最新无限网络,电阻为R ,求AB 两端的有效电阻
复杂电路简化策略

复杂电路简化策略易良录四川米易中学,四川省617200无法直接用串联和并联电路的基本规律求2电流分布法出整个的电路的电阻时,这样的电路可称为复杂电路。
解决复杂电路的根本方法,是应用基尔霍夫方程组求解,原则上可以解决任何一个复杂电路。
问题是,当回路稍多时解方程组并非易事,并且基尔霍夫方程组不属于我国物理竞赛的内容。
因此,本文介绍解决复杂电路的几种可行办法。
1对称性化简法在一个复杂电路中,如果能找到一些完全对称的点(以两端连线为对称轴),那么当在该电路两端加上电压时,这些点的电势一定相等,即使用导线把这些点连接起来, 导线中也不会有电流,因而不会改变原电路的情况。
如图1示的立方体电路,每条边的电阻相等均为R。
如果求AG之间的电阻, 那么当AG两点加上电压时, 显然DBE的电势相等, CFH的电势也相等,把这些点连接起来,原电路就变为了简单电路。
如果求AF之间的电阻,那么EB及HC是对称点,连接EB和HC同样能使原电路变为简单电路。
如果求AE之间的电阻,那么BD及HF是对称点,连接BD和HF同样能使原电路变为简单电路。
根据同样的思想,将电路中某一接点断开,如果拆开的两点是等电势的,那么拆开的过程同样对原电路无影响。
例如图2- a中(每个电阻阻值相等)为复杂电路,要求AB两点之间的电阻。
拆成图2- b所示电路后, CD两点完全对称,电势相等,因而两电路等价,而是一个简单电路。
设电流I从网络A点流入B点流出,应用电流分布思想和网络中任意两点之间不同路径等电压的思想,建立以网络中各电阻的电流为未知量的方程组,解出各电流的比例关系,然后选取A到B的某一路径计算AB间的电压,再由R AB = U AB/ I AB即可求出R AB。
如图3电路,要求RAB。
设电流由A流入B 流出。
根据分流思想I =I1 +I2, I1 +I3 =I4, I2 =I3 +I5, I4 +I5 =I根据对称性,又有I1 =I5, I2 =I4AO间电压,无论是从AO还是从ACO看都是一样的,因此I1 * 2R =I2 * R +I3 * R从而解得I1 =I5 =2I/5, I2 =I4 =3I/5, I3=I/5取AOB路径,可得AB间电压UAB =I1 * 2R +I4 * R =I * R AB解得R AB=7R/5这种电流分布法事实上已经引进了基尔霍夫定律的思想,具有一定的一般性。
ab等效电阻的计算方法

ab等效电阻的计算方法
嘿,咱今儿个就来聊聊 ab 等效电阻的计算方法,这可真是个有意
思的事儿呢!
你想想看,电阻就像是电路里的一个个小关卡,而ab 等效电阻呢,就是把这些小关卡综合起来看,到底有多难通过。
那怎么算呢?别急,咱慢慢说。
先来说说串联吧,就好比是一群人排成一队过独木桥,那这时候总
的电阻就像是把每个人的难度加在一起,变得更大啦。
如果有两个电
阻 R1 和 R2 串联在一起,那 ab 等效电阻不就是 R1 加 R2 嘛,这多简
单呀!
再讲讲并联,这就好像是同时有多条路可以走,那通过就变得容易
多啦。
如果是两个电阻并联,那计算 ab 等效电阻就有个小窍门啦。
可
以用它们的倒数之和的倒数来算哦!是不是有点绕?但你仔细想想,
其实也不难理解呀。
那要是碰到更复杂的电路呢?这时候可不能慌呀!咱得一步一步来,先找出串联或者并联的部分,分别算好,再综合起来。
就像解一道难题,得一点点分析,找到关键所在。
比如说,有个电路里既有串联又有并联,那咱就先把并联的部分算
出来,当成一个新的电阻,再和其他串联的电阻一起算,这不就搞定啦!
哎呀,你说这 ab 等效电阻的计算是不是很有趣呀?就像是在电路的世界里探险一样,每一个电阻都是一个小挑战,而我们就是勇敢的探险家,去解开这些谜题。
咱可不能怕麻烦呀,多算算,多练练,你就会发现,原来也没那么难嘛!你看那些厉害的电工师傅们,不都是这么一点点练出来的嘛。
所以呀,遇到 ab 等效电阻的计算别头疼,静下心来,好好分析分析,你肯定能行的!这可是咱掌握电路的重要一步呢,学会了它,你就离成为电路高手不远啦!怎么样,是不是有点信心满满啦?快去试试吧!。
解决无穷网络等效电阻计算的基本思想和技巧

群内交流
无穷网络电阻的计算 1、开端型半无穷网络
上图电路称为开端型半无穷网络。ab 间等效电阻与去掉一个格子后的电阻应相等,
2、闭端型半无穷网络
上图电路称为闭端型半无穷网络。cd 间的电阻与格子数无关,
练习 1.在如图所示电路中,U=12 伏特(且保持不变),R=2 欧姆,r=1 欧姆,为了使电流表读数 在同样的电阻链任意加长或减短时均保持不变,求: (1)最后一个电阻 Rx 的取值; (2)这时电流表的读数.
பைடு நூலகம்
2.如图所示,若每个电阻的阻值均为 1 欧姆,则 ab 两端的总电阻 Rab 是
欧姆.
教学时光
群内交流
(完整版)例析物理竞赛中纯电阻电路的简化和等效变换

例析物理竞赛中纯电阻电路的简化和等效变换计算一个电路的电阻,通常从欧姆定律出发,分析电路的串并联关系。
实际电路中,电阻的联接千变万化,我们需要运用各种方法,通过等效变换将复杂电路转换成简单直观的串并联电路。
本节主要介绍几种常用的计算复杂电路等效电阻的方法。
1、等势节点的断接法在一个复杂电路中,如果能找到一些完全对称的点(以两端连线为对称轴),那么可以将接在等电势节点间的导线或电阻或不含电源的支路断开(即去掉),也可以用导线或电阻或不含电源的支路将等电势节点连接起来,且不影响电路的等效性。
这种方法的关键在于找到等势点,然后分析元件间的串并联关系。
常用于由等值电阻组成的结构对称的电路。
【例题1】在图8-4甲所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。
模型分析:这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。
将图8-4甲图中的A 、D 缩为一点A 后,成为图8-4乙图。
答案:R AB = R 。
83【例题2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。
模型分析:这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势相等。
因此,将C 、D 缩为一点C 后,电路等效为图8-5乙对于图8-5的乙图,求R AB 是非常容易的。
事实上,只要满足=的关系,该桥式21R R 43R R 电路平衡。
答案:R AB =Ω 。
415【例题3】在如图所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。
【例题4】用导线连接成如图所示的框架,ABCD 是正四面体,每段导线的电阻都是1Ω。
求AB 间的总电阻。
网络电路的简化(word无答案)

网络电路的简化(word无答案)
一、解答题
(★★) 1 . 22个相同的电阻 R按如图甲所示方式连接,试求 A、 B两点间的等效电阻.
(★★) 2 . 电阻丝无限网络如图甲所示,每一段电阻丝的电阻均为 r,试求 A、 B两点间的等效电阻.
(★★) 3 . 由7个阻值均为 r的电阻组成的网络元如图甲所示,由这种网络元彼此连接形成的单向无限网络如图乙所示,试求图乙中 P、 Q两点之间的等效电阻
.
(★★) 4 . 如图甲所示为一金属框架,此框架是用同种均匀的细金属丝制作的,其单位长度的电阻为.一连串内接等边三角形的数目可认为趋向无穷.取 AB边长为 a,以下每个三角形的
边长依次减少一半.试求框架上 A、 B两点间电阻.
(★) 5 . 一张无限大平面方格子的导体网络,方格子每一边的电阻是 r,在这张方格子网络中选取相邻的两个节点 A、 B,则这两节点之间的等效电阻是多少?
(★) 6 . 电阻丝网络如图所示,每五小段电阻丝的电阻均为 R,试 B求 A、 B间的等效电阻
.
(★★) 7 . 如图所示为一个立方体 ABCDEFGH,每边都用导体接入一个电阻值为 r的电阻.试计算下列情况下各总电阻.
(1) A、 G点间的等效电阻.
(2) A、 D点间的等效电阻.
(3)如果 B与 F、 C与 G和 D与 H之间被短路时, A、 G两点间的等效电阻.
(★★) 8 . 如图甲所示为以 A、 B为两端点的二端电容网络,求此电容网络 A、 B两端之间的等效电容.。
纯电阻电路的简化和等效

纯电阻电路的简化和等效1、等势缩点法1、在图所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。
【答案】R AB =83R 。
2、在图所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。
【答案】R AB = 415Ω〖相关介绍〗英国物理学家惠斯登曾将上图中的R5换成灵敏电流计○G ,将R1 、R2中的某一个电阻换成待测电阻、将R3 、R4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数为零来测量带测电阻Rx 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。
参照图8-6思考惠斯登电桥测量电阻的原理,并写出Rx 的表达式(触头两端的电阻丝长度LAC 和LCB 是可以通过设置好的标尺读出的)。
【答案】Rx =AC CB LL R0 。
3、在图所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。
【答案】R AB = 75R2、电流注入法 4、对图8-9所示无限网络,求A 、B 两点间的电阻R AB 。
【答案】R AB =32R3、无穷网络等效法5、在图所示无限网络中,每个电阻的阻值均为R ,试求A 、B 两点间的电阻R AB 。
【答案】R AB = 251+R6、(04年第21届全国中学生物理竞赛预赛)如图所示的电路中,各电源的内阻均为零,其中B 、C 两点与其右方由1.0Ω的电阻和2.0Ω的电阻构成的无穷组合电路相接.求图中10μF 的电容器与E 点相接的极板上的电荷量.7、在图所示的三维无限网络中,每两个节点之间的导体电阻均为R ,试求A 、B 两点间的等效电阻R AB 。
【答案】R AB = 212R4、等效电压源电路定理(戴维南定理)8、在如图所示电路中,电源ε = 1.4V ,内阻不计,R1 = R4 = 2Ω,R2 = R3 = R5 = 1Ω,试求流过电阻R5的电流。
等效电路

等效电路一、具有一定对称性的电路有些网络在电气结构上具有某种对称性质,正确地利用对称性,可大大简化分析。
1.图示电阻网络,各电阻相等均为R,求ab端口等效电阻Rab结论:在电路分析中,如果已知或判断出电路中某两点或多点电位(节点电位)相同,即可把这两个(多个)节点短接,来化简电路。
2.如图所示的立方体型电路,每条边的电阻都是R。
求A、G之间的电阻是多少?3.三个相同的金属圆环两两正交地连接成如图5所示形状。
若每个四分之一圆周金属丝电阻为R时,测得A、B间电阻为R AB。
今将A、B间一段金属丝改换成另一个电阻为R/2的一段四分之一圆周的金属丝,并在A、B间加上恒定电压U,试求消耗的总功率?二、线型无限网络4.如图21所示的电路是一个单边的线型无限网络,每个电阻的阻值都是R,求A、B 之间的等效电阻R AB .5.一两端无穷的电路如图22所示,其中每个电阻均为r求a、b两点之间的电阻。
在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d。
现给A一初速度,使A与B 发生弹性正碰,碰撞时间极短:当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ. B的质量为A的2倍,重力加速度大小为g.求A的初速度的大小。
如图,光滑水平直轨道上有三个质量均为m的物块A、B、C。
B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计)。
设A以速度v0朝B运动,压缩弹簧;当AB速度相等时,B与C恰好相碰并粘接在一起,然后继续运动,假设B和C碰撞过程时间极短。
求从A开始压缩弹簧直至与弹簧分离的过程中,(i)整个系统损失的机械能;(ii)弹簧被压缩到最短时的弹性势能。
高二物理辅优专题专题七:复杂电阻网络的简化

高二物理辅优专题专题七:复杂电阻网络的简化一、等势缩点法将电路中电势相等的点缩为一点,是电路简化的途径之一。
至于哪些点的电势相等,则需要具体问题具体分析——例1.在图所示的电路中,R1 = R2= R3= R4= R5= R ,试求A、B两端的等效电阻RAB。
例2.在图所示的电路中,R1= 1Ω,R2= 4Ω,R3= 3Ω,R4= 12Ω,R5= 10Ω,试求A、B两端的等效电阻RAB 。
例3.英国物理学家惠斯登曾将上图中的R5换成灵敏电流计○G,将R1、R2中的某一个电阻换成待测电阻、将R3、R4换成带触头的电阻丝,通过调节触头P的位置,观察电流计示数为零来测量带测电阻Rx的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。
请同学们思考惠斯登电桥测量电阻的原理,并写出Rx 的表达式(触头两端的电阻丝长度LAC和LCB是可以通过设置好的标尺读出的)。
二、对称法:在一个复杂的电路中,如果能找到一些完全对称的点(以两端连线为对称轴),那么可以将接在等势点间的导线或电阻或不含有电源的支路断开(即去掉),也可以用导线或电阻或不含电源的支路将等电势结点连接起来,不影响电路的等效性.可以将网络沿轴对折。
例4.在图所示的有限网络中,每一小段导体的电阻均为R ,试求A、B两点之间。
的等效电阻R例5.《高考奥赛自主招生》P34例7:(北大自招)正四面体ABCD,每条边的电阻为R ,取一条边的两个顶点,如图所示中的AB,整个四面体的等效电阻R AB为多少?例6.20个相同的电阻R按如图所示那样连接,度求AB现点间的等效电阻R AB三、添加等效法:先设k个小网络元组成的二端网络的等效电阻记为RK,再连接一个小网络无,设法找出RK与RK+1之间的数学递推关系式,最后令K→∞,RK与RK+1便同为所求原二端无限网络的等效电阻。
例7.在图所示无限网络中,每个电阻的阻值均为R ,试求A、B两点间的电阻。
R例8.如图所示,每一个电阻的阻值都为R,求AB之间的等效电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无限网络,电阻为R ,求AB 两端的有效电阻
1
2
这个题通过无限的思想,就是可以多一个少一个无所谓的思想来解答
3
那我们把AB间的电阻看成由两部分电阻并联而成的:
4
一部分就是AB间夹得最近的、图上标着R的那个电阻;
5
另一部分就是剩余的所有电阻组成的一个等效电阻,我们设它为r;
6
那么我们也可以知道,CD两点向右的部分(不包括CD中间夹的那个电阻)所有电阻所组成的等7
效电阻,大小同样也是r。
这点其实不难理解,因为这是一个无限电路,多一个少一个无所谓。
8
然后我们就可以列方程了:
9
R + R + { 1 / [(1/r) + (1/R)] } = r 解方程可得结果
10
化简得到
11
r2– 2 R r - 2R2 = 0
12
这是一个一元二次方程,有
13
r2– 2 R r + R2-3R2 = 0
14
( r – R )2=3 R2
15
r = (1±3)R
16
因为 r > 0
17
所以r = (1 +3)R 18
AB间的电阻R
ab
19
R
ab = 1/[1/R+1/r] =R r/(R+r)= (1 +3)R / (2 +3)
20
化简(分子分母同时乘以[2- 3 ])得到21
R
ab = [3-1]*R
22。