直角三角形复习专题
初三数学解直角三角形专题复习

第五讲解直角三角形一、【知识梳理】知识点 1、 解直角三角形定义: 由直角三角形中已知元素求出未知元素的过程叫解直角三角形。
知识点 2、解直角三角形的工具:1、直角三角形边、角之间的关系:sinA=cosB=a b a bsinB=cosA=ctanA=cotB=cotA=tanB=cba2、直角三角形三边之间的关系 : a 2 b 2 c 2 (勾股定理)3、直角三角形锐角之间的关系:AB 90 。
(两锐角互为余角)知识点3、解直角三角形的种类:能够概括为以下2 种,(1)、已知一边和一锐角解直角三角形;知识点 4、解直角三角形应用题的几个名词和素语1、方向角:( 2)、已知两边解直角三角形。
在航海的某些问题中,描绘船的航向,或目标对观察点的地点,常用方向角.画方向角时,常以铅直的直线向上的方向指北,而以水平直线向右的方向为东,而以交点为观察点.2、仰角和俯角在利用测角仪察看目标时,视野在水平线上方和水平线的夹角称为仰角,视野在水平线下方和水平线的夹角称为俯角(如图). 在丈量距离、高度时,仰角和俯角常是不行缺乏的数据.3、坡度和坡角:在筑坝、修路时,常把坡面的铅直高度 h 和水平宽度 l 的比叫作坡度(或坡比),用字母i 表示(如图( 1)),则有 ih, 坡面和水平面的夹角叫作坡角.明显有: ih tan,l. l这说明坡度是坡角的正切值,坡角越大,坡度也越大二、【典型题例】考点 1、解直角三角形例 1.、 1、在 ABC 中,C 为直角, A 、B 、C 所对的边分别为 a 、 b 、 c .( 1)已知 b3 , A30 ,求 a 和 c .( 2)已知 a20 , b 20 ,求A .2、如图,已知△ ABC 中∠ B=45 °,∠ C=30°, BC=10 , AD 是 BC 边上的高,求 AD 的长3、已知,如图,△ABC 中,∠ A=30 °, AB=6 , CD ⊥ AB 交C AAB 延伸线于 D ,∠ CBD=60 °。
直角三角形性质的复习(导学稿)

直角三角形性质的复习一、回顾与练习 (一)练习()()()().______24.______303 .______ 2.______191.4 90=∠==︒=∠==∠︒=∠=︒=∠∆A BC BC A CD AB CD A B AB ACB ABC Rt ,则若,则若边上的中线,则是若,则若,中,在二、定理及推论的应用(一)直角三角形性质定理的应用()()._______552._______24190t .1=∠︒=∠==+︒=∠∆CDB A AB CD AB AB CD ACB ABC R ,则若,则若的中线。
是斜边,中,如图,在DECD AB D AEB ACB =︒=∠=∠求证:的中点是,如图,)1.(90.2()..2请证明又怎样的位置关系?与的中点,则为,若如图,联结CE DF CE F CE()._________53090t 121(==︒=∠︒=∠∆AB AC B C ABC R ,则,,中,如图,在的应用、二)推理DAC BE30°ACBCABDCABDEF()._______43090t 2cm BD cm AD D AB CD B ACB ABC R ==⊥︒=∠︒=∠∆则,,于点,,中,如图,在三、辅助线的使用()的长。
求,的中点,是的中点,是,中,已知:如图,在EF AD AD E BC F AC AB ABC 101==∆()︒=∠=∠︒=∠∆303902A CD AC ABC BD C ABC 求证,,平分,中,已知,如图,在四、拓展练习()()().3.21.,90.1的度数是等腰三角形时,求当得到的结论?证明你所之间又怎样的数量关系与,那么线段如果;上时,求证:在线段如图,当相较于点,与射线相交于点与射线作的中点,过点是中,已知,在A BDF BC AC CD BE CD BE CA E F CD E CA BE A CBE B AB D ACB ABC ∠∆=⊥∠=∠︒=∠∆30°30°DCABFEC ABDDBCABCDEFA。
【解直角三角形】专题复习(知识点+考点+测试)

《解直角三角形》专题复习一、直角三角形的性质 1、直角三角形的两个锐角互余 几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
几何表示:【∵∠C=90°∠A=30°∴BC=21AB 】 3、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为AB 的中点 ∴ CD=21AB=BD=AD 】4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在Rt △ABC 中∵∠ACB=90° ∴222c b a =+】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD ⊥AB ∴ BD AD CD •=2AB AD AC •=2 AB BD BC •=2】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
(a b c h •=•)由上图可得:AB •CD=AC •BC二、锐角三角函数的概念 如图,在△ABC 中,∠C=90°c asin =∠=斜边的对边A Ac bcos =∠=斜边的邻边A Ab atan =∠∠=的邻边的对边A A Aab cot =∠∠=的对边的邻边A A A锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0.三、锐角三角函数之间的关系(1)平方关系(同一锐角的正弦和余弦值的平方和等于1) 1cos sin 22=+A A(2)倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA •tan(90°—A)=1; cotA •cot(90°—A)=1; (3)弦切关系tanA=A Acos sin cotA=AA sin cos(4)互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A)AC BDsin A sin c A ,cos b c A 12S ab =)结论:直角三角形斜边上的高)测底部不可到达物体的高度BP=xcot α 东 西 2八、基本图形(组合型)翻折平移九、解直角三角形的知识的应用问题:(1)测量物体高度.(2)有关航行问题.(3)计算坝体或边路的坡度等问题十、解题思路与数学思想方法图形、条件单个直角三角形直接求解实际问题数学问题辅助线构造抽象转化不是直角三角形直角三角形方程求解常用数学思想方法:转化、方程、数形结合、分类、应用【聚焦中考考点】1、锐角三角函数的定义2、特殊角三角函数值3、解直角三角形的应用【解直角三角形】经典测试题(1——10题每题5分,11——12每题10分,13——16每题20分,共150分) 1、在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 2、sin65°与cos26°之间的关系为( )A. sin65°< cos26°B. sin65°> cos26°C. sin65°= cos26°D. sin65°+ cos26°=1 3、如图1所示,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米4、如图2,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1图15、把直角三角形中缩小5倍,那么锐角∠A 的正弦值 ( ) A. 扩大5倍 B. 缩小5倍 C. 没有变化 D. 不能确定6、如图3,在Rt △ABC 中,∠C=90°,D 为BC 上的一点,AD=BD=2,AB=23,则: AC 的长为( ).A .3B .22C .3D .3227、如果∠A 是锐角,且3sin 4B =,那么( ). A .030A ︒<∠<︒ B .3045A ︒<∠<︒C .4560A ︒<∠<︒D .6090A ︒<∠<︒8、已知1cos 3α=,则3sin tan 4sin 2tan αααα-+的值等于( )A.47B.12C .13D .09、 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为______。
专题1-9 《直角三角形》全章复习与巩固(知识讲解)-八年级数学下册(湘教版)

1.9 《直角三角形》全章复习与巩固(知识讲解)【复习目标】1.了解直角三角形的概念,理解直角三角形的性质和判定;2.能用直角三角形的性质和判定解决简单问题;3.会运用直角三角形的知识解决有关问题.【知识梳理】要点一、直角三角形定义1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.要点二、直角三角形性质(1)直角三角形中两锐角互余.(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.要点三、直角三角形的判定(1)有两内角互余的三角形是直角三角形.(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.要点四、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点五、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.【典型例题】类型一、直角三角形的性质1.已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.求CD的长.【答案】CD=a【思路点拨】根据三角形的外角的性质得∠DAC=30°,再根据含30°角的直角三角形的性质可得DC=a.解:∵∠ABC=∠ACB=15°∴∠DAC=30°∵CD是腰AB上的高AB=AC=2a∴AC=2CD∴CD=a【点拨】此题主要考查含30°的直角三角形的性质,解题的关键是利用等腰三角形得出含30°角的直角三角形.2 已知,在,ABC中,,ACB,90°,CD,AB垂足为D,BC,6,AC,8,求AB与CD 的长.【答案】AB=10∠CD=4.8.解∠在△ABC中∠∠ACB=90°∠CD⊥AB垂足为D∠BC=6∠AC=8∠由勾股定理得∠AB=∵S△ABC=12AB•CD=12AC•BC∠∴CD=AC BCAB⋅=8610⨯=4.8∠【点拨】在直角三角形ABC中∠利用勾股定理求出AB的长∠再利用等面积法求出CD的长即可.3.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点. 求证:CD⊥AB.【思路点拨】由∠ACB=90°,M为AB的中点.根据直角三角形斜边上的中线等于斜边的一半得到CM12=AB=BM,再根据在直角三角形中,30°所对的边等于斜边的一半得到CB12=AB=BM,则CM=CB,而D为MB的中点,根据等腰三角形的性质即可得到结论.解∵∠ACB=90°,M为AB中点,∴CM12=AB=BM.∵∠ACB=90°,∠A=30°,∴CB12=AB=BM,∴CM=CB.∵D为MB的中点,∴CD⊥BM,即CD⊥AB.【点拨】本题考查了含30°的直角三角形的性质:30°所对的边等于斜边的一半;也考查了直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质.类型二、直角三角形全等的判定——“HL”4、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90°即ED ⊥AC .5、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:AD BC BD DB ⎧⎨=⎩=ED AC AE AB ⎧⎨⎩==,(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS 、ASA 、AAS 、SSS 、HL. 举一反三:【变式】下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等;(4)有两条边相等的两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等.A.2个B.3个C.4个D.5个 【答案】C .解:(1)一个锐角及斜边对应相等的两个直角三角形全等,根据AAS 可判定两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等,根据AAS 或ASA 可判定两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等,缺少“边”这个条件,故不可判定两个直角三角形全等;(4)有两条边相等的两个直角三角形全等,根据SAS 或HL 可判定两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等,根据HL 可判定两个直角三角形全等.所以说法正确的有4个.故选C .6、 如图,AB ⊥AC 于A ,BD ⊥CD 于D ,若AC=DB ,则下列结论中不正确的是( ) A .∠A=∠D B .∠ABC=∠DCBC .OB=OD D .OA=OD O BC DA【思路点拨】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证.【答案与解析】解:∵AB⊥AC于A,BD⊥CD于D∴∠A=∠D=90°(A正确)又∵AC=DB,BC=BC∴△ABC≌△DCB(HL)∴∠ABC=∠DCB(B正确)∴AB=CD又∵∠AOB=∠C∴△AOB≌△DOC(AAS)∴OA=OD(D正确)C中OD、OB不是对应边,不相等.故选C.【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.类型三、直角三角形的折叠问题7.将一张矩形纸片如图所示折叠,使顶点落在点.已知,,则折痕的长为( )A. B. C. D.【思路点拨】直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理和直角三角形中,30°角所对的边等于斜边的一半.【答案】C.【解析】由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,所以在Rt△DCE中,DE=2CD=4.故选C.【总结升华】折叠题型一定要注意对应的边相等,对应的角相等.【变式】如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为( ).A. B. C. D.5【答案】B.解析:由折叠可知,AD=BD,DE⊥AB,∴BE=AB设BD为x,则CD=8-x∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2∴AB2=42+82=80,∴AB=,∴BE=在Rt△ACD中,AC2+CD2=AD2 ,∴42+(8-x)2=x2,解得x=5在Rt△BDE中,BE2+DE2=BD2,即()2+DE2=52,∴DE=,故选B.类型四、直角三角形的性质和判定综合运用8.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.。
1.直角三角形知识点及复习

直角三角形知识点一、直角三角形的性质1、Rt△的两个锐角互余(∠A+∠B=90°)2、斜边上的中线等于斜边的一半(若D为斜边AB的中点,则CD=12AB)3、30°角所对直角边等于斜边的一半(若∠A=30°,∠C=90°,CB=12AB)4、勾股定理:两直角边的平方和等于斜边的平方(若∠C=90°,则222a b c+=)二、直角三角形的判定1、有两个锐角互余的△是直角三角形。
2、如果一个三角形中,一条边上的中线等于这条边的一半,那么这条边所对的角为90°3、勾股定理的逆定理:如果三角形三边满足222a b c+=,则∠C=90°。
用法:(1)选出最大边;(2)计算较小两边的平方和;(3)比较最大边的平方与较小两边的平方和;(4)如果两者相等,则最大边所对的角为直角。
三、常用几个结论:(1)(2)直角三角形斜边上的高=两直角边乘积除以斜边。
公式为c abhc=(3)常见的勾股数:(3k,4k,5k)(5k,12k,13k)(7k,24k,25k)(8k,15k,17k)(9k,40k,41k)(4)在求曲面上的最短距离时,先把曲面展开成平面图形,画出起点到终点的线段,就是最短距离,一般需要用到勾股定理。
(1)蚂蚁沿着圆柱表面爬行,最短距离例1 如图1有一个圆柱,它的高等于12cm ,底面周长为10cm,在圆柱的下底面A点上有一只蚂蚁,他想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?分析:可以把圆柱的侧面展开,其展开图为矩形,如图3所示。
连接AC,则AC即为小虫爬行的最短路线,可用勾股定理求得其长。
解:①若沿着曲面走,则:AB=12×10=5,BC=12,所以AC=13=图1 图2半周长②若走折线A=>D=>C ,则AC+DC=12+10π∵12+10π>13∴最短路程为13cm 。
中考解直角三角形知识点整理复习

中考解直角三角形知识点整理复习解直角三角形知识点复习一、定义直角三角形是指其中一个角是直角的三角形。
直角指的是一个角度为90°的角。
二、性质1.直角三角形的两条直角边的平方和等于斜边的平方,即勾股定理。
设直角三角形的两条直角边分别为a和b,斜边为c,则有a^2+b^2=c^22.直角三角形的斜边是两个直角边中最长的边,而且直角三角形中的直角边是两个锐角的对边。
3.直角三角形中的两个锐角互余。
4.在直角三角形中,两个锐角的正弦、余弦和正切值互为倒数。
三、特殊直角三角形1.等腰直角三角形:定义:顶角为90°的等腰三角形。
性质:两个直角边相等,斜边为直角边的根号2倍。
2.30°-60°-90°直角三角形:定义:一个锐角为30°,一个锐角为60°的直角三角形。
性质:-斜边是短直角边的2倍;-长直角边是短直角边的根号3倍;-高(垂直于短直角边的线段)是短直角边的根号3倍的一半。
3.45°-45°-90°直角三角形:定义:两个锐角都为45°的直角三角形。
性质:-斜边是任意一个直角边的根号2倍;-高(垂直于底边的线段)是底边的一半。
四、解直角三角形问题的步骤1.已知两条边,求第三条边。
a)如果已知两条直角边a和b,可以直接使用勾股定理求解斜边c:c=√(a^2+b^2)。
b)如果已知一条直角边a和斜边c,可以使用勾股定理求解另一条直角边b:b=√(c^2-a^2)。
2.已知一条直角边和一个锐角,求另一条直角边和斜边。
a) 如果已知一条直角边a和一个锐角θ,可以求出另一条直角边b:b = a * tanθ。
b)如果已知一条直角边a和斜边c,可以求出另一条直角边b:b=√(c^2-a^2)。
c) 如果已知一条直角边a和一个锐角θ,可以求出斜边c:c = a / cosθ。
3.已知两条直角边之间的比例,求两个直角边和斜边的长度。
第一章 直角三角形的性质与判定复习

第一章直角三角形的性质与判定复习一、知识点总结1、直角三角形的性质:(1)在直角三角形中,两锐角;(2)在直角三角形中,斜边上的中线等于__________的一半;(3)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于___________;(4)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于___________。
(5)在直角三角形中,两条直角的平方和等于的平方。
勾股定理2、直角三角形的判定:(1)有一个角等于_________的三角形是直角三角形;(2)有两个角_____________的三角形是直角三角形;(3)如果三角形一边上的中线等于这条边的________,那么这个三角形是直角三角形。
(3)如果一个三角形中其中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
3、常用的勾股数据:⑴ 3,4,5 ⑵ 5,12,13 ⑶ 2,1,3⑷ 1,1,2一、选择题(本大题共14小题,共42.0分)1.下列各组数中,是勾股数的()A.12,15,18B.11,60,61C.15,16,17D.12,35,362.下列四组数中,不是勾股数的一组数是()A.a=8,b=15,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=73.若直角三角形的三边长为偶数,则这三边的边长可能是()A.3,4,5B.6,8,10C.7,24,29D.8,12,204.分别以下列各组数据为三角形三边的长度,那么不能构成直角三角形的是()A.3,4,5B.5,12,13C.7,13,15D.8,15,175.下列各组数中不是勾股数的是()A.3,4,5B.4,5,6C.5,12,13D.6,8,106.下列几组数:①7,24,25;②8,15,17;③9,40,41;④n2-1,2n,n2+1(n是大于1的正整数).其中是勾股数的有()A.1组B.2组C.3组D.4组7.在下列各组数中,是勾股数的一组是()A.0.3、0.4、0.5B.、、1C.25、7、24D.6、5、48.下列不能组成直角三角形三边长的是()A.5,12,13B.6,8,10C.9,16,21D.8,15,179.如图,是4个全等的直角三角形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y表示直角三角形的两条直角边(x>y),请观察图案,指出下列关系式不正确的是()A.x2+y2=49B.x-y=2C.2xy+4=49D.x+y=1310.如果一个直角三角形的两边分别是2、5,那么第三边的平方是()A.21B.26C.29D.21或2911.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.a=,2,b=2,c=2B.a=,b=2,c=C.a=,b=,c=D.a=5,b=12,c=1312.下列四组线段中,可以构成直角三角形的是()A.1.5,2,3B.4,5,5C.2,3,4D.1,,113.△ABC,D、E分别为AB、AC中点,S△ABC=8,则△DEC的面积为()A.6B.4C.2D.114.如图,△ABC中,点E、F分别为AB、AC中点,△AEF面积为2,则四边形EBCF面积为()A.4B.6C.8D.10二、填空题(本大题共16小题,共48.0分)15.如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=2,则菱形ABCD的周长是 ______ .16.等腰三角形的顶角是120°,底边上的高是3cm,则腰长为______ cm.17.观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你发现的规律写出接下来的式子: ______ .18.写四组勾股数组. ______ , ______ , ______ , ______ .19.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,若△OP n P n+1的面积大于6时,n至少是 ______ .20.如图,在R t△ABC中,∠ACB=90,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4,则S1+S2+S3+S4= ______ .21.如图,直线l1、l2、l3分别过正方形ABCD的三个顶点A,B,D,且相互平行,若l1与l2的距离为1,l2与l3的距离为1,则该正方形的面积是 ______ .22.如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则EF长为 ______ cm.23.如图,一透明的圆柱体玻璃杯,从内部测得底部直径为6cm,杯深8cm.今有一根长为16cm的吸管如图放入杯中,露在杯口外的长度为h,则h的变化范围是: ______ .24.△ABC的3条边的长分别为6、8、10,与其相似的△DEF的最长边为15,则△DEF的最短边为 ______ ,△DEF的面积为 ______ .25.如图,在△ABC中,E,D,F分别是AB,BC,CA的中点,AC=4,BC=5,AB=6,则四边形AEDF的周长是 ______ .26.如图,在▱ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则▱ABCD的面积为 ______ .27.如图,四边形ABCD中,∠A=90°,AB=2,AD=2,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别是DM,MN的中点,则EF长度的最大值为 ______ .28.如图,在△ABC中,D,E分别是AB,AC的中点,那么△ADE与四边形DBCE的面积之比是 ______ .29.已知三角形3条中位线的比为3:5:6,三角形的周长是112cm,这三条中位线长分别是 ______ .30.如图,在△ABC中,D、E、F分别是各边的中点,AH是高,∠DHF=50°,∠DAF= ______ °.三、解答题(本大题共14小题,共112.0分)31.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°,(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,①△ADC是 ______ 三角形;②设△BDC的面积为S1,△AEC的面积为S2,那么S1与S2的数量关系是______ .(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究,如图4,已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB 交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.32.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q从点B开始沿BC边向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为x秒,(1)求几秒后,△P BQ的面积等于6cm2?(2)求几秒后,PQ的长度等于5cm?(3)运动过程中,△PQB的面积能否等于8cm2?说明理由.33.如图,每个小正方形的边长都是1,(1)求四边形ABCD的周长和面积;(2)∠BCD是直角吗?34.如图1,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,ACB的顶点A在△ECD 的斜边DE上(1)求证:AE2+AD2=2AC2;(2)如图2,若AE=2,AC=2,点F是AD的中点,直接写出CF的长是______ .35.如图四边形ABCD中,∠C=90°,BC=1,DC=2,AB=,AD=3,求出这个四边形的面积.36.如图,在△ABC中,D为BC上一点,且AB=5,BD=3,AD=4,且△ABC的周长为18,求AC的长和△ABC的面积.37.如图所示,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则过3秒时,求△BPQ的面积.38.如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.(1)求△ABC的面积;(2)通过计算判断△ABC的形状;.(3)求AB边上的高.39.如图,△ABC中,AB=5cm,BC=3cm,AC=4cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设出发的时间为t秒.(1)请判断△ABC的形状,说明理由.(2)当t= ______ 时,△BCP是以BC为腰的等腰三角形.(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,P、Q两点之间的距离为?40.已知a、b、c满足(a-7.5)2++|c-8.5|=0.求:(1)a、b、c的值;(2)求以a、b、c为边构成的三角形面积.41.如图,△ABC中,∠C=R t∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t满足什么条件时,△BCP为直角三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?42.如图,在△ABC中,AB=30cm,BC=35cm,∠B=60°,有一动点M自A向B以1cm/s的速度运动,动点N自B向C以2cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.43.如图,在△ABC中,D、E是AB、AC中点,AG为BC边上的中线,DE、AG相交于点O,求证:AG与DE互相平分.44.如图,已知正方形ABCD和正方形AEFG,连结BE、DG.(1)求证:BE=DG,BE⊥DG;(2)连接BD、EG、DE,点M、N、P分别是BD、EG、DE的中点,连接MP,PN,MN,求证:△MPN是等腰直角三角形;(3)若AB=4,EF=2,∠DAE=45°,直接写出MN= ______ .。
2024年中考数学总复习专题18解直角三角形复习划重点 学霸炼技法

叫做坡度(或坡比),用字母 i 表示;
比)、坡角
坡面与水平面的夹角 α 叫坡角,i=
h
tan α= .如图(3)
l
第16页
返回目录
专题十八
解直角三角形
中考·数学
一般指以观测者的位置为中心,将正
北或正南方向作为起始方向旋转到目
方向角
标方向所成的角(一般指锐角),通常
表达成北(南)偏东(西)××度.如图
专题十八
解直角三角形
中考·数学
(2)sin ∠ADC的值.
∵AD 是△ABC 的中线,
1
∴CD= BC=2,∴DE=CD-CE=1.
2
∵AE⊥BC,DE=AE,∴∠ADC=45°,
AE
2
∴sin ∠ADC=
=
.
DE
2
第25页
返回目录
专题十八
解直角三角形
中考·数学
[规律方法]
解此类题的一般方法
(1)构造直角三角形.
(2)理清直角三角形的边、角关系.
(3)利用特殊角的三角函数值解答问题.
第26页
返回目录
专题十八
研究4
解题模型分析
解直角三角形
中考·数学
常见解直角三角形模型
■命题角度1:母子型
基本
模型
AB=AB;BD+DC=BC
第27页
BC=BC;AD+DB=AB
返回目录
专题十八
解直角三角形
中考·数学
演变
模型
BC=EF;
解直角三角形
中考·数学
[对接教材]
人教:九下P60~P84;
北师:九下P2~P27;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形专题复习
知识点回顾::直角三角形的性质定理及特殊直角三角形的性质:
①、两锐角和等于90°;
②、在直角三角形中,斜边上的中线等于斜边的一半; ③、任意两边的中位线,平行且等于中位线所对边的一半; ④、等面积计算,两直角边的积等于斜边与斜边上的高的积; ⑤、勾股定理,两直角边的平方和等于斜边的平方;
⑥、在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半,
三边之比为2:3:1;
⑦、在等腰直角三角形中,两直角边相等,两锐角相等为45°,三边之比为2:1:1. ⑧有一个角是直角的三角形是直角三角形。
⑨两个锐角互余的三角形是直角三角形。
⑩在△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,若这三边满足a 2+b 2=c 2
则△ABC 是 三角形
11、斜边和一条直角边对应相等的两个直角三角形全等。
12、角的平分线上的点到教的两边都距离相等。
教学过程 直角三角形的定义:有一个角是 的三角形是直角三角形.
中,∠C=90°,则∠A+∠B= .(数学语言)
追踪训练1. 有两个长度相同的滑梯(即BC=EF ),左边滑梯的高度 AC•与右边滑梯水平方向的长度DF 相等,则∠ABC+∠DFE= . 【点评】此例主要依据是直角三角形全等,直角三角形两锐角互余. Rt △ABC 中,D 为AB 边上的中点,则 .
.
追踪训练2. 在Rt △ABC 中,∠
ACB=90° ,D 是斜边AB 上的中线。
(1)若∠B=50°,则∠A= .
(2)若BC=CD ,则∠A= . Rt △ABC 中,D 为AB 边上的中点,
为AC 边上的中点,则 .
文字叙述: 任意两边的中位线,平行且等于中位线所对的边的一半.
追踪训练3. 已知,如图,在Rt △ABC 中,∠ACB=90°,D 为AB 边上的中点, E 为AC 边上的中点.F 为BC 边中点,求证:四边形ECFD 是矩形.
B C
A D
知识点4 图
知识点5
图
知识点7
图
b
知识点6
图A
C
Rt △ABC 中,D 为AB 边上的高,则 ..
追踪训练4. 如图,已知,∠ACB=90°,AC=4,BC=3,CD 是AB 边上高, 求CD= .
Rt △ABC 中,∠A ,∠B ,∠C 所对的边分别 a ,b ,c ,则这三边关系为 .
文字叙述: 勾股定理,两直角边的平方的平方和等于斜边的平方. 追踪训练5. .在Rt△ABC 中,∠C=90°,
①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;
6.如图,已知△ABC 中,∠ACB=90°,以△ABC 的各边为长边在△ABC 外
作矩形,使其每个矩形的宽为长的一半,S 1、S 2、S 3分别表示这三个长方形的面积, 则S 1、S 2、S 3之间有什么关系?并证明你的结论.
Rt △ABC 中,∠A=30°, a= ;则a :b :c= . 文字叙述: 在直角三角形中,如果一个锐角等于30°,
则它所对的直角边等于斜边的一半,三边之比为2:3:1.
追踪训练6. 如右图修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB•的长度为80米,那么点B 离水平面的高度BC 的长为________米, 与水平AC 的长为________
米. Rt △ABC 中,∠A=45°, a b ;则a :b :c= .
文字叙述: 等腰直角三角形中,两直角边相等, 两锐角相等为45°,三边之比为2:1:1 追踪训练7. 如右图,一次自然灾害中,电线杆AB 被从C 处折断,A 点落在地面的D 点,在地面D 点处测得∠CDB=45°,若点D 到电线杆底部点B 的距离为5cm ,求电线杆AB 的长.
知识点5 图
ABC 中,∠A:∠B: ∠C=2:3:5,则△ABC 是 三角形 文字叙述:有一个角是直角的三角形是直角三角形。
追踪训练8. 下列条件中不能说明△ABC 是直角三角形的是( ) A .∠A=25°,∠C=65° B. ∠A=∠B+∠C
C. ∠A=2∠B=3∠C
D. ∠A ︰∠B ︰∠C =1︰2︰
3 ABC 中,∠A=20°,∠B=70°,则△ABC 是 三角形
追踪训练9. 下列条件中不能说明△ABC 是直角三角形的是( ) A .∠A=27°,∠C=63° B. ∠A= 40°,∠C=60° C. ∠A+∠C=90° D. ∠A ︰∠B ︰∠C =1︰2︰3
ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c , 若这三边满足a 2+b 2=c 2
则△ABC 是 三角形 追踪训练
9.以下各组数为边长的三角形中,能组成直角三角形的是( )
A .3、4、6
B 。
15、20、25
C 。
5、12、15
D 。
10、16、25
ABC 和△A ′B ′C ′中,∠C=∠C ′=90°,AB= A ′B ′,BC= B ′C ′;
ABC △A ′B ′C ′(HL )
文字叙述:斜边和一条直角边对应相等的两个直角三角形全等。
追踪训练11.如图,∠B=∠E=Rt ∠,AB=AE ,∠1=∠2,求证∠3=∠4 ,
4
3
21E
D
C
B
A
若 OC 平分∠AOB , MC ⊥OA ,NC ⊥OB .则MC NC .
文字叙述:角的平分线上的点到角的两边都距离相等。
追踪训练12.如图,在△ABC 中,∠C =90o ,AM 是∠CAB 的平分线,CM =
20cm ,那么M 到AB 的距离为 . M C
B A
D C B
A
D C
B
A
C
B
A (二)、追踪综合演练. 1.(2011•湘西州中考)如图,在△ABC 中,AD⊥BC,垂足为D ,∠B=60°,∠C=45°. (1)求∠BAC 的度数;(2)若AC=2,求AD 的长.
2.(无锡中考)如图,在Rt△ABC 中,∠ACB=90°,D 、E 、F 分别
是AB 、BC 、CA 的中点,若CD=5cm ,则EF= cm .
3.直角三角形的两条直角边长分别为6cm 和8cm ,求连接这两条直角边中点 线段的长为多少?( ) A .3cm B .4cm C .5cm D .12cm 4.如右图,已知24=∆ABC S ,AC=8,求CD= .
5.如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求AD 的长,与四边形ABCD 的面积。
6. 如右图,
将等腰直角三角形ABC 绕点A 逆时针旋转15°后得到△AB ′C
′,若 )
. A .
3 B .6 C .2
3
7. 如下图,某中学有一块三角形形状的花园ABC ,测量得到∠A=45°, BC=5m ,AC 上的高为4m ,求出这块花园的面积.。