数学模型与数学建模

合集下载

什么是数学建模?

什么是数学建模?

1. 什么是数学建模?
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
2. 什么是数学模型?
数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
3. 为什么要建立数学模型?
在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述,解释,预计或分析出与实际事物相关的规律。

第1讲 数学建模简介

第1讲 数学建模简介

例1.生物医学专家有了药物浓度在人体内随 1.生物医学专家有了药物浓度在人体内随 时间和空间变化的数学模型后, 时间和空间变化的数学模型后,可以用来分析药 物的疗效,从而有效地指导临床用药. 物的疗效,从而有效地指导临床用药. 2.厂长经理们筹划出一个合理安排生产和销售 例2.厂长经理们筹划出一个合理安排生产和销售 的数学模型,是为了获取尽可能高的经济效益. 的数学模型,是为了获取尽可能高的经济效益. 数学模型是沟通现实世界 与数学世界的理想桥梁。 与数学世界的理想桥梁。
交通事故调查
一辆汽车在拐弯时急刹车, 结果冲到路边的沟里(见图 1.1)。交警立即赶到事故现 场。司机申辩说,当他进入 弯道时刹车已失灵,他还一 口咬定,进入弯道时其车速Y NhomakorabeaO
X
为40英里/小时(即该车在这类公路上的速度上限,相当 于17.9米/秒),交警验车时证实该车的制动器在事故 发生时的确失灵,然而司机所说的车速是否真实呢?
数 学 建 模
一. 数学科学的重要性 科学技术是第一生产力; * 科学技术是第一生产力; * 信息时代高科技的竞争本质上是数学的竞争; 信息时代高科技的竞争本质上是数学的竞争; 高技术” * “高技术”本质上是一种数学技术; 高技术 本质上是一种数学技术; * 数学科学是一种关键的、普遍的、能够实行 数学科学是一种关键的、普遍的、 的技术; 的技术; * 计算机的飞速发展促使数学得以广泛应用; 计算机的飞速发展促使数学得以广泛应用; 在经济竞争中数学科学是必不可少的; * 在经济竞争中数学科学是必不可少的;
数学模型(定义 : 数学模型 定义): 定义 数学模型是现实世界的简化而本质的描述。 数学模型是现实世界的简化而本质的描述。 是用数学符号、数学公式、程序、 是用数学符号、数学公式、程序、图、表等 刻画客观事物的本质属性与内在联系的理想化 表述. 表述

什么是数学模型与数学建模

什么是数学模型与数学建模

1. 什么是数学模型与数学建模简单地说:数学模型就是对实际问题的一种数学表述。

具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。

更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式,算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。

2.美国大学生数学建模竞赛的由来:1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。

这并不是偶然的。

在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。

在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。

该竞赛每年2月或3月进行。

我国自1989年首次参加这一竞赛,历届均取得优异成绩。

经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。

为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学模型竞赛与通常的数学竞赛不同,它来自实际问题或有明确的实际背景。

航天控制中的数学模型与建模技术研究

航天控制中的数学模型与建模技术研究

航天控制中的数学模型与建模技术研究随着人类社会的不断发展和进步,航空航天技术的发展也越来越迅速。

而在飞行控制这一领域,数学模型与建模技术是不可或缺的重要环节。

数学模型可以通过物理、化学、工程和经济等学科理论和原理,对问题进行抽象和简化,作为研究过程的工具和途径。

在航天领域,数学模型可以帮助人们理解和描述航天器的运动和姿态变化,以及预测其行为和性能等。

而建模技术则是指将实际问题转化为数学模型的过程,即建立数学模型。

航天控制中的数学模型通常包括基于质量、力学和运动方程的姿态控制模型,以及基于信号处理和计算机控制系统的轨道控制模型。

其中,姿态控制是航天控制中最重要的环节之一,因为航天器姿态的调整和控制是保证其安全、有效地完成各项任务的前提。

而姿态控制的过程,主要涉及到航天器的角速率、角位移、旋转矩阵等参数。

在姿态控制模型中,数学模型的主要目的是为了描述航天器的动力学特性。

因此,在进行数学建模时,需要考虑诸如重力、惯性、气动力等因素,并衡量它们之间的相互作用。

此外,数学模型的成功与否还取决于模型的准确性、可靠性和精度等。

在建立模型的过程中,需要大量的实验数据和理论知识作为基础,以实现模型精度的提高。

除了姿态控制之外,轨道控制模型也是航天控制中的重要环节。

在实际操作中,轨道控制是保证航天器正确进入和退出轨道的关键。

而轨道控制涉及到多种因素,如空气动力学、引力和惯性力等。

在数学建模时,必须考虑这些因素对轨道控制的影响,并确保通过计算机程序和控制算法控制航天器的位置和速度等参数。

由于航天控制涉及到多种因素和环节,因此数学建模的过程变得非常复杂。

除了需要收集和分析大量的实验数据和理论知识之外,还需要建立适当的数学模型来描述和预测航天器的运动和行为。

同时,建模过程还需要考虑如何应用计算机和控制算法来进行有效的控制。

为了实现更精确、可靠和高效的航天控制,必须不断探索和完善数学模型和建模技术。

在未来,基于深度学习和人工智能等新技术的发展,航空航天的数学建模和控制技术将进一步提高。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。

它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

一、建立数学模型的要求:1、真实完整。

1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

2、简明实用。

在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。

3、适应变化。

随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。

数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。

如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

数学建模简介

数学建模简介

数学建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
18
数学模型的分类
分类标准
对某个实际问题 了解的深入程度 模型中变量的特 征 建模中所用的数 学方法
具体类别
白箱模型、灰箱模型、黑箱模型 连续型模型、离散型模型或确定性 模型、随机型模型等
初等模型、微分方程模型、差分方 程模型、优化模型等
数学建模
第一讲 概述
主要内容
• 1.什么是数学模型? • 2.如何数学建模?
• 3.为什么数学建模?
2
1.什么是数学模型?
• 数学 • 模型
• 数学模型
3
1、圆形蜘蛛网是一个简单漂 亮的数学创造 2、蜂巢
自 然 离 不 开 数 学
3、在矿物结构中,可以找到许多更为奇妙的空间图形
4
问题/应用 核磁共振成像技术(MRI) 计算机辅助成像(CAT) 空中交通管制 积分几何 控制论
类似这样的问题,后来被统称为“一笔画”问题。 作为一笔画,应该只有一个起点和一个终点,而其它点只能是通过点.
图中四个节点A、B、C、D都是奇节点。所以,这是一个不可行 的一笔画问题。
17
什么是数学模型、数学建模
数学模型 • 一般地说,数学模型可以描述为,对于现实世
界的一个 特定对象,为了一个特定目的 ,根据 特有的内在规律 ,做出一些必要的 简化假设 , 运用适当的数学工具,得到的一个数学结构。
模 型 假 设 针对问题特点和建模目的 作出合理的、简化的假设
在合理与简化之间作出折中
用数学的语言、符号描述问题 发挥想像力 使用类比法
29
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤

什么是数学模型与数学建模

什么是数学模型与数学建模

什么是数学模型与数学建模数学模型是对真实事物或问题的抽象描述,采用数学语言来表达,通常可以包含变量、常量、方程、不等式等数学符号和逻辑结构。

而数学建模是指利用数学模型来解决具体问题的过程,在实践中运用数学的知识和方法,将问题转化为数学形式,并通过数学模型分析和求解问题的过程。

数学模型和数学建模在实际应用中具有重要的作用,可以应用于各个领域的科学和工程实践,例如物理、生物、经济、管理、医学等领域。

数学模型和数学建模可以为实际问题提供科学、系统和高效的解决方案,可以预测事物的走向和变化趋势,提高人类社会的生产和生活效率。

数学模型的本质是对真实问题的抽象描述,就是利用数学语言或者符号把一些具体的事物和概念转化为数学的形式,用数学方法和技术解决问题。

数学模型中包含的是一个或多个变量,这些变量代表实际问题中的某些数量或状态,它们的取值是在整个模型中可变的。

同时,数学模型还包括变量之间的关系,这些关系通常以方程或不等式的形式表示,描述了变量之间的相互影响和作用。

数学建模是利用数学模型解决实际问题的过程,它是一种探索和研究未知事物的方法,具有一定的科学性、系统性和操作性。

数学建模首先需要确定问题的范围和要求,然后通过调查、统计、数据分析等方法获取相关信息,构建数学模型,进而进行数学分析和求解,最终获得问题的解答和预测。

这个过程还需要考虑模型的精度和可靠性,进一步调整和优化模型,得到更好的解答和方法。

数学模型和数学建模的应用非常广泛,可以应用于各个领域的科学和工程实践。

在物理领域,数学模型可以用于描述力学、电磁学、热力学等现象和规律,找出物质的运动和相互作用方式。

在生物领域,数学模型可以用于分析生物系统中的代谢、细胞分裂和生长等过程,以及研究遗传基因的传递和变异。

在经济管理领域,数学模型可以用于分析企业的生产和运营模式,利润和风险的管理方式,市场和消费者的需求预测等。

在医学领域,数学模型可以用于研究放射治疗和化学治疗的剂量和效果,以及预判病情的发展和治疗方案的优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可得

y

5 3
(20

x)
z

2
(100

x)
3
这是一个不完全方程组的求整数解问题——丢番图问题。
13
那些我们所熟知的数学模型
“点”、“面”、“线”——抽象化的数学模型
哥尼斯堡七桥问题
1726年,瑞士数学家欧拉(1701-1783)受聘于沙俄科学院,后来 出任数学部主任。1736年秋天,欧拉收到来自东普鲁士首都哥尼斯 堡(今属奥地利)的一封信,哥尼斯堡大学的学生在来信中向他请 教的是下面一个问题。
C
之中的某一点开始,不抬笔地连续描完每一条线而不出现
线路重复呢?
类似这样的问题,后来被统称为“一笔画”问题。
作为一笔画过程,应该只有一个起点和一个终点,并且起点和终点应该是 奇节点,而其它点都是通过点,并只能是偶节点.
图中四个节点A、B、C、D都是奇节点。所以,这是一个不可行 的一笔画问题。
16
什么是数学模型、数学建模
模型中变量的特 连续型模型、离散型模型或确定性

模型、随机型模型等
建模中所用的数 初等模型、微分方程模型、差分方
学方法
程模型、优化模型等
研究课题的实际 人口模型、生 态系统模型 、交通
范畴
流模型、经 济模型、 基因模型等
18
2.如何数学建模?
19
你碰到过的数学模型——“航行问题”
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?
数学模型与数学建模
主要内容
1.什么是数学模型?
——1.1基本概念 ——1.2特点和分类
2.如何数学建模?
——2.1方法和步骤 ——2.2示例
3.为什么数学建模?
—— 3.1现实意义 —— 3.2个人收获
2
1.什么是数学模型?
数学 模型 数学模型
3
1、圆形蜘蛛网是一个简单漂 亮的数学创造
店主桥
铁匠桥
木桥
普雷盖尔河
内福夫岛
蜜桥
绿桥
“馋嘴” 吉布莱茨桥
高桥
新河道 旧河道
15
B
欧拉在草纸上勾画出示意图。在他
看来,问题是否有可行的方案,与
岛、半岛的大小无关,也与河岸上桥头
的间隔及小桥的长度无关。因而不妨将
D
A
半岛、两侧河岸和小岛都缩为一点,将 各个小桥代之以线。
现在的问题是,能否用一只铅笔从“结点”A、B、C、D
正方形ABCD
绕O点旋转
24
模型构成
用数学语言把椅子位置和四 只脚着地的关系表示出来
地面为连续曲面
椅子在任意位置 至少三只脚着地
f() , g()是连续函数
对任意, f(), g()
至少一个为0
数学 已知: f() , g()是连续函数 ;
问题
对任意, f() • g()=0 ;
——著名数学家 华罗庚
任何应用问题,一旦建立起了数学的模型,就会立即 显现出解决问题的清晰途径和通向胜利的一线曙光。
马克思教导我们: 一门学科只有成功地运用数学时,才算达到了完善的地步! 6
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
7
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
小船(至多2人)
但是乘船渡河的方案由商人决定. 3名商人 3名随从
商人们怎样才能安全过河?
问题分析
多步决策过程
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员
要求~在安全的前提下(两岸的随从数不比商人多),经
有限步使全体人员过河
30
模型构成
xk~第k次渡河前此岸的商人数 xk, yk=0,1,2,3; yk~第k次渡河前此岸的随从数 k=1,2,
12
那些我们所熟知的数学模型
“3x+1=10” 方程是表现等量关系的数学模型
例 一百匹马,一百块瓦,大马驮仨,小马驮俩,马仔俩驮一 块。问大马、小马、马仔各几何。
解 设大马,小马,马仔分别为
x y z 100

分别消去
3x

2
y

1 2
z

100
x, y, z z和 y
匹,应有
且 g(0)=0, f(0) > 0.
证明:存在0,使f(0) = g(0) = 0.
25
模型求解
给出一种简单、粗糙的证明方法
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0.
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子 26
数学模型
一般地说,数学模型可以描述为,对于现实世 界的一个特定对象,为了一个特定目的,根据 特有的内在规律,做出一些必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学建模
建立数学模型的全过程
(包括表述、求解、解释、检验等)
17
数学模型的分类
分类标准
具体类别
对某个实际问题 白箱模型、灰箱模型、黑箱模型 了解的深入程度
23
模型构成
用数学语言把椅子位置和四 只脚着地的关系表示出来
• 椅子位置 利用正方形(椅脚连线)的对称性
用(对角线与x轴的夹角)表示椅子位置 B ´ B A ´
• 四只脚着地 椅脚与地面距离为零
距离是 的函数
C
四个距离
两个距离
(四只脚) 正方形

对称性
A
O
x
D´ D
A,C 两脚与地面距离之和 ~ f( ) B,D 两脚与地面距离之和 ~ g( )
21
几个数学建模示例
22
例1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,任何方向都不会出现
设 间断,即地面可视为数学上的连续曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
sk+1=sk+(-1)k dk ~状态转移律
多步决 策问题
求dkD(k=1,2, n), 使skS按转移律 由s1=(3,3)到达sn+1=(0,0).
31Biblioteka S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
D={(u , v) u+v=1, 2}
型 构
发挥想像力
使用类比法

尽量采用简单的数学工具
28
数学建模的一般步骤
模型 求解
各种数学方法、软件和计算机技术
模型 分析
如结果的误差分析、统计分析、 模型对数据的稳定性分析
模型 检验
与实际现象、数据比较, 检验模型的合理性、适用性
模型应用 29
例2 商人们怎样安全过河
问题(智力游戏)
随从们密约, 在河的任一岸, 河 一旦随从的人数比商人多, 就杀人越货.
π 比如,当扇形的弧长与半径之比为 2
时,对应的圆心角是直角;
当扇形的弧长与半径之比为 π 时,对应的圆心角是平角(扇形刚好是半圆).
弧度制的主要特点是只用数就可以表示角的大小,并不需要在弧度值的后 面再加量纲(名数)。 引入角的弧度制实际上是数学建模的过程,这种数 学模型恰是关于几何图形的数学模型。
sk=(xk , yk)~状态
S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk~第k次渡船上的商人数
uk, vk=0,1,2;
vk~第k次渡船上的随从数
k=1,2,
dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个

比较清晰
备 搜集有关信息 掌握对象特征 的‘问题’
27
数学建模的一般步骤

针对问题特点和建模目的


作出合理的、简化的假设
设 抓本质,在合理与简化之间作出折中
用数学的语言、符号描述问题内在规律 模
2、蜂巢




消耗最少的材料和最少的“工时”巴黎科学院院士、瑞士数学家克尼格

3、在矿物结构中,可以找到许多更为奇妙的空间图形


4
问题/应用
来自数学的贡献
核磁共振成像技术(MRI) 计算机辅助成像(CAT)
积分几何
空中交通管制
控制论
期权定价
Black-Scholes期权模型和Monte Carlo模拟
多步决策模型,是有效解决此类问题的方法。
32
数学建模的全过程
表述
现 现实对象的信息
数学模型


(归纳)
相关文档
最新文档