积分第一中值定理及其推广证明备课讲稿

积分第一中值定理及其推广证明备课讲稿
积分第一中值定理及其推广证明备课讲稿

2.1积分第一中值定理证明

积分第一中值定理:

如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得

()()()(),()b b

a a f x g x dx f g x dx a

b ξξ=≤≤?

? 成立。

证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有

()()()()mg x f x g x Mg x ≤≤

成立。对上式在闭区间[,]a b 上进行积分,可以得到

()()()()b b b

a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有

()()()b b

a a f x g x dx g x dx μ=?

? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到

()()()()b b

a a f x g x dx f g x dx ξ=?

?, 命题得证。 2.2积分第一中值定理的推广

定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数,()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得

()()()(),(,)b b

a a f x g x dx f g x dx a

b ξξ=∈?

?

成立。

推广的第一积分中值定理很重要,在这里给出两种证明方法。

证法1:由于函数()f x 在闭区间[,]a b 上是可积的,()g x 在[,]a b 上可积且不

变号,令()()()x a F x f t g t dt =?,()()x

a G x g t dt =?,很显然(),()F x G x 在[,]a

b 上连续。并且()0,()()()b a F a F b f t g t dt ==?,()0,()()b

a G a G

b g t dt ==?,()()()F f g ξξξ'=,()()G g ξξ'= 。由柯西中值定理即可得到

()()(),(,)()()()

F b F a F a b

G b G a G ξξξ'-=∈'-, 化简,即

()()()()()()b a b a f t g t dt f g g g t dt ξξξ=?

?

, 根据上式我们很容易得出 ()()()(),(,)b b

a a f t g t dt f g t dt a

b ξξ=∈?

?, 命题得证。 证法2:由于函数()g x 在[,]a b 上可积且不变号,我们不妨假设()0g x ≥。而函数()f x 在闭区间[,]a b 上可积,我们令{}inf ()|[,]m f x x a b =∈,{}sup ()|[,]M f x x a b =∈。假设()F x 是()f x 在闭区间[,]a b 上的一个原函数,即()(),[,]F x f x x a b '=∈。我们就可以得到下面等式

()()()()b b b

a a a m g x dx f x g x dx M g x dx ≤≤???(2.2.1) 此时由于()0g x ≥,则会有()0b

a g x dx ≥?,由于存在两种可能性,那么下面我们就要分两种情况以下我们分两种情形来进行讨论:

(1).如果()0b a g x dx =?,由等式(2.2.1)可得出()()0b

a f x g x dx =?,那么对于(,)a

b ξ?∈

都有

()()0()()b b a a f x g x dx f g x dx ξ==?

? 恒成立。

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

积分中值定理的推广与应用

积分中值定理的推广与应用 系别数学系 专业数学与应用数学姓名韩凤 指导教师张润玲 职称副教授 日期2011年6月

国内图书分类号: 吕梁学院本科毕业论文(设计) 积分中值定理的推广与应用 姓名韩凤 系别数学系 专业数学与应用数学 申请学位学士学位 指导教师张润玲 职称副教授 日期2011年6月

摘要 在微积分学中积分中值定理与微分中值定理一样有着重要的地位.微积分的许多问题和不等式的证明都以它为依据,积分中值定理在证明有关中值问题时具有极其重要的作用.它是《数学分析》、《高等数学》课程中定积分部分的基本定理之一.众所周知积分中值定理包括积分第一中值定理与积分第二中值定理,而在数学分析课本上已有过这两个定理的详细证明,但这两个定理的推广与应用尚未提及.因此,在教学过程中,学在运用这一知识点解决有关的数学问题比较困难,常常不知如何下手,本文主要讲述的是积分第一中值定理的各种形式的推广以及通过以下几方面的列举例题,加以归纳总结,并充分体现积分中值定理在学习解题练习中的应用. 关键词:积分中值定理;推广;应用

ABSTRACT The integral median value theorem and differential median value theorem has the same important position in the questions and the proof of the inequality are all based on the integral theorem,the integral median theorem has played an important role in solving the problems about is one of the basic theorems in the definite integral part of“the mathematical analysis”and“the higher mathematics”.Well-known that the integral median theorem include the first median theorem for integrals and the second median theorem for integrals and the textbooks of the mathematical analysis have the detailed proof about the two theorems,but the popularization and application of the two theorems have not been addressed .Therefore,it is difficult when students use this knowledge to solve the related problems during the process of article mainly introduce various popularization of the first median theorem for integrals and giving some example through the following aspects,and giving some summary,strive to reflect the application of integral median value theorem in studying the way which can slove the ploblems. Keywords:Integral median value theorem; Promotion; Applications.

第五讲 罗尔定理的应用

第五讲 罗尔定理的应用 一、利用罗尔定理、费马定理、零点定理证明方程的根 例1 设01,,,n a a a "为,为满足1200231 n a a a a n + +++=+"的实数,证明方程 20120n n a a x a x a x ++++=" 在(0,1)内至少有一个实根。 例2 设()f x 在[,]a b 上连续,(,)a b 内可导,0b a >>,证明方程 222[()()]()()x f b f a b a f x ′?=? 在(,)a b 内至少存在一个实根。 例3 设,,a b c 为实数,求证方程2x ax bx c e ++=至多有三个实根。 例 4 证明方程2210x x ??=有且仅有三个不同的实根。 二、利用罗尔定理证明含有“中值点”的等式 例5 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:至少存在一点 (,)a b ξ∈,使得()()0f f ξξ′+= 例6 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:对任意的λ,至少存在一点(,)a b ξ∈,使得()()f f ξλξ′= 例7设()f x 、()g x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:至少存在一点(,)a b ξ∈,使得()()()0f f g ξξξ′′+= 例8设()f x 、()g x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,()0g x ′≠,证明:至少存在一点(,)a b ξ∈,使得()()()()f g f g ξξξξ′′= 例9设()f x 在[0,1]上连续,(0,1)内可导,且(0)0f =,而当(0,1)x ∈时,()0f x ≠,证明:对任意正整数n ,至少存在一点(0,1)ξ∈,使得 ()(1) ()(1) nf f f f ξξξξ′′?=? 例10 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ?>,()02a b f a f +?? ?

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

罗尔中值定理的一些新证法_英文_

R eceived d ate :2006207217 第24卷第4期 大 学 数 学Vol.24,№.42008年8月COLL EGE MA T H EMA TICS Aug.2008 So me New Ways to Prove Rolle ’s Theorem YA O J i n g 2s un (Dept.of Math.,Anhui Normal University ,Wuhu 241000,China ) Abstract :We give three new methods proving Rolle ’s Theorem.The second simple way is only dependent on the well 2known Heine 2Borel Covering Theorem.This implies that Rolle ’s Theorem is the direct consequence of completeness of real numbers. K ey w ords :Rolle ’s theorem ;completeness of real numbers ;f ull cover ;Heine Borel covering theorem ; δ2fine tagged partition C LC Number :O171 Document Code :C Article I D :167221454(2008)0420131203 The st udy on Rolle ’s Theorem as well as ot her mean value t heorems of differentials is a very att ractive issue and it was also involved in calculus reform in U SA.Many scholars have done a great deal of work during t he past decade [1-3].We know t hat if Rolle ’s Theorem is proved ,it can be used to p rove Lagrange Mean Value Theorem and Cauchy Mean Value Theorem so long as a corresponding auxiliary f unction is const ructed.Therefore ,it is better to say Rolle ’s Theorem is t he essence and basis of t he next two t heorems t han to say t he conclusions of t he next two t heorems seem to have wider applicability t han t hat of Rolle ’s Theorem.To make t hings simpler ,people lay emp hasis on discussing t he ways to p rove Rolle ’s Theorem.The articles of professor Xu Ji 2hong [4]and t he aut hor [5]respectively give a new way to p rove Rolle ’s Theorem.In t he paper ,we shall give some met hods p roving Rolle ’s Theorem by some forms of completeness of real numbers. Def inition 1 A collection C of clo sed subintervals of [a ,b]is a f ull cover of [a ,b]if to each x ∈[a ,b]t here corresponds a number δ(x )>0such t hat every closed subinterval of [a ,b ]t hat contains x and has lengt h less t hat δ(x )belongs to C [6]. Lemm a 1 If C is a f ull cover of [a ,b],t hen C contains a partition of [a ,b],i.e.,t here exist a =x 0,x 1,…,x n =b such t hat x k -1

蝴蝶定理

一、蝴蝶定理的发展历程简介:。 蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 如图,过圆中弦AB的中点作M引任意两弦CD和EF,连结CF和ED,分别交AB于P、Q,则PM=QM 由于此图形似只蝴蝶飞舞,故此定理因此而得名:蝴蝶定理。此定理早在1815年在英国杂志《男士日记》上见刊,征求证明,有意思的是,迟到1972年以前,人们的证明都并非初等,且十分繁琐。然近些年来,证明者不乏其人,使得这只翩翩起舞的蝴蝶栖止不定,变化多端。笔者结合自己的证明和收集别人的研究,整理证法十种,以飨读者。 证法1 (证∠POM=∠QOM) 作CF、DE的弦心距OG、OH,连OM,则OM⊥AB且OGPM四点共圆。 ∴∠POM=∠PGM…①。同理,∠QOM=∠QHM…② ∵△MFC∽MDE,∴MF﹕FC=MD﹕DE ∴MF﹕2FG=MD﹕2DH,∴MF﹕FG=MD﹕DH ∠F=∠D ∴△MFG∽△MDH,∴∠MGF=∠MHD…③

由①②③得:∠POM=∠QOM ∴PM=QM 证法2 (作△PMD′≌△QM D) 作C关于直线OM的对称点C'连C'M交⊙O于D',则AC弧=BC'弧,MD'=MD,∠PMD'=∠QMD ∠CPM=0.5AF弧+0.5BC'C弧=0.5AF弧+0.5AC弧+0.5CC'弧=0.5FCC'弧=∠FD'M 从而PFD’M四点共圆。 ∴∠PD’M=∠PFM=∠D ∴在△PD’M与△QDM中 ∠PD’M=∠D MD’=MD ∠PMD’=∠QMD ∴△PMD’≌△QMD ∴PM=QM 证法3 (利用梅氏定理) 延长CF、ED相交于G点。

韦达定理公式

韦达定理公式: 一元二次方程ax^2+bx+c (a不为0)中 设两个根为x和y 则x+y=-b/a xy=c/a 韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程AiX^i=0 它的根记作X1,X2,Xn 我们有 Xi=(-1)^1*A(n-1)/A(n) XiXj=(-1)^2*A(n-2)/A(n) Xi=(-1)^n*A(0)/A(n) 其中是求和,是求积。 如果一元二次方程 在复数集中的根是,那么 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 韦达定理在方程论中有着广泛的应用。 定理的证明 设mathx_1/math,mathx_2/math是一元二次方程mathax^2+bx+c=0/math的两个解,且不妨令mathx_1 ge x_2/math。根据求根公式,有

mathx_1=frac{-b + sqrt {b^2-4ac}}/math,mathx_2=frac{-b - sqrt {b^2-4ac}}/math 所以 mathx_1+x_2=frac{-b + sqrt {b^2-4ac} + left (-b ight) - sqrt {b^2-4ac}} =-frac/math, mathx_1x_2=frac{ left (-b + sqrt {b^2-4ac} ight) left (-b - sqrt {b^2-4ac} ight)}{left (2a ight)^2} =frac/math

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

罗尔定理与拉格朗日定理的证明与应用

罗尔定理与拉格朗日定理的证明与应用

单位:旅游系 专业:酒店管理 姓名:王姐 学号:1414061039 【摘要】罗尔定理与拉格朗日定理是是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断导数的整体性质的工具。拉格朗日定理存在于多个科学领域之中,其中微积分中的拉格朗日定理即拉格朗日中值定理,又称拉式定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的形式。它在初等数学中有着重要作用,也是一个基础性定理。在许多方面它都有重要的作用 ,在进行一些公式推导与定理证明中都有很多应用。 【关键词】罗尔定理、拉格朗日定理、重要应用。 引言 拉格朗日定理是高等数学的基础,同时也是一个基础性的定理,在高等数学中有着重要作用,要学习和掌握它的证明方法。 罗尔定理:如果函数()f x 满足条件:○ 1在闭区间[,]a b 上连续;○2在开区间(,)a b 内可导;○ 3在区间两个端点的函数值相等,即()()f a f b =,(,)a b ξ∈,使得'()0f ξ=。 罗尔定理的证明:因为函数()f x 在闭区间[,]a b 上连续,所以它在[,]a b 上必能取得最大值M 和最小值m 。 (1)如果M m =,则()f x 在[,]a b 上恒等于常数M ,因此,在整个区间(,)a b 内恒有 '()0f x =,所以,(,)a b 内每一点都可取作ξ,此时定理显然成立。 (2)如果m M <,因()()f a f b =,则数M 与m 中至少有一个不等于端点的函数值()f a ,设()m f a ≠,这就是说,在(,)a b 内至少有一点ξ,使得()f M ξ=。 下面证明'()0f ξ=。 由于()f M ξ=是最大值,所以不论x ?为正或负,恒有()()0f x f x ξ+?-ξ≤?, (,)x a b ξ+?∈。 当0x ?>时,()()0f x f x ξ+?-ξ≤?,有已知条件'()f ξ存在可知,

韦达定理中考真题精练

★中考真题精练 1.(2014·玉林)、是关于的一元二次方程的两个实数根,是否存在实数使成立?则正确的结论是(A) A.时成立B.时成立 C.或2时成立D.不存在 2.(2014·呼和浩特)已知函数的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的 另外一支上,则关于一元二次方程的两根、判断正确的是(C) A.,B., C.,D.与的符号都不能确定 3.(2015·泸州)设、是一元二次方程的两实数根,则的值为27. 4.(2015·江西)已知一元二次方程的两根是m,n,则= 25. 5.(2014·德州)方程的两个实数根、满足,则k的值为1. 6.(2014·济宁)若一元二次方程的两个根分别是与,则= 4 . 7.已知关于x的一元二次方程. (1)求证:无论m取何值,原方程总有两个不相等的实数根; (2)若、是原方程的两根,且,求m的值. (1)证明:△== =. 无论m取何值,,即. ∴无论m取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得,, ∴= =,而, ∴,即, ∴或. 8.已知关于x的方程有两个实数根、. (1)求k的取值范围; (2)若,求k的值. 解:(1)由已知,得,即 ,∴. (2)∵,∴,∴. 而,, ∴,即, ∴或.而,∴. 9.请阅读下列材料: 问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y,则,∴.

把代入已知方程,得,化简,得. 故所求方程为. 这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:; (2)己知关于x的一元二次方程有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y,则,∴. 把代入已知方程,得,∴所求方程为; (2)设所求方程的根为y,则(), ∴() 把代入方程,得,∴. 若,有,∴方程有一个根为0,不符合题意,∴. ∴所求方程为(). 10.(2014?孝感)已知关于x的方程有两个不相等的实数根、. (1)求k的取值范围; (2)试说明,; (3)若抛物线与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且,求k的值. 解:(1)由题意,得,即 ,解得. (2)∵,∴, 而,∴,. (3)由题意,不妨设A(,0),B(,0). ∴OA+OB=, . ∵,∴, 解得或.而,∴.

罗尔中值定理的内容及证明方法

罗尔中值定理的内容及证明方法 (一)定理的证明 证明:因为函数)(x f 在闭区间[]b a ,上连续,所以存在最大值与最小值,分别用M 和m 表示,现在分两种情况讨论: 1.若m M =,则函数)(x f 在闭区间[]b a ,上必为常数,结论显然成立。 2.若m M >,则因为)()(b f a f =使得最大值M 与最小值m 至少有一个在()b a ,内某点ξ处取得,从而ξ是)(x f 的极值点,由条件)(x f 在开区间()b a ,内可导得,)(x f 在ξ处可导,故由费马定理推知:0)('=ξf 。 (二)罗尔中值定理类问题的证明 罗尔中值定理在微分学解题中有着广泛的应用,下面我们就对罗尔中值定理的应用作深入的研究,归纳出证题技巧。 1.形如“在()b a ,内至少存在一点ξ,使k f =)('ξ”的命题的证法。 (1)当0=k 时,一般这种情况下,我们只需验证)(x f 满足罗尔定理的条件,根据罗尔定理来证明命题。在证明过程中,我们要注意区间的选取,有时候所需验证的条件并不是显而易见的。 例1 设)(x f 在闭区间[]1,0上连续,开区间()1,0内可导,?=1 32 )(3)0(dx x f f 。 证明:()1,0∈?ξ,使0)('=ξf 分析:由于所需验证的罗尔中值定理的条件并不是显而易见的,而且这个问题涉及到定积分,所以我们考虑运用积分中值定理的知识,尝试在()1,0中找到一个区间()η,0,在()η,0中运用罗尔中值定理去证明。 证:因为??????∈=-==?1,32,)()()321(3)(3)0(1 3 2ηηηf f dx x f f 显然)(x f 在闭区间[]η,0上连续,在开区间()η,0内可导 根据罗尔定理,()1,0∈?ξ,使0)('=ξf (2)当0≠k 时,若所证明的等式中不出现端点值,则将结论化为:0)('=-k f ξ的形式,构造辅助函数)(x F ,我们就可以运用(1)中的方法证明命题。我们在构造辅助函数时,可用观察法、积分法、递推法,常数k 法等等。

韦达定理推广的证明.doc

韦达定理推广的证明

证明: 当=b^2- 4ac≥0时 ,方程 ax^2+bx+c=0(a≠ 0) 有两个实根 ,设为 x1,x2. 由求根公式 x =(- b±√Δ )/2a,不妨取 x1 =(-b-√Δ)/2a,x2=(- b+ √Δ)/2a, 则: x1+x2 =(-b-√Δ)/2a+(-b+ √Δ)/2a =-2b/2a =-b/a, x1*x2=[(-b-√Δ)/2a][(- b+ √Δ)/2a] =[(-b)^2-]/4a^2 =4ac/4a^2 =c/a. 综上 ,x1+x2=-b/a,x1*x2=c/a. 烽火 TA000DA 2014-11-04 若 b^2-4ac=0则方程有两个相等的实数根 若 b^2-4ac<0则方程没有实数解韦达定理的推广

韦达定理在更高次方程中也是可以使用 的。一般的,对一个一元n 次方程∑AiX^i=0 它的根记作X1,X2?,Xn 我们有 ∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=( -1)^2*A(n-2)/A(n) ? ΠXi=(-1)^n*A(0)/A(n) 其中∑是求和,Π是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元n 次方程 在复数集中必有根。因此,该方程的左端 可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得 韦达定理。 法国数学家韦达最早发现代数方程的根与 系数之间有这种关系,因此,人们把这个关 系称为韦达定理。历史是有趣的,韦达的 16 世纪就得出这个定理,证明这个定理要依靠代

数基本定理,而代数基本定理却是在 1799 年才由高斯作出第一个实质性的论性。 (3)以 x1 ,x2 为根的一元二次方程 (二次项系数为 1) 是 x2-(x1+x2)x+x1x2=0. 3.二次三项式的因式分解(公式法 ) 在分解二次三项式 ax^2+bx+c 的因式时,如果可用公式求出方程 ax2+bx+c=0 的两个 根是 X1,x2 ,那么 ax2+bx+c=a(x-x1)(x-x2).另外这与射影定理是初中必须 射影定理图 掌握的 . 韦达定理推广的证明 设 x1 ,x2 ,??, xn 是一元 n 次方程∑AiX^i=0 的 n 个解。

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理?错误!未定义书签。 1.1 微分中值定理?错误!未定义书签。 1.2 积分中值定理?错误!未定义书签。 2 微积分中值定理的应用 ...................... 错误!未定义书签。 4.1 证明方程根(零点)的存在性?错误!未定义书签。 4.2 进行估值运算?错误!未定义书签。 4.3 证明函数的单调性?错误!未定义书签。 4.4 求极限?8 4.5 证明不等式?错误!未定义书签。 引言? Ro lle 定理,La grange 中值定理,Cauch y中值定理统称为微分中值定理。微 分中值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(R oll e)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a ,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagr an ge)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b)上可导;

则在(a,b)内至少存在一点ξ,使得 a b a f b f f --=') ()()(ξ. 柯西中值定理: 设函数f 和g 满足 (ⅰ)在[a,b]上都连续; (ⅱ)在(a,b)内都可导; (ⅲ))('x f 和)('x g 不同时为零; (ⅳ))()(b g x g ≠, 则存在),(b a ∈ξ,使得 )()() ()()()(a g b g a f b f g f --= ''ξξ. 微分中值定理的推广 罗尔定理的推广 定理1: 设函数)(x f 在(a,b)内可导,且有 )()(lim )0()0()(lim ∞-∞+==-=+=-+ →→或为有限值或A A x f b f a f x f b x a x ,则存在点 ),(b a ∈ξ,使得0)(='ξf . 证明:首先对A 为有限值进行论证: 令? ? ?==∈=b x a x A b a x x f x F 或,),(),()( 则易知函数)(x f 在[a,b]上连续,在(a,b )内可导且)()(b F a F =.由Ro lle 定理可知,在(a,b)内至少存在一点ξ,使得0)(='ξF ,而在(a,b)内有)()(x f x F '=',所以0)(='ξf . 其次对A=∞+(∞-)进行论证: 由引理1,)(x f 在(a,b )内能取得最小值(最大值).不妨设:函数)(x f 在),(b a ∈ξ处取得最小值(最大值).此时函数)(x f 在),(b a ∈ξ处也就取得极小值(极大值).又因为)(x f 在),(b a ∈ξ处可导,由Fer mat 引理,可得0)(='ξf . 综上所述,从而定理得证. 定理2: 设函数)(x f 在(a,∞+),内可导,且)(lim )(lim x f x f x a x +∞ →→=+,证明:在(a ,∞+) 中存在一点ξ,使得0)(='ξf . 定理3: 设函数)(x f 在(∞-,b),内可导,且)(lim )(lim x f x f b x x -→-∞ →=,证明:在(∞-,b)

推广的积分中值定理及其应用

推广的积分中值定理及其应用 摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性. 关键词:积分中值定理;导函数;微分中值定理 Promotion of Integral Mean Value Theorem and Its Application Abstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system to promote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after. Keywords: Integral mean value theorem, derivative, mean value theorem

中值定理证明题

中值定理证明题 1. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 【分析】)(x f 在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。辅助函数可如下得到 0)()(0)()()()(=-+→=-+→=+x f x a f f a f f a f ξξξξ 【证明】令)()()(x f x a f x G -+=,],0[a x ∈.)(x G 在[0,a]上连续,且 )()0()()2()(a f f a f a f a G -=-= )0()()0(f a f G -= 当)0()(f a f =时,取0=ξ,即有)()(ξξf a f =+; 当)0()(f a f =时,0)()0(

相关文档
最新文档