材料力学 第二章 拉压内力和应力

合集下载

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

材料力学笔记(第二章)

材料力学笔记(第二章)

材料力学(土)笔记第二章 轴向拉伸和压缩1.轴向拉伸和压缩的概念拉(压)杆:作用于等直杆上的外力(或外力的合力)的作用线与杆件轴线重合变形特征是杆将发生纵向伸长或缩短2.内力法·截面法·轴力及轴力图2.1 内力内力:由外力作用引起的、物体内相邻部分之间分布内力系的合成 在物体内部相邻部分之间的相互作用的内力,实际上是一个连续分布的内力系分布内力系的合成(力或力偶),简称内力2.2 截面法·轴力及轴力图轴力:杆件任意横截面上的内力,其作用线与杆的轴线重合,即垂直于横截面并其通过形心 规定用记号N F 表示用截面法,内力N F 的数值由平衡条件求解,已知一端外力为F由平衡方程0=∑x F ,0=-F F N得F F N =规定引起纵向伸长变形的轴力为正,称为拉力规定引起纵向缩短变形的轴力为负,称为压力截面法包含以下三个步骤①截开:在需求内力的截面处,假想地将杆分为两部分②代替:将两部分上的任意一部分留下,吧弃去部分的作用代之以作用在截开面上的内力 ③平衡:对留下的部分建立平衡方程,根据已知外力来计算在截开面上的未知力截开面上的内力对留下部分而言已属外力静力学中的力(或力偶)的可移性原理,在截面法求内力的过程中是有限制的将杆上的荷载用一个静力等效的相当力来替代,也是有所限制的轴力图:用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上轴力的数值,从而绘成表示周丽与截面位置关系的图线。

正值的轴力滑上侧,负值画下侧3.应力·拉(压)杆内的应力3.1 应力的概念应力:受力杆件某一横截面上分部内力在一点处的集度考察M 处的应力,在M 点周围取一微小的面积A ∆设A ∆面积上分布内力的合力为F ∆在面积A ∆上内力F ∆的平均集度为AF p m ∆∆=m p 称为面积A ∆上的平均应力 为表明分布内力在M 点处的集度,令微小面积A ∆无限缩小趋于零,则其极限值dAdF A F p A =∆∆=→∆0lim 即为M 点处的内力集度,称为截面m-m 上M 点处的总应力F ∆是矢量,总应力p 也是矢量,其方向一般既不与截面垂直,也不与截面相切通常将总应力p 分解为与截面垂直的法向分量σ和与截面相切的切向分量τ法向分量σ称为正应力切向分量τ称为切应力应力具有如下特征:①应力定义在受力物体的某一截面上的某一点处讨论应力必须明确是在哪一个截面上哪一点处②在某一截面上一点处的应力是矢量对于应力分量,通常规定离开截面的正应力为正,反之为负③应力的量纲为21--T ML ,应力单位为Pa1 Pa=1N/㎡,工程中常采用MPa ,1 MPa=610Pa④整个截面上各点处的应力与微面积dA 之乘积的合成,即为该截面上的内力3.2 拉压杆横截面上的应力与轴力相应的只可能是垂直于截面的正应力考察杆件受力后表面上的变形情况,由表及里地作出杆件内部变形情况的几何假设,再根据力与变形间的物理关系,得到应力在截面上的变化规律,然后再通过应力与dA 之乘积的合成即为内力的静力学关系,得到与内力表示的应力计算公式平面假设:假设原为平面的横截面在杆变形后仍为平面根据平面假设,拉杆变形后两横截面将沿杆轴线作相对平移拉杆在其任意两个横截面之间纵向线段的伸长变形是均匀的假设材料是均匀的,杆的分布内力集度由于杆纵向线段的变形相对应因而拉杆横截面上的正应力σ呈均匀分布,即各点处的正应力相等按应力与内力间的静力学关系A A d dA F AA N σσσ===⎰⎰ 即得拉杆横截面上正应力σ的计算公式AF N =σ 式中,N F 为轴力,A 为杆的横截面面积 对于轴向压缩的杆,上式同样适用这一结论实际上只在杆上离外力作用点稍远的部分才正确圣维南原理:力作用于杆端的方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响当等直杆受几个轴向外力作用时,由轴力图可求得其最大轴力max ,N F代入公式即得杆内得最大正应力为A F N max,max =σ最大轴力所在的横截面称为危险截面危险截面上正应力称为最大工作应力3.3 拉(压)杆斜截面上的应力与横截面成α角的任意斜截面k-k 上的应力用一平面沿着斜截面k-k 将杆截分为二,并研究左段杆的平衡得斜截面k-k 上的内力αF 为F F =α得到斜截面上各点处的总应力αpαααA F p =αA 是斜截面面积,αA 与横截面面积关心为ααcos /A A =代入可得ασααcos cos 0==A F p 其中AF =0σ即拉杆在横截面(0=α)上的正应力 总应力αp 是矢量,分解成两个分量:沿截面法线方向的正应力和沿截面切线方向的切应力 分别用ασ,ατ表示两个分量可以表示为ασασαα20cos cos ==p ασαταα2sin 2sin 0==p 其中角度α以横截面外向法线至斜截面外向法线为逆时针转向时为正,反之为负①当0=α时,0σσα=是ασ中的最大值,即通过拉杆内某点的横截面上的正应力,是通过该点的所有不同方位截面上正应力中的最大值②当o 45=α时,20στα=是ατ中的最大值,即与横截面呈45°的斜截面上的切应力,是拉杆所有不同方位截面上切应力中的最大值单元体:在拉杆表面任意一点A 处用横截面、纵截面及表面平行的面貌截取一各边长均为无穷小的正六面体应力状态:通过一点的所有不同方位截面上应力的全部情况单轴应力状态:在研究的拉杆中,一点处的应力状态由其横截面上的正应力0σ即可完全确定4.拉(压)杆的变形·胡克定律设拉杆原长为l ,承受一对轴向拉力F 的作用而伸长后,其长度增为1l则杆的纵向伸长为l l l -=∆1杆件变形程度可以每单位长度的纵向伸长(l l /∆)来表示线应变:每单位长度的伸长(或缩短),用ε表示拉杆的纵向线应变为ll ∆=ε 拉杆的纵向伸长l ∆为正,压杆的纵向缩短l ∆为负 研究一点处的线应变,可围绕该点取一个很小的正六面体设所取正六面体沿x 轴方向AB 边的原长为x ∆变形后其长度的改变量为x δ∆对于非均匀变形比值x x ∆∆/δ为AB 边的平均线应变当x ∆无限趋于零时,其极限值称为A 点处沿x 轴方向的线应变dxd x x x x x δδε=∆∆=→∆0lim拉杆在纵向变形的同时将有横向变形设拉杆为圆杆,原始直径为d ,受力变形后缩小为1d则其横向变形为d d d -=∆1在均匀变形情况下,拉杆的横向线应变为dd ∆='ε 拉杆的横向线应变为负,即与其纵向线应变的正负号相反拉(压)杆的变形量与其所受力之间的关系与材料性能有关,只能通过实验来获得 当杆内应力不超过材料的某一极限值(比例极限)时杆的伸长l ∆与其所受外力F 、杆的原长l 成正比,与其横截面面积A 成反比AFl l ∝∆ 引进比例常数E ,则 EAFl l =∆ 由于N F F =,上式改写为 EAl F l N =∆ 此关系称为胡克定律,式子中比例常数E 称为弹性模量,其量纲为21--TML ,单位为PaE 的数值随材料而异,其值表征材料抵抗弹性变形的能力EA 称为杆的拉伸(压缩)刚度对于相等且受力相同的拉杆,其拉伸刚度越大拉杆变形越小将上述公式改写成 AF E l l N ⨯=∆1 可得胡克定律的另一种表达方式 E σε=它不仅适用于拉(压)杆,而且还可以更普遍地用于所有的单轴应力状态称其为单轴应力状态下的胡克定律对于横向线应变'ε,实验结果指出当拉(压)杆的应力不超过材料的比例极限时,它与纵向线应变ε的绝对值之比为一常数 此比值称为横向变形因数或泊松比,通常用υ表示,即εευ'= υ是量纲为一的量,其数值随材料而异,也是通过实验测定的纵向线应变与横向线应变的正负号恒相反,故有υεε-='Eσυε-=' 一点处横向线应变与该点处得纵向正应力成正比,但正负号相反例题2-5计算结点A 的位移为计算位移A ∆,假想地将两杆在A 点处拆开,并沿两杆轴线分别增加长度1l ∆和2l ∆ 分别以B 、C 为圆心,以两杆伸长后长度1BA ,2CA 为半径作园,交点''A 为A 点新位置3.拉(压)杆内的应变能应变能:伴随着弹性变形的增减而改变的能量在弹性体的变形过程中,积蓄在弹性体内的应变能εV 在数值上等于外力做功WW V =ε上式称为弹性体的功能原理,应变能εV 的单位为J (1 J=1 N ·m )推导拉杆应变能计算公式在静荷载F 的作用下,杆伸长l ∆力对该位移所作的功等于F 与l ∆关系图线下的面积弹性变形范围内F 与l ∆成线性关系,可得F 所做的功W 为l F W ∆=21 积蓄在杆内的应变能为 2222222121l lEA EA l F EA l F l F l F V N N ∆===∆=∆=ε 由于拉杆各横截面上所有点处的应力均相同故杆的单位体积内所积蓄的应变能就等于杆的应变能εV 除以体积V应变能密度:单位体积内的应变能,用εv 表示σεεε2121=∆==Al l F V V v 公式表明应变能密度可以视作正应力σ在其相应的线应变ε上作的功 2222εσεE E v == 应变能的单位为J/m ³只适用于应力与应变成线性关系的先弹性范围内能量法:利用应变能的概念可以解决与结构或构件的弹性变形有关的问题例题2-6εV P A =∆216.材料在拉伸和压缩时的力学性能6.1 材料的拉伸和压缩试验标距:圆截面标准试样的工作段长度l标准比例d l 10=和d l 5=万能试验机:使试样发生变形(伸长或缩短)并测定试样抗力变形仪:将微小变形放大,测量试样变形6.2 低碳钢试样的拉伸图及其力学性能低碳钢是工程上最广泛使用的材料拉伸图:横坐标表示试样工作段的伸长量l ∆,纵坐标表示试样承受的荷载F低碳钢在整个拉伸试验过程中其工作段伸长量与荷载间的关系大致可分为四个阶段 ①弹性阶段:试样变形时完全弹性的,全部卸除载荷后,试样将恢复原长低碳钢在此阶段内,其伸长量与荷载之间成正比,即胡克定律表达式②屈服阶段:试样的伸长量急剧地增加,而荷载读数在很小范围内波动屈服:试样的荷载在很小的范围内波动,而其变形却不断增大的现象屈服阶段出现的变形,是不可恢复的塑性变形滑移线:试样经过抛光,则在试样表面将可看到大约与轴线成45°方向的条纹,是由材料沿试样的最大切应力面发生滑移而引起的③强化阶段:试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断发生强化,因而试样中的抗力不断增长。

5 材料力学第二章 轴向拉伸和压缩

5 材料力学第二章 轴向拉伸和压缩
μ
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+

12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标

材料力学第2章-1拉压

材料力学第2章-1拉压
6 9 2
平方米) (牛顿/平方米)记作:Pa (帕斯 牛顿 平方米 记作: 记为: 记为:Mpa 记为: 记为:Gpa 矢量背离截面 矢量指向截面
返回
N/m N/m
2 2
兆帕 千兆帕
4、正应力的符号规定: 、正应力的符号规定: 与轴力相同,拉伸( ) 与轴力相同,拉伸(+) 压缩( 压缩(-)
5、应力的分布规律: dFN= σ dA
ε
返回
二、压缩曲线: 压缩曲线:
F D B A C
σp
σs
σb
E
O
ε=∆ L/L
1、低碳钢的压缩曲线
特点: 弹性模量E均与拉伸时相同 均与拉伸时相同, 特点:极限应力σS弹性模量 均与拉伸时相同,但得不 到强度极限。 到强度极限。
返回
铸铁压缩曲线
2、铸铁压缩曲线的特点: 铸铁压缩曲线的特点: 1)形状与拉伸时相似。 )形状与拉伸时相似。 2)抗压强度比抗拉强度高 )抗压强度比抗拉强度高4~5倍。 倍 3)在较小的变形下突然破坏,破坏断面与轴线大约成 )在较小的变形下突然破坏, 450~550角。 三、两类材料力学性能比较 塑性材料:1)破坏前变形大,有流动阶段。 塑性材料: 破坏前变形大,有流动阶段。 承受冲击的能力好。 2)承受冲击的能力好。 均相同。 3)拉压时E、 σs均相同。 脆性材料: 破坏前变形小,没有明显的流动阶段。 脆性材料:1)破坏前变形小,没有明显的流动阶段。 承受冲击的能力不好。 2)承受冲击的能力不好。 抗拉强度低,抗压强度高。 3)抗拉强度低,抗压强度高。 塑性材料适合做承拉构件,脆性材料适合做承压构件。 塑性材料适合做承拉构件,脆性材料适合做承压构件。
FN =
∫ dF
A
N

材料力学-第二章

材料力学-第二章

第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。

力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。

规定拉力为正,压力为负。

变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。

杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。

局部力系的等效代换只影响局部。

它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。

这是固体力学中一颗难以采撷的明珠。

三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。

例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。

拉伸试验是最基本、最常用的试验。

)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。

02.3.应力·拉(压)杆内的应力解析

02.3.应力·拉(压)杆内的应力解析
第8页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
F
a b
a
b
c
d
c d
F
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。由于假设材料是均匀的,而杆 的分布内力集度又与杆件纵向线段的变形相对应,因而杆件 横截面上的正应力s呈均匀分布,亦即横截面上各点处的正 应力s 都相等。由合力概念知:
第12页
武生院建筑工程学院:材料力学
• 讨论题
第13页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
例题2-2 试求此正方 形砖柱由于荷载引起的横 截面上的最大工作应力。 已知F = 50 kN。
第14页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
解:Ⅰ段柱横截面上的正应力
FN1 50 103 N s1 A1 (0.24 m) (0.24 m) 0.87 106 P a 0.87 MP a (压应力)
Ⅱ.轴向拉(压)杆横截面上的应力
(1) 与轴力相应的只可能是正应力s,与切应力无关; (2) s在横截面上的变化规律:横截面上各点处s 相等 时,可组成通过横截面形心的法向分布内力的合力——轴 力FN;横截面上各点处s 不相等时,特定条件下也可组成 轴力FN。
第7页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
Ⅱ段柱横截面上的正应力
FN 2 150103 N s2 0.37 m 0.37 m A2 1.1106 Pa 1.1 MPa (压应力)
s 2 s1
所以,最大工作应力为 smax= s2= -1.1 MPa (压应力)

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

02.3.应力·拉(压)杆内的应力解析

02.3.应力·拉(压)杆内的应力解析

4
FF
90106 Pa 90MPa
x
s2
FN 2 A2
20103 152 106
FN1 28.38k9N106 PaFN289M20PkaN
第19页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
Ⅲ. 拉(压)杆斜截面上的应力
k
F
F
k
k
F
F
斜截面上的内力: F F
k
变形假设:两平行的斜截面在杆受拉(压)而变形后仍相 互平行。
第二章 轴向拉伸和压缩
平均应力的定义
受力杆件(物体)某一截面的M点附近微面积ΔA上分布 内力的平均集度即平均应力, p F ,其方向和大小一般
m A
随所取ΔA的大小而不同。
F
M
A
第3页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
总应力定义:
该截面上M点处分布内力的集度为
p

lim F
A0 A
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
ac
F
a
c
F
b
d
bd
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。由于假设材料是均匀的,而杆 的分布内力集度又与杆件纵向线段的变形相对应,因而杆件
横截面上的正应力s呈均匀分布,亦即横截面上各点处的正 应力s 都相等。由合力概念知:
第15页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
例题2-3 已知薄壁圆环 d = 200 mm,δ= 5 mm,p = 2 MPa。试求薄壁圆环在内压力作用下径向截面上的拉应力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响小—不分开考虑 影响小 不分开考虑 有显著 的影响 的区域 应力分 布几乎 相同的 区域
∆F dF lim = 应力的计算 p = ∆A→0 ∆A dA
已知 F = ∫A pdA
需知道应力的分布形式
圣维南(Saint Venant)原理 原理: 圣维南(Saint Venant)原理:
作用于物体某一局部区域内的外力系, 作用于物体某一局部区域内的外力系,可以 用一个与之静力等效的力系来代替。 用一个与之静力等效的力系来代替。而两力 系所产生的应力分布只在力系作用区域附近 有显著的影响,在离开力系作用区域较远处, 有显著的影响,在离开力系作用区域较远处, 应力分布几乎相同。 应力分布几乎相同。
1. 截开:在需要求内力的截面处,假想地将杆截分为两部分; 截开:在需要求内力的截面处,假想地将杆截分为两部分; 2. 代替:将两部分的任一部分留下(一般将简单易求部分留 代替:将两部分的任一部分留下( ),把弃去部分对留下部分的作用代之以作用在截开面上的 下),把弃去部分对留下部分的作用代之以作用在截开面上的 内力(力或力偶); 内力(力或力偶); 3. 平衡:对留下部分建立平衡方程,求出未知内力。 平衡:对留下部分建立平衡方程,求出未知内力。
其极限值
∆F dF p = lim = ∆A→0 ∆A dA
p为M点的总应力。 为 点的总应力。 点的总应力
注意:为矢量,方向与∆ 相同 通常既不与截面垂直,也不与截面相切。 相同。 注意:为矢量,方向与∆F相同。通常既不与截面垂直,也不与截面相切。
p
τ
M
与截面垂直的分量称为正应力,符号 ; 截面垂直的分量称为正应力, 与截面相切的分量称为切应力,符号 截面相切的分量称为切应力,
m
F
I
α
II
m
F
α = 0:
σ α = σ cos2 α σ τ α = sin 2α
2
σ 0 = σ α max = σ ; τ α = 0
σ
2 ; τ α max =
α = 45° : σ α =
σ
2
.
α = 90° : σ α = 0; τ α = 0.
在研究拉压杆问题中,一点处的应力状态可由其横截面上 在研究拉压杆问题中, 的正应力完全确定,这样的应力状态称为单轴应力状态 单轴应力状态。 的正应力完全确定,这样的应力状态称为单轴应力状态。
杆的内力
m
F 截面法
m
I
m
II
F
m
F
I
m
FN
FN
m
II
F
m
m
F
I
m
FN
FN
m
II
F
FN = F
FN = F
FN为杆件 为杆件m-m截面上的内力,其作用线与杆的轴线重合。 截面上的内力, 截面上的内力 其作用线与杆的轴线重合。 这种内力称为轴力 轴力, 表示。 这种内力称为轴力,用FN 表示。
截面法的三个步骤: 截面法的三个步骤:
2
τα
σ
2 sin 2α
τ α = pα sin α = σ sin α cos α =
σ α = σ cos 2 α σ τ α = sin 2α 2
上式表达了通过杆内任一点处不同方位斜截面上的正应力和切应 力随α角而改变的规律。 力随α角而改变的规律。 通过一点的所有不同方位斜截面上应力的全部情况称为该点处的 应力状态。 应力状态。

2.
σ
σ
正应力为“-”

τ
剪应力为“-”
τ
正应力为“+”
剪应力为“+”
应力的特征( 应力的特征(续):
3. 应力的单位 国际单位制 :N/m2(Pa); 应力的单位( 国际单位制):
1kPa=103Pa; 1Mpa=106Pa=1N/mm2; 1GPa=109Pa
4. 整个截面上各点的 应力与微面积乘积的合成及为该截面上 的内力: 的内力:
F
F
F σ= A
F
F
三、斜截面上的应力
m
F • 截面法 F
I
α
II
m
F
α从横截面位置逆时针转动为正
m
I
α m

Fα = F
• 实验观察(平面假设) 实验观察(平面假设)
F
F
Fα pα = = Aα
Fα A cos α
F

F = cos α = σ cos α A
σα

σ α = pα cos α = σ cos α
• 变形特征:沿轴线方向伸长或缩短,横截面沿轴线平行移动 变形特征:沿轴线方向伸长或缩短,
F
F
F
F
工程实例图
气缸
起 重 机
钢 结 构 工 程
桁架结构
桥梁工程- 桥梁工程-斜拉桥
杨浦大桥是继南浦大桥之后 杨浦大桥 又一座跨越黄浦江的自行设 计、建造的双塔双索面迭合 梁斜拉桥。大桥全长7658米 ,602米长的主桥犹如一道横 跨浦江的彩虹在世界同类型 斜拉桥中雄居第一。挺拔高 耸的208米主塔似一把利剑直 刺穹苍,塔的两侧32对钢索 连接主梁,呈扇面展开,如 巨型琴弦,正弹奏着巨龙腾 飞的奏鸣曲。邓小平同志亲 自为大桥提写的桥名,他以 94岁高龄登上杨浦大桥时感 慨地说:“喜看今日路,胜 “喜看今日路, 读万年书! 读万年书!”。
F = ∫ pdA
A
二、横截面上的应力
m
F • 截面法
I
m
II
F
m
F
I
m
FN
FN = F
二、横截面上的应力
请考虑两个问题: 请考虑两个问题:
FN = G
[1] 两种情形杆内的 应力分布相同吗? 应力分布相同吗? 答:不相同 [2] 两种情形需要分 开考虑吗? 开考虑吗? 答:??? 影响大—分开考虑 答:影响大 分开考虑
σ τ
σ
应力的特征: 应力的特征:
1. 应力定义在受力物体的某一截面上的某一点处,因此, 应力定义在受力物体的某一截面上的某一点处,因此,讨论应力 必须明确是在哪一截面上的哪一点处; 必须明确是在哪一截面上的哪一点处; 应力是矢量。对于应力分量,通常规定离开截面的正应力为正,指 应力是矢量。对于应力分量,通常规定离开截面的正应力为正, 正应力为正 向截面的正应力为负(拉为正压为负);对截面内部(靠近截面) );对截面内部 向截面的正应力为负(拉为正压为负);对截面内部(靠近截面) 的点产生顺时针方向力矩的切应力为正,反之为负; 的点产生顺时针方向力矩的切应力为正,反之为负; 切应力为正
解:1.计算各段杆横截面上的 轴力和正应力 AB段: F x1= kN 400 N BC段: CD段:
F x2= 100kN - N
F x3= kN 200 N
进而,求得各段横截面上的 正应力分别为:
F x1 400×103 N σx1 = =160×106 Pa =160M Pa = −6 A 2500×10 1
平面一般力系的平衡方程式(3): 平面一般力系的平衡方程式(3): (3)

M
A
= 0;

M B = 0;

M C = 0.
A、B、C三点 、 、 三点 不能共线! 不能共线!
y
F
F4
B 刚体 o
C
F1
A
C
x
F2
B A
F3
如果A、 、 共线 共线, 如果 、B、C共线,满 足所有三个力矩等于零 的方程,但不平衡, 的方程,但不平衡,存 在主矢不为零! 在主矢不为零!
图示起吊三角架, 杆由截面积为10.86 cm2 的2根角钢组 例1 图示起吊三角架,AB 杆由截面积为 根 杆截面应力。 成,P=130 kN,α=300 , 求AB杆截面应力。 , 杆截面应力 考虑A节点平衡 解:(1)考虑 节点平衡 考虑
B
F AB N F AC N
得F
∑F = 0 y
α
P
则 F = 2P = 260 kN(拉) NAB (2)计算
桥梁工程- 桥梁工程-悬索桥
§2-2 轴力 轴力图
一、刚体的平衡条件(平面一般力系): 刚体的平衡条件(平面一般力系):
F1
刚体 问:刚体是否处 于平衡状态? 于平衡状态?
F4
F2 F3
平衡条件:力系的主矢和对作用面内任意一点的主矩都等于零。 平衡条件 力系的主矢和对作用面内任意一点的主矩都等于零。 力系的主矢和对作用面内任意一点的主矩都等于零
G
G
轴向拉压杆件横截面上的应力分布形式? 轴向拉压杆件横截面上的应力分布形式? 实验观察
变形前为平面的横截面变形后仍为平面(平面假设) 变形前为平面的横截面变形后仍为平面(平面假设) 。也即 拉压杆在其任意两个横截面之间纵向线段的变形是均匀 均匀的 拉压杆在其任意两个横截面之间纵向线段的变形是均匀的, 则有
例:求图示杆1-1、2-2、3-3截面上的轴力 求图示杆 、 、 截面上的轴力
解:
FN1
FN 1 = 10kN
FN2
FN 2 = −5kN
FN3
FN 3 = −20kN
轴力图
FN
图上应标注

正负号及大小
FN 1 = 10kN FN 2 = −5kN
表示轴力与截面位置关系的图线
习惯上将正值的轴力画在上侧, 习惯上将正值的轴力画在上侧,负值的画在下侧
平面一般力系的平衡方程式(1): 平面一般力系的平衡方程式(1): (1)
∑F
x
= 0;
∑F
y
= 0;
∑MF1o Nhomakorabea= 0.
相关文档
最新文档