电磁感应电荷量和热量问题
电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。
2.掌握应用动量守恒定律处理电磁感应问题的方法。
3.熟练应用楞次定律与法拉第电磁感应定律解决问题。
4.会分析电磁感应中的图像问题。
5.会分析电磁感应中的动力学与能量问题。
电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。
一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。
【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
高考物理法拉第电磁感应定律(大题培优 易错 难题)附答案

一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。
线圈的半径为r 1。
在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。
导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)2020 3n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。
(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==3.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求(1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E;(2) 0~t1时间内通过电阻R1的电荷量q.【答案】(1)202n B rEtπ=(2)20123n B t rqRtπ=【解析】【详解】(1)由法拉第电磁感应定律E ntφ∆=∆有202n B rBE n St tπ∆==∆①(2)由题意可知总电阻R总=R+2R=3 R②由闭合电路的欧姆定律有电阻R1中的电流EIR=总③0~t1时间内通过电阻R1的电荷量1q It=④由①②③④式得20123n B t rqRtπ=4.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
法拉第电磁感应定律

§ 9.2 法拉第电磁感应定律、E= BLv与E n 的区别和联系tE n 求的是平均感应电动势,其t着眼点是整个回路.E = Blv求的是瞬时感应电动势,其着眼点是一部分切割的导体. 当切割的长度不变时,导体匀速切割(平动或转动),平均感应电动势等于瞬时感应电动势.非匀速状态时,如果v取平均值,E = Blv 也可求平均感应电动势. 但要注意当整个回路的感应电动势为零时,其回路中某段导体的感应电动势不一定为零.【典题演示1】(单选)关于电磁感应,下列说法中正确的是()A. 导体相对磁场运动,导体内一定会产生感应电流B .导体做切割磁感线运动,导体内一定会产生感应电流C. 闭合电路在磁场中做切割磁感线运动,电路中一定会产生感应电流D. 穿过闭合电路的磁通量发生变化,电路中一定会产生感应电流【变式训练1】(单选)如图所示,矩形金属框置于匀强磁场中,ef为导体棒,可在ab与cd间滑动并接触良好•设磁感应强度为B , ef长为I,在△时间内,ef向右匀速滑过距离AdBI dTD. 在切割情况下,只能用E = BLv计算,不能用E 计算t【变式训练2】如图所示,P0与QO是两根夹60。
角的光滑金属导轨,磁感应强度为B的匀强磁场垂直于导轨平面,区域足够大.金属滑杆MN垂直于/ POQ的平分线搁置,导轨和滑杆单位长度的电阻为r.在外力作用下滑杆从距O为a的地方以速度v匀速滑至距O为b 的地方試求:感应电动势;(2)右滑过程中任一时刻拉力的功率则根据法拉第电磁感应定律 E ——,以下t说法正确的是()A. 当ef向右滑行时,左侧面积增大Id,右侧面积减小I Ad故E =2BI dtB. 当ef向右滑行时,左侧面积增大Id,右侧面积减小I d,故互相抵消E = 0C. 在公式E 中,在切割情况下AgtB AS, AS应是导线切割扫过的面积,故 E =二、电磁感应中有关电荷量的问题闭合回路中磁通量发生变化时,产生感应电动势,从而使自由电荷定向移动形成感应电流,在△时间内通过某一截面的电荷量为q = I △匸n。
2024届高考一轮复习物理教案(新教材粤教版):电磁感应中的电路及图像问题

专题强化二十三电磁感应中的电路及图像问题目标要求 1.掌握电磁感应中电路问题的求解方法.2.会计算电磁感应电路问题中电压、电流、电荷量、热量等物理量.3.能够通过电磁感应图像,读取相关信息,应用物理规律求解问题.题型一电磁感应中的电路问题1.电磁感应中的电源(1)做切割磁感线运动的导体或磁通量发生变化的回路相当于电源.电动势:E=BL v或E=n ΔΦΔt,这部分电路的阻值为电源内阻.(2)用右手定则或楞次定律与安培定则结合判断,感应电流流出的一端为电源正极.2.分析电磁感应电路问题的基本思路3.电磁感应中电路知识的关系图考向1感生电动势的电路问题例1如图所示,单匝正方形线圈A边长为0.2m,线圈平面与匀强磁场垂直,且一半处在磁场中,磁感应强度随时间变化的规律为B=(0.8-0.2t)T.开始时开关S未闭合,R1=4Ω,R2=6Ω,C=20μF,线圈及导线电阻不计.闭合开关S,待电路中的电流稳定后.求:(1)回路中感应电动势的大小;(2)电容器所带的电荷量.答案(1)4×10-3V(2)4.8×10-8C解析(1)由法拉第电磁感应定律有E =ΔB Δt S ,S =12L 2,代入数据得E =4×10-3V (2)由闭合电路的欧姆定律得I =ER 1+R 2,由部分电路的欧姆定律得U =IR 2,电容器所带电荷量为Q =CU =4.8×10-8C.考向2动生电动势的电路问题例2(多选)如图所示,光滑的金属框CDEF 水平放置,宽为L ,在E 、F 间连接一阻值为R的定值电阻,在C 、D 间连接一滑动变阻器R 1(0≤R 1≤2R ).框内存在着竖直向下的匀强磁场.一长为L 、电阻为R 的导体棒AB 在外力作用下以速度v 匀速向右运动.金属框电阻不计,导体棒与金属框接触良好且始终垂直,下列说法正确的是()A .ABFE 回路的电流方向为逆时针,ABCD 回路的电流方向为顺时针B .左右两个闭合区域的磁通量都在变化且变化率相同,故电路中的感应电动势大小为2BL vC .当滑动变阻器接入电路中的阻值R 1=R 时,导体棒两端的电压为23BL vD .当滑动变阻器接入电路中的阻值R 1=R2时,滑动变阻器的电功率为B 2L 2v 28R 答案AD解析根据楞次定律可知,ABFE 回路电流方向为逆时针,ABCD 回路电流方向为顺时针,故A 正确;根据法拉第电磁感应定律可知,感应电动势E =BL v ,故B 错误;当R 1=R 时,外电路总电阻R 外=R 2,因此导体棒两端的电压即路端电压应等于13BL v ,故C 错误;该电路电动势E =BL v ,电源内阻为R ,当滑动变阻器接入电路中的阻值R 1=R2时,干路电流为I =3BL v 4R ,滑动变阻器所在支路电流为23I ,容易求得滑动变阻器电功率为B 2L 2v 28R,故D 正确.例3(多选)如图所示,ab 为固定在水平面上的半径为l 、圆心为O 的金属半圆弧导轨,Oa间用导线连接一电阻M .金属棒一端固定在O 点,另一端P 绕过O 点的轴,在水平面内以角速度ω逆时针匀速转动,该过程棒与圆弧接触良好.半圆弧内磁场垂直纸面向外,半圆弧外磁场垂直纸面向里,磁感应强度大小均为B ,已知金属棒由同种材料制成且粗细均匀,棒长为2l 、总电阻为2r ,M 阻值为r ,其余电阻忽略不计.当棒转到图中所示的位置时,棒与圆弧的接触处记为Q 点,则()A .通过M 的电流方向为O →aB .通过M 的电流大小为Bl 2ω6r C .QO 两点间电压为Bl 2ω4D .PQ 两点间电压为3Bl 2ω2答案CD解析根据右手定则可知金属棒O 端为负极,Q 端为正极,则通过M 的电流方向从a →O ,A 错误;金属棒转动产生的电动势为E =Bl ·ωl2,则有I =E R 总=Bl 2ω4r ,B 错误;由于其余电阻忽略不计,则QO 两点间电压,即电阻M 上的电压,根据欧姆定律有U =Ir =Bl 2ω4,C 正确;金属棒PQ 转动产生的电动势为E ′=Bl 2lω+lω2=3Bl 2ω2,由于PQ 没有连接闭合回路,则PQ 两点间电压,即金属棒PQ 转动产生的电动势,为3Bl 2ω2,D 正确.题型二电磁感应中电荷量的计算计算电荷量的导出公式:q =nΔФR 总在电磁感应现象中,只要穿过闭合回路的磁通量发生变化,闭合回路中就会产生感应电流,设在时间Δt 内通过导体横截面的电荷量为q ,则根据电流定义式I =qΔt 及法拉第电磁感应定律E =n ΔΦΔt ,得q =I Δt =E R 总Δt =n ΔΦR 总Δt Δt =n ΔΦR 总,即q =n ΔΦR 总.例4在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1m 2,线圈电阻为1Ω.规定线圈中感应电流I 的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B 随时间t 的变化规律如图乙所示.以下说法正确的是()A .在0~2s 时间内,I 的最大值为0.02AB .在3~5s 时间内,I 的大小越来越小C .前2s 内,通过线圈某横截面的总电荷量为0.01CD .第3s 内,线圈的发热功率最大答案C解析0~2s 时间内,t =0时刻磁感应强度变化率最大,感应电流最大,I =E R =ΔB ·SΔtR=0.01A ,A 错误;3~5s 时间内电流大小不变,B 错误;前2s 内通过线圈的电荷量q =ΔΦR =ΔB ·S R=0.01C ,C 正确;第3s 内,B 没有变化,线圈中没有感应电流产生,则线圈的发热功率最小,D 错误.例5(2018·全国卷Ⅰ·17)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于()A.54B.32C.74D .2答案B解析在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B (12πr 2-14πr 2)Δt 1,根据闭合电路的欧姆定律,有I 1=E 1R ,且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2R,q 2=I 2Δt 2又q1=q2,即B(12πr2-14πr2)R=(B′-B)12r2R所以B′B=32,故选B.题型三电磁感应中的图像问题1.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.2.解题步骤(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;对切割磁感线产生感应电动势和感应电流的情况,还常涉及E-x图像和i-x图像;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路的欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像.3.常用方法(1)排除法:定性地分析电磁感应过程中物理量的正负,增大还是减小,以及变化快慢,来排除错误选项.(2)函数法:写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断.考向1感生问题的图像例6(多选)(2023·广东湛江市模拟)如图甲所示,正方形导线框abcd放在范围足够大的匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t =0时刻,磁感应强度B的方向垂直纸面向外,感应电流以逆时针为正方向,cd边所受安培力的方向以垂直cd边向下为正方向.下列关于感应电流i和cd边所受安培力F随时间t变化的图像正确的是()答案BD解析设正方形导线框边长为L ,电阻为R ,在0~2s ,垂直纸面向外的磁场减弱,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =ΔBS Δt ·R =2B 0S2R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由2F 0=2B 0iL 减小到零.2~3s 内,垂直纸面向里的磁场增强,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,由零变化到-F 0=-B 0iL .3~4s 内垂直纸面向里的磁场减弱,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由F 0=B 0iL 减小到零.4~6s 内垂直纸面向外的磁场增强,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由零变化到-2F 0=-2B 0iL ,由以上分析计算可得A 、C 错误,B 、D 正确.考向2动生问题的图像例7如图所示,将一均匀导线围成一圆心角为90°的扇形导线框OMN ,圆弧MN 的圆心为O 点,将O 点置于直角坐标系的原点,其中第二和第四象限存在垂直纸面向里的匀强磁场,其磁感应强度大小为B ,第三象限存在垂直纸面向外的匀强磁场,磁感应强度大小为2B .t =0时刻,让导线框从图示位置开始以O 点为圆心沿逆时针方向做匀速圆周运动,规定电流方向ONM 为正,在下面四幅图中能够正确表示电流i 与时间t 关系的是()答案C解析在0~t 0时间内,线框沿逆时针方向从题图所示位置开始(t =0)转过90°的过程中,产生的感应电动势为E 1=12BωR 2,由闭合电路的欧姆定律得,回路中的电流为I 1=E 1r =BR 2ω2r ,根据楞次定律判断可知,线框中感应电流方向为逆时针方向(沿ONM 方向).在t 0~2t 0时间内,线框进入第三象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 2=12Bω·R 2+12·2BωR 2=32BωR 2=3E 1,感应电流为I 2=3I 1.在2t 0~3t 0时间内,线框进入第四象限的过程中,回路中的电流方向为逆时针方向(沿ONM 方向),回路中产生的感应电动势为E 3=12Bω·R 2+12·2Bω·R 2=32BωR 2=3E 1,感应电流为I 3=3I 1,在3t 0~4t 0时间内,线框出第四象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 4=12BωR 2,回路电流为I 4=I 1,故C 正确,A 、B 、D 错误.例8(2023·广东珠海市模拟)图中两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场方向垂直纸面向里.abcd 是位于纸面内的直角梯形线圈,ab 与dc 间的距离也为L .t =0时刻,ab 边与磁场区域边界重合(如图).现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域.取沿a →d →c →b →a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是()答案A解析线圈移动0~L ,即在0~Lv时间内,线圈进磁场,垂直纸面向里通过线圈的磁通量增大,线圈中产生逆时针方向的感应电流(正),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR 均匀增大;线圈移动L ~2L ,即在L v ~2L v 时间内,线圈出磁场,垂直纸面向里通过线圈的磁通量减少,线圈中产生顺时针方向的感应电流(负),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR均匀增大,因此A 正确,B 、C 、D 错误.课时精练1.如图所示是两个相互连接的金属圆环,小金属环的电阻是大金属环电阻的二分之一,匀强磁场垂直穿过大金属环所在区域,当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为()A.12EB.13EC.23E D .E答案B解析a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故a 、b 间电势差为U=13E ,选项B 正确.2.如图甲所示,在线圈l 1中通入电流i 1后,在l 2上产生的感应电流随时间变化的规律如图乙所示,l 1、l 2中电流的正方向如图甲中的箭头所示.则通入线圈l 1中的电流i 1随时间t 变化的图像是图中的()答案D解析因为l 2中感应电流大小不变,根据法拉第电磁感定律可知,l 1中磁场的变化是均匀的,即l 1中电流的变化也是均匀的,A 、C 错误;根据题图乙可知,0~T4时间内l 2中的感应电流产生的磁场方向向左,所以线圈l 1中感应电流产生的磁场方向向左并且减小,或方向向右并且增大,B 错误,D 正确.3.(多选)(2023·广东省华南师大附中模拟)如图所示,在磁感应强度大小为B 、方向竖直向下的匀强磁场中,有两根光滑的平行导轨,间距为L ,导轨两端分别接有电阻R 1和R 2,导体棒以某一初速度从ab 位置向右运动距离x 到达cd 位置时,速度为v ,产生的电动势为E ,此过程中通过电阻R 1、R 2的电荷量分别为q 1、q 2.导体棒有电阻,导轨电阻不计.下列关系式中正确的是()A .E =BL vB .E =2BL vC .q 1=BLx R 1D.q 1q 2=R 2R 1答案AD解析导体棒做切割磁感线的运动,速度为v 时产生的感应电动势E =BL v ,故A 正确,B错误;设导体棒的电阻为r ,根据法拉第电磁感应定律得E =ΔΦΔt =BLxΔt ,根据闭合电路欧姆定律得I =Er +R 1R 2R 1+R 2,通过导体棒的电荷量为q =I Δt ,导体棒相当于电源,电阻R 1和R 2并联,则通过电阻R 1和R 2的电流之比I 1I 2=R 2R 1,通过电阻R 1、R 2的电荷量之比q 1q 2=I 1Δt I 2Δt =R2R 1,结合q =q 1+q 2,解得q 1=BLxR 2(R 1+R 2)r +R 1R 2,故C 错误,D 正确.4.(多选)如图甲所示,单匝正方形线框abcd 的电阻R =0.5Ω,边长L =20cm ,匀强磁场垂直于线框平面向里,磁感应强度的大小随时间变化规律如图乙所示,则下列说法中正确的是()A .线框中的感应电流沿逆时针方向,大小为2.4×10-2AB .0~2s 内通过ab 边横截面的电荷量为4.8×10-2CC .3s 时ab 边所受安培力的大小为1.44×10-2ND .0~4s 内线框中产生的焦耳热为1.152×10-3J 答案BD解析由楞次定律判断感应电流为顺时针方向,由法拉第电磁感应定律得电动势E =SΔB Δt=1.2×10-2V ,感应电流I =E R=2.4×10-2A ,故选项A 错误;电荷量q =I Δt ,解得q =4.8×10-2C ,故选项B 正确;安培力F =BIL ,由题图乙得,3s 时B =0.3T ,代入数值得:F =1.44×10-3N ,故选项C 错误;由焦耳定律得Q =I 2Rt ,代入数值得Q =1.152×10-3J ,故D 选项正确.5.在水平光滑绝缘桌面上有一边长为L 的正方形线框abcd ,被限制在沿ab 方向的水平直轨道上自由滑动.bc 边右侧有一正直角三角形匀强磁场区域efg ,直角边ge 和ef 的长也等于L ,磁场方向竖直向下,其俯视图如图所示,线框在水平拉力作用下向右以速度v 匀速穿过磁场区,若图示位置为t =0时刻,设逆时针方向为电流的正方向.则感应电流i -t 图像正确的是(时间单位为L v)()答案D 解析bc 边的位置坐标x 从0~L 的过程中,根据楞次定律判断可知线框中感应电流方向沿a →b →c →d →a ,为正值.线框bc 边有效切线长度为l =L -v t ,感应电动势为E =Bl v =B (L-v t )·v ,随着t 均匀增加,E 均匀减小,感应电流i =E R,即知感应电流均匀减小.同理,x 从L ~2L 的过程中,根据楞次定律判断出感应电流方向沿a →d →c →b →a ,为负值,感应电流仍均匀减小,故A 、B 、C 错误,D 正确.6.如图所示,线圈匝数为n ,横截面积为S ,线圈电阻为R ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k ,磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值均为2R .下列说法正确的是()A .电容器上极板带负电B .通过线圈的电流大小为nkS 2RC .电容器所带的电荷量为CnkS 2D .电容器所带的电荷量为2CnkS 3答案D解析由楞次定律和右手螺旋定则知,电容器上极板带正电,A 错误;因E =nkS ,I =E 3R =nkS 3R,B 错误;又U =I ×2R =2nkS 3,Q =CU =2CnkS 3,C 错误,D 正确.7.如图甲所示,一长为L 的导体棒,绕水平圆轨道的圆心O 匀速顺时针转动,角速度为ω,电阻为r ,在圆轨道空间存在有界匀强磁场,磁感应强度大小为B .半径小于L 2的区域内磁场竖直向上,半径大于L 2的区域内磁场竖直向下,俯视图如图乙所示,导线一端Q 与圆心O 相连,另一端P 与圆轨道连接给电阻R 供电,其余电阻不计,则()A .电阻R 两端的电压为BL 2ω4B .电阻R 中的电流方向向上C .电阻R 中的电流大小为BL 2ω4(R +r )D .导体棒的安培力做功的功率为0答案C 解析半径小于L 2的区域内,E 1=B L 2·ωL 22=BL 2ω8,半径大于L 2的区域,E 2=B L 2·ωL 2+ωL 2=3BL 2ω8,根据题意可知,两部分电动势相反,故总电动势E =E 2-E 1=BL 2ω4,根据右手定则可知圆心为负极,圆环为正极,电阻R 中的电流方向向下,电阻R 上的电压U =R R +r E =RBL 2ω4(R +r ),故A 、B 错误;电阻R 中的电流大小为I =E R +r =BL 2ω4(R +r ),故C 正确;回路有电流,则安培力不为零,故导体棒的安培力做功的功率不为零,故D 错误.8.(多选)如图,PAQ 为一段固定于水平面上的光滑圆弧导轨,圆弧的圆心为O ,半径为L .空间存在垂直导轨平面、磁感应强度大小为B 的匀强磁场.电阻为R 的金属杆OA 与导轨接触良好,图中电阻R 1=R 2=R ,其余电阻不计.现使OA 杆在外力作用下以恒定角速度ω绕圆心O 顺时针转动,在其转过π3的过程中,下列说法正确的是()A .流过电阻R 1的电流方向为P →R 1→OB .A 、O 两点间电势差为BL 2ω2C .流过OA 的电荷量为πBL 26RD .外力做的功为πωB 2L 418R答案AD 解析由右手定则判断出OA 中电流方向由O →A ,可知流过电阻R 1的电流方向为P →R 1→O ,故A 正确;OA 产生的感应电动势为E =BL 2ω2,将OA 当成电源,外部电路R 1与R 2并联,则A 、O 两点间的电势差为U =ER +R 2·R 2=BL 2ω6,故B 错误;流过OA 的电流大小为I =E R +R 2=BL 2ω3R ,转过π3弧度所用时间为t =π3ω=π3ω,流过OA 的电荷量为q =It =πBL 29R ,故C 错误;转过π3弧度过程中,外力做的功为W =EIt =πωB 2L 418R,故D 正确.9.(多选)(2019·全国卷Ⅱ·21)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是()答案AD 解析根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,PQ 通过磁场区域后MN 进入磁场区域,MN 同样匀速直线运动通过磁场区域,故流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,感应电动势和感应电流为零,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于刚开始仅PQ 切割磁感线时的感应电流I 1,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D.10.如图甲所示,虚线MN 左、右两侧的空间均存在与纸面垂直的匀强磁场,右侧匀强磁场的方向垂直纸面向外,磁感应强度大小恒为B 0;左侧匀强磁场的磁感应强度B 随时间t 变化的规律如图乙所示,规定垂直纸面向外为磁场的正方向.一硬质细导线的电阻率为ρ、横截面积为S 0,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.求:(1)t =t 02时,圆环受到的安培力;(2)在0~320内,通过圆环的电荷量.答案(1)3B 02r 2S 04ρt 0,垂直于MN 向左(2)3B 0rS 08ρ解析(1)根据法拉第电磁感应定律,圆环中产生的感应电动势E =ΔB Δt S 上式中S =πr 22由题图乙可知ΔB Δt =B 0t 0根据闭合电路的欧姆定律有I =ER 根据电阻定律有R =ρ2πrS 0t =12t 0时,圆环受到的安培力大小F =B 0I ·(2r )+B 02I ·(2r )联立解得F =3B 02r 2S 04ρt 0由左手定则知,方向垂直于MN 向左.(2)通过圆环的电荷量q =I ·Δt根据闭合电路的欧姆定律和法拉第电磁感应定律有I =E R ,E =ΔΦΔt在0~32t 0内,穿过圆环的磁通量的变化量为ΔΦ=B 0·12πr 2+B 02·12πr 2联立解得q =3B 0rS 08ρ.11.(2023·广东广州市模拟)在同一水平面中的光滑平行导轨P 、Q 相距L =1m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 间距离d =10mm ,定值电阻R 1=R 2=12Ω,R 3=2Ω,金属棒ab 电阻r =2Ω,其他电阻不计.磁感应强度B =1T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间、质量m =1×10-14kg 、带电荷量q =-1×10-14C 的微粒(图中未画出)恰好静止不动.取g =10m/s 2,在整个运动过程中金属棒与导轨接触良好.且运动速度保持恒定.求:(1)匀强磁场的方向;(2)ab 两端的电压;(3)金属棒ab 运动的速度大小.答案(1)竖直向下(2)0.4V (3)0.5m/s 解析(1)带负电的微粒受到重力和电场力处于静止状态,因重力竖直向下,则电场力竖直向上,故M 板带正电.ab 棒向右切割磁感线产生感应电动势,ab 棒相当于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下;(2)由平衡条件,得mg =EqE =U MNd所以MN 间的电压U MN =mgd q =1×10-14×10×10×10-31×10-14V =0.1VR 3两端电压与电容器两端电压相等,由欧姆定律得通过R 3的电流I =U MN R 3=0.12A =0.05A ab 棒两端的电压为U ab=U MN+R1R2·I=0.1V+0.05V×6V=0.4VR1+R2(3)由闭合电路欧姆定律得ab棒产生的感应电动势为E感=U ab+Ir=0.4+0.05×2V=0.5V由法拉第电磁感应定律得感应电动势E=BL v感联立解得v=0.5m/s.。
电磁感应基础知识

电磁感应基础知识总结【基础知识梳理】一、电磁感应现象1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积。
(2)公式:①二坠。
(3)单位:1Wb=1T・m2。
(4)物理意义:相当于穿过某一面积的磁感线的条数。
2.电磁感应现象(1)电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
(2)产生感应电流的条件①条件:穿过闭合电路的磁通量发生变化。
②特【典例】闭合电路的一部分导体在磁场内做切割磁感线的运动。
(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
(4)能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
二、楞次定律1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切回路磁通量变化的情况。
(3)楞次定律中“阻碍”的含义£SAAt2.右手定则(1) 内容① 磁感线穿入右手手心。
② 大拇指指向导体运动的方向。
③ 其余四指指向感应电流的方向。
(2) 适用范围:适用于部分导体切割磁感线。
三、法拉第电磁感应定律的理解和应用1.感应电动势(1) 概念:在电磁感应现象中产生的电动势。
(2) 产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
⑶方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律⑴内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
A ①(2) 公式:E=njt ,其中n 为线圈匝数。
E(3) 感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即1=越。
3.磁通量变化通常有三种方式 (1) 磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E=nB-(2) 垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=nA^S ,其中普是B —t图象的斜率。
高考物理一轮复习课件 第十一章 专题强化二十四 电磁感应中的动力学和能量问题

F合
考向1 “单棒+电阻”模型
例1 (多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方 形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙 的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一 方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已 知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上 边进入磁场前,可能出现的是
由牛顿第二定律有mg-F=ma 联立解得 a=g-mF=g-1B6ρ2vρ0
加速度和线圈的匝数、横截面积无关,则甲
和乙进入磁场时,具有相同的加速度. 当 g>1B6ρ2vρ0时,甲和乙都加速运动, 当 g<1B6ρ2vρ0时,甲和乙都减速运动, 当 g=1B6ρ2vρ0时,甲和乙都匀速运动,故选 A、B.
例2 如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30° 角固定,间距为L=1 m,质量为m的金属杆ab垂直放置在轨道上且与轨 道接触良好,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道 平面向上,磁感应强度为B=0.5 T.P、M间接有阻值为R1的定值电阻, Q、N间接电阻箱R.现从静止释放ab, 改变电阻箱的阻值R,测得最大速 度为vm,得到v1m与R1的关系如图乙所 示.若轨道足够长且电阻不计,重力 加速度g取10 m/s2,则
当金属棒到达x0处时,金属棒产生的感应电动势为 E′=2Bvx0tan θ 则此时电容器的电荷量为 Q′=CE′=2BCvx0tan θ,B错误; 由于金属棒做匀速运动, 则F=F安=BIL=4B2Cv3tan2θ·t, F与t成正比,则F为变力,根据力做功的功率公式P=Fv 可知功率P随力F变化而变化,D错误.
高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题
考点规范练40电磁感应中的动力学、能量与动量问题一、单项选择题1.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,磁场区域宽度大于线圈宽度,则( )A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时即已停下C.线圈在磁场中某个位置停下D.线圈能通过场区不会停下2.如图所示,两光滑平行金属导轨间距为l ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。
电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。
现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BlvC.电容器所带电荷量为CBlvD.为保持MN 匀速运动,需对其施加的拉力大小为B 2l 2vR3.(2021·辽宁模拟)如图所示,间距l=1 m 的两平行光滑金属导轨固定在水平面上,两端分别连接有阻值均为2 Ω的电阻R 1、R 2,轨道有部分处在方向竖直向下、磁感应强度大小为B=1 T 的有界匀强磁场中,磁场两平行边界与导轨垂直,且磁场区域的宽度为d=2 m 。
一电阻r=1 Ω、质量m=0.5 kg 的导体棒ab 垂直置于导轨上,导体棒现以方向平行于导轨、大小v 0=5 m/s 的初速度沿导轨从磁场左侧边界进入磁场并通过磁场区域,若导轨电阻不计,则下列说法正确的是( )A.导体棒通过磁场的整个过程中,流过电阻R 1的电荷量为1 CB.导体棒离开磁场时的速度大小为2 m/sC.导体棒运动到磁场区域中间位置时的速度大小为3 m/sD.导体棒通过磁场的整个过程中,电阻R 2产生的电热为1 J4.如图所示,条形磁体位于固定的半圆光滑轨道的圆心位置,一半径为R 、质量为m 的金属球从半圆轨道的一端沿半圆轨道由静止下滑,重力加速度大小为g 。
物理高三总复习 课件10.4力和能量问题 3
其余电阻不计.现用一质量为M=2.86kg的物体
通过一不可伸长的轻质细绳绕过光滑的定滑轮
与ab相连. 由静止释放M, 当M下落高度h=2.0m
时, ab开始匀速运动(运动中ab始终垂直导轨,
并接触良好). 不计空气阻力, sin53°=0.8,
(1)水平恒力F的大小;
(2)前4 s内电阻R上产生的热量。
(1)0.75 N (2)1.8 J
【针对训练】
练4.如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的
光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值为R=0.4Ω
的定值电阻,上端开口.垂直斜面向上的匀强磁场的磁感应强度
B=2T.一质量为m=0.5 kg的金属棒ab与导轨接触良好,ab与导
(2)2.5 N
(1)通过导体棒cd的电流I;
(2)金属条ab受到的拉力F的大小; (3)25 J
(3)导体棒cd每产生Q=10 J的热量,拉力F做的功W。
例3.如图所示,固定的水平光滑金属导轨,间距为L,左端接
有阻值为R的电阻,处在方向竖直向下、磁感应强度为B的匀
强磁场中,质量为m的导体棒与固定弹簧相连(图中未画出),
电流,而不是
平均电流
解电磁感应现象中的能量问题的一般步骤
(1)分清电源求E感、I感。
(2)受力分析
(3)各力的做功情况及伴随能量转化情况。
(4)根据能量守恒列方程求解。
【考点探究】
例1. 如图所示, 一足够长的光滑平行金属轨道, 轨道平面与水平面
成θ角, 上端与一电阻R相连, 处于方向垂直轨道平面向上的匀强磁
D.从 t1 到 t2 的过程中,有
新高考物理考试易错题易错点24电磁感应中的电路和图像问题附答案
易错点24 电磁感应中的电路和图像问题易错总结以及解题方法一、电磁感应中的电路问题处理电磁感应中的电路问题的一般方法1.明确哪部分电路或导体产生感应电动势,该部分电路或导体就相当于电源,其他部分是外电路.2.画等效电路图,分清内、外电路.3.用法拉第电磁感应定律E =n ΔΦΔt 或E =Blv sin θ确定感应电动势的大小,用楞次定律或右手定则确定感应电流的方向.注意在等效电源内部,电流方向从负极流向正极. 4.运用闭合电路欧姆定律、串并联电路特点、电功率等公式联立求解. 二、电磁感应中的电荷量问题闭合回路中磁通量发生变化时,电荷发生定向移动而形成感应电流,在Δt 内通过某一截面的电荷量(感应电荷量)q =I ·Δt =E R 总·Δt =n ΔΦΔt ·1R 总·Δt =n ΔΦR 总.(1)由上式可知,线圈匝数一定时,通过某一截面的感应电荷量仅由回路电阻和磁通量的变化量决定,与时间无关.(2)求解电路中通过的电荷量时,I 、E 均为平均值. 三、电磁感应中的图像问题 1.问题类型(1)由给定的电磁感应过程选出或画出正确的图像. (2)由给定的图像分析电磁感应过程,求解相应的物理量. 2.图像类型(1)各物理量随时间t 变化的图像,即B -t 图像、Φ-t 图像、E -t 图像和I -t 图像. (2)导体做切割磁感线运动时,还涉及感应电动势E 和感应电流I 随导体位移变化的图像,即E -x 图像和I -x 图像.3.解决此类问题需要熟练掌握的规律:安培定则、左手定则、楞次定律、右手定则、法拉第电磁感应定律、欧姆定律等.判断物理量增大、减小、正负等,必要时写出函数关系式,进行分析.【易错跟踪训练】易错类型1:挖掘隐含条件、临界条件不够1.(2021·湖北孝感高中高三月考)如图所示,在天花板下用细线悬挂一个闭合金属圆环,圆环处于静止状态。
上半圆环处在垂直于环面的水平匀强磁场中,规定垂直于纸面向外的方向为磁场的正方向,磁感应强度B 随时间t 变化的关系如图乙所示。
高考物理复习:电磁感应中的动力学与能量问题
为h。初始时刻,磁场的下边缘和线框上边缘的高度差为2h,将重物从静止
开始释放,线框上边缘刚进磁场时,恰好做匀速直线运动,滑轮质量、摩擦
阻力均不计。下列说法正确的是(ABD)
A.线框进入磁场时的速度为 2ℎ
2
2
B.线框的电阻为2
2ℎ
C.线框通过磁场的过程中产生的热量 Q=2mgh
D.线框通过磁场的过程中产生的热量 Q=4mgh
热量等于系统重力势能的减少量,即 Q=3mg×2h-mg×2h=4mgh,C 错误, D 正
确。
能力形成点3
整合构建
电磁感应中的动量综合问题——规范训练
电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒
定律解决。
(1)应用动量定理可以由动量变化来求解变力的冲量。如在导体棒做非
匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问
解析:(1)由ab、cd棒被平行于斜面的导线相连,故ab、cd速度大小总是相
等,cd也做匀速直线运动。设导线的拉力的大小为FT,右斜面对ab棒的支持
力的大小为FN1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力
大小为FN2,对于ab棒,受力分析如图甲所示。
由力的平衡条件得2mgsin θ=μFN1+FT+F ①
电动势,该导体或回路就相当于电源。
(2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。
(3)根据能量守恒列方程求解。
训练突破
2.(多选)如图所示,质量为3m的重物与一质量为m的线框用一根绝缘细线
连接起来,挂在两个高度相同的定滑轮上。已知线框的横边边长为l,水平
方向匀强磁场的磁感应强度为B,磁场上下边界的距离、线框竖直边长均
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
法拉第电磁感应“电荷量和热量”问题(必做题) 姓名:
1.如图所示,长L 1=1.0m ,宽L 2=0.50m 的矩形导线框,质量为m=0.20kg ,电阻R =
2.0Ω.其正下方有宽为H (H >L 2),磁感应强度为B =1.0T ,垂直于纸面向里的匀强磁场.现在,让导线框从cd 边距磁场上边界h =0.70m 处开始自由下落,当cd 边进入磁场中,而ab 尚未进入磁场,导线框达到匀速运动。
(不计空气阻力,且g=10m/s 2) 求⑴线框进入磁场过程中安培力做的功是多少?
⑵线框穿出磁场过程中通过线框任一截面的电荷量q 是多少?
2.如图所示,足够长的光滑导轨ab 、cd 固定在竖直平面内,导轨间距为l ,b 、c 两点间接一阻值为R 的电阻。
ef 是一水平放置的导体杆,其质量为m 、有效电阻值为R ,杆与ab 、cd 保持良好接触。
整个装置放在磁感应强度大小为B 的匀强磁场中,磁场方向与导轨平面垂直。
现用一竖直向上的力拉导体杆,使导体杆从静止开始做加速度为0.5g 的匀加速运动,上升了h 高度,这一过程中b 、c 间电阻R 产生的焦耳热为Q ,g 为重力加速度,不计导轨电阻及感应电流间的相互作用。
求:
(1)导体杆上升h 高度过程中通过杆的电荷量; (2)导体杆上升h 高度时所受拉力F 的大小; (3)导体杆上升h 高度过程中拉力做的功。
3.如图所示,一平面框架与水平面成θ=37°角,宽L=0.4 m,上、下两端各有一个电阻R 0=1Ω,框架的其他部分电阻不计,框架足够长。
垂直于框架平面的方向存在向上的匀强磁场,磁感应强度B=2 T 。
ab 为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r=0.5 Ω,金属杆与框架的动摩擦因数μ=0.5。
金属杆由静止开始下滑,直到速度达到最大的过程中,金属杆克服磁场力所做的功为W=1.5 J 。
已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2。
求: (1)ab 杆达到的最大速度v ;
(2)ab 杆从开始到速度最大的过程中沿斜面下滑的距离; (3)在该过程中通过ab 的电荷量。
4.如图所示,宽度为L =0.20 m 的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R =1.0Ω的电阻。
导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B =0.50 T 。
一根质量为m=10g 的导体棒MN 放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。
现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v =10 m/s ,在运动过程中保持导体棒与导轨垂直。
求:(1)在闭合回路中产生的感应电流的大小;(2)作用在导体棒上的拉力的大小;(3)当导体棒移动30cm 时撤去拉力,求整个过程中电阻R 上产生的热量。
5.两根足够长的光滑金属导轨MN 和PQ 平行固定在水平面上,一端接有阻值为R 的电阻,处于方向向下的匀强磁场中。
在导轨上垂直导轨跨放质量为m 的金属直杆,金属杆的电阻不计。
金属杆在垂直杆的水平恒力F 作用下向右匀速运动,电阻R 上消耗的电功率是P .从某一时刻开始撤去水平力求撤去F 后。
求撤去F 后 (1)通过电阻R 的电流方问,(2)简述金属杆的速度.加速度如何变化? (3)电阻R 上还能产生多少热量?
(4)当电阻R 上消牦的功率力为P/4时,金属杆加速度的大小与方向;
6.两根光滑金属导轨平行放置在倾角为θ=300的斜面上,导轨左端接有电阻R =10Ω,导轨自身电阻忽略不计. 匀强磁场垂直于斜面向上,磁感强度B =0.5T. 质量为m =0.1kg ,电阻不计的金属棒ab 由静止释放,沿导轨下滑. 如图所示,设导轨足够长,导轨宽度L =2m ,金属棒ab 下滑过程中始终与导轨接触良好,当金属棒下滑高度h =3m 时,速度恰好达到最大速度2m/s. 求这一程中,
(1)金属棒受到的最大安培力; (2)电路中产生的电热.
B。