更普遍的实验系统,在原则上可以计算系统的全部正Lyapunov指数谱。
具体的方法还有
1.从动力学规律计算Lyapunov指数
2. Chang一Wright混合嫡法
Chang一wright混合嫡法仅适用于可化为一维凸映射的情况。
一般来说,总点数N及盒子数凡越大,所得结果越精确。
3. Wolf重构法
Wolf重构法以Takens的延迟坐标重构相空间技术为基础,对于一个由观测得到的实验数据时间序列x(t)以延迟坐标重构m维相空间中的一条轨道,
计算最大Lyapunov指数的Wolf程序,一般适合于嵌入维m>1的重构吸引子的时间序列。