反证法练习题

合集下载

反证法练习题

反证法练习题

反证法练习题反证法是一种常用的数学证明方法,它通过假设命题不成立,然后推导出矛盾的结论,从而证明原命题的正确性。

在数学领域,反证法被广泛应用于各种定理的证明过程中。

下面我们来看一些反证法的练习题,以加深对这一证明方法的理解。

练习题1:证明根号2是一个无理数。

假设根号2是一个有理数,即可以表示为两个整数的比值,即根号2=a/b,其中a和b互质。

我们可以将这个假设转化为等式2=a^2/b^2,进而得到2b^2=a^2。

根据整数的奇偶性质,我们可以知道a必须为偶数。

那么我们可以将a表示为a=2k,其中k为整数。

将这个结果代入等式2b^2=a^2中,得到2b^2=(2k)^2,即2b^2=4k^2。

进一步简化等式,得到b^2=2k^2。

同样地,根据整数的奇偶性质,我们可以知道b也必须为偶数。

然而,根据我们一开始的假设,a和b应该是互质的,不可能同时为偶数。

这与我们得到的结论相矛盾。

因此,我们可以得出结论,假设根号2是一个有理数是错误的,即根号2是一个无理数。

练习题2:证明任意两个正整数的最大公约数存在。

假设不存在任意两个正整数的最大公约数。

即对于任意两个正整数a和b,它们的最大公约数不存在。

根据这个假设,我们可以得出结论,a和b的最大公约数是1。

因为如果存在一个大于1的公约数,那么它就是最大公约数,与我们的假设相矛盾。

根据最大公约数的定义,最大公约数是能够同时整除a和b的最大正整数。

既然最大公约数是1,那么1能够同时整除a和b,即a和b互质。

然而,我们知道存在无数个互质的正整数对,例如3和5,7和11等等。

这与我们的假设相矛盾,因为我们假设不存在任意两个正整数的最大公约数。

因此,我们可以得出结论,任意两个正整数的最大公约数是存在的。

通过以上两个练习题的分析,我们可以看到反证法在数学证明中的重要性。

通过假设命题不成立,然后推导出矛盾的结论,我们可以证明原命题的正确性。

反证法不仅仅在数学领域有应用,它也被广泛应用于其他领域的推理和证明过程中。

反证法练习题

反证法练习题

1、用反证法证明一个命题时,下列说法正确的是A.将结论与条件同时否定,推出矛盾 B.肯定条件,否定结论,推出矛盾 C.将被否定的结论当条件,经过推理得出的结论只与原题条件矛盾,才是反证法的正确运用 D.将被否定的结论当条件,原题的条件不能当条件2、否定“自然数a 、b 、c 中恰有一个偶数”时的正确反正假设为A .a 、b 、c 都是奇数B .a 、b 、c 或都是奇数或至少有两个偶数C .a 、b 、c 都是偶数D .a 、b 、c 中至少有两个偶数3、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是 A .假设三内角都不大于60° B .假设三内角都大于60°C .假设三内角至多有一个大于60°D .假设三内角至多有两个大于60°4、设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c中 A .都不大于-2 B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-25、若P 是两条异面直线l 、m 外的任意一点,则A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面6、已知x 1>0,x 1≠1且x n +1=x n (x 2n +3)3x 2n +1(n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n <x n +1,或者对任意正整数n 都满足x n >x n +1”,当此题用反证法否定结论时,应为A .对任意的正整数n ,都有x n =x n +1B .存在正整数n ,使x n =x n +1C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥07、设a ,b ,c ,d 均为正数,求证:下列三个不等式①a +b <c +d ,②()()a b c da b c d ++<+,③()()a b c d a b c d +<+中至少有一个不正确8、已知a b c a b b c c a a b c ++>++>>000,,,求证:a b c >>>000,,9、设a ,b ,c 均为小于1的正数,求证:()()11--a b b c ,,()1-ca 不能同时大于14。

反证法小练习含答案

反证法小练习含答案

1.证明“在△ABC中至多有一个直角或钝角”,第一步应假设()A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角答案 B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°答案 B3.(2014·山东卷)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A解析依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.4.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交答案 D5.已知a是整数,a2是偶数,求证a也是偶数.证明(反证法)假设a不是偶数,即a是奇数.设a=2n+1(n∈Z),则a2=4n2+4n+1.∵4(n2+n)是偶数,∴4n2+4n+1是奇数,这与已知a2是偶数矛盾.由上述矛盾可知,a一定是偶数.1.反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是()①与已知条件矛盾②与假设矛盾③与定义、公理、定理矛盾④与事实矛盾A.①②B.①③C.①③④D.①②③④答案 D2.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案 C解析假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.3.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有()A.0个B.1个C.2个D.3个答案 B解析①错:应为a≤b;②对;③错:应为三角形的外心在三角形内或在三角形的边上;④错:应为三角形可以有2个或2个以上的钝角.4.用反证法证明命题:“a、b∈N,ab可被5整除,那么a,b 中至少有一个能被5整除”时,假设的内容应为()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除答案 B解析“至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”.5.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中存在偶数”时,否定结论应为________答案a,b,c都不是偶数解析a,b,c中存在偶数即至少有一个偶数,其否定为a,b,c都不是偶数.6.“任何三角形的外角都至少有两个钝角”的否定应是________.答案存在一个三角形,其外角最多有一个钝角解析“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.。

初中数学《反证法》课后练习

初中数学《反证法》课后练习

假设

9.用反证法证明 “若| a| ≠| b| ,则 a≠b”时,应假设

10.用反证法证明 “如果一个三角形没有两个相等的角,那么这个三角形不是等
腰三角形 ”的第一步

三、解答题
11.用反证法证明: 两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.
《反证法》课后练习
一.选择题
1.用反证法证明命题:如果 AB⊥CD, AB⊥ EF,那么 CD∥EF,证明的第一个步
骤是( )
A.假设 CD∥EFB.
B.假设 AB∥EF
C.假设 CD和 EF不平行 D.假设 AB 和 EF不平行
2.用反证法证明 “>ab”时,应假设( )
A.a<b B.a≤b C.a≥b D.a≠b 3.用反证法证明 “若 a>b>0,则 a2>b2”,应假设( ) A.a2< b2 B.a2=b2 C.a2≤b2 D.a2≥b2
4.用反证法证明命题 “三角形中必有一个内角小于或等于 60°时”,首先应假设这
个三角形中( )
A.每一个内角都大于 60° B.每一个内角都小于 60°
C.有一个内角大于 60° D.有一个内角小于 60°
5.用反证法证明命题: “四边形中至少有一个角是钝角或直角 ”,我们应假设( )
A.没有一个角是钝角或直角 B.最多有一个角是钝角或直角
C.有 2 个角是钝角或直角 D.4 个角都是钝角或直角 二.填空题
6.已知△ ABC中,AB=AC,求证:∠ B<90°,若用反证法证这个结论,应首先假

.Байду номын сангаас
7.用反证法证明: “三角形中最多有一个钝角 ”时,首先应假设这个三角形

初三反证法练习题

初三反证法练习题

初三反证法练习题反证法是数学中常用的一种证明方法,通过假设反面来推导出矛盾,从而证明命题的正确性。

下面是一些初三反证法练习题,通过解答这些题目,可以帮助同学们更好地理解和掌握反证法。

1. 证明:不存在最大的有理数。

假设存在一个最大的有理数,记为M。

根据有理数的性质,我们可以找到一个比M大的有理数N,即N=M+1。

显然,N>M,这与M是最大的有理数相矛盾。

因此,不存在最大的有理数。

2. 证明:根号2是无理数。

假设根号2是有理数,即可以表示为两个互质的整数p和q的比值,即根号2=p/q。

我们可以进一步假设p和q没有公因数,否则可以约分。

将等式两边平方得到2=p^2/q^2,整理得到p^2=2q^2。

这说明p^2是2的倍数,根据整数分解定理,p也是2的倍数。

设p=2k,代入等式得到(2k)^2=2q^2,整理得到2k^2=q^2。

这说明q^2是2的倍数,因此q也是2的倍数。

这与p和q没有公因数相矛盾,因此假设不成立,根号2是无理数。

3. 证明:不存在无限递增的整数序列。

假设存在一个无限递增的整数序列a1, a2, a3, ...。

我们可以取相邻的两个数ai和ai+1,如果ai>=ai+1,那么这个序列不是无限递增的;如果ai<ai+1,那么我们可以找到一个大于ai+1的整数,记为N,这与序列无限递增相矛盾。

因此,不存在无限递增的整数序列。

4. 证明:存在无限个素数。

假设只有有限个素数,记为p1, p2, p3, ..., pn。

我们考虑数N=p1*p2*p3*...*pn+1,显然N大于任意一个素数pi。

根据素数的定义,N只能是合数,即可被p1, p2, p3, ..., pn中的至少一个素数整除。

但是,N除以任意一个素数pi的余数都不为0,这与N是合数相矛盾。

因此,假设不成立,存在无限个素数。

通过这些反证法练习题的解答,我们可以看到反证法在数学证明中的重要作用。

通过假设反面来推导出矛盾,从而证明命题的正确性。

《反证法》练习题

《反证法》练习题

A 9.用反证法证明:“一个三角形中至多有一个钝角”时,应假设( ) A.一个三角形中至少有两个钝角 B.一个三角形中至多有两个钝角 C.一个三角形中至少有一个钝角 D.一个三角形中没有钝角
10.试证明命题“两直线相交有且只有一个交点”.并将下列过程补充完 整:
已知直线a,b,求证:直线a,b相交时只有一个交点P. 证明:假设a,b相交时___不__止__一__个__交__点__P___, 不妨设其他交点中有一个为P′,则点P和点P′既在直线a上又在直线b上,那 么经过P和P′的直线__________,这与___________________相矛盾,因此假 设不成立,所以两条直线相就交有只两有条一个交点.两点确定一条直线
7.用反证法证明:两条直线被第三条直线所截,如果同旁内角互补,那 么这两条直线平行.
已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.
求证:假设l1__不__平__行___l2,即l1与l2相交于一点P,
则∠1+∠2+∠P=____,所以∠1+∠2____180°, 这与______________1_8_0_°____矛盾,故假设<不成立,所以____.
11.试用举反例的方法说明下列命题是假命题. 举例:如果ab<0,那么a+b<0. 反例:设a=4,b=-3,ab=4×(-3)=-12<0,而a+b=4+(-3)=1>0. 所以,这个命题是假命题. (1)如果a+b>0,那么ab>0; (2)如果a是无理数,b是无理数,那么a+b是无理数; (3)两个三角形中,两边及其中一边的对角对应相等,则这两个三角形全等.
第四章 平行四边形
4.6 反证法希伯索斯 发现了无理数 2,导致了第一次数学危机, 2是无理数的证明如下:
假设 2是有理数,那么它可以表示成qp(p 与 q 是互质的两个正整数).

数学选修4-5不等式反证法与放缩法练习题含答案

数学选修4-5不等式反证法与放缩法练习题含答案
故选: .
7.
【答案】
D
【考点】
反证法与放缩法
【解析】
用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“ , , 中至少有两个偶数或都是奇数”,
由此得出结论.
【解答】
解:用反证法证明某命题时,应先假设命题的否定成立,
而:“自然数 , , 中恰有一个偶数”的否定为:“ , , 中至少有两个偶数或都是奇数”,
【解答】
解:根据反证法的步骤,假设是对原命题结论的否定,
“至少有一个”的否定:“一个也没有”;
即“ , , 都不是正数”.
故答案为: , , 都不是正数.
19.
【答案】
, 都不能被 整除
【考点】
反证法与放缩法
【解析】
根据用反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面.再由命题:“ , 中至少有一个能被 整除”的否定是: , 都不能被 整除,从而得到答案.
【解答】
解:
即 , , ,

得 ,
即 ,
得 ,所以 .
故选 .
6.
【答案】
A
【考点】
反证法与放缩法
【解析】
用反证法法证明数学命题时,假设命题的反面成立,写出要证的命题的否定形式,即为所求.
【解答】
解:用反证法法证明数学命题时,应先假设要证的命题的反面成立,即要证的命题的否定成立,
而命题:“自然数 , , 都是偶数”的否定为:“ , , 中至少有一个是奇数”,
A. , , 都是奇数
B. , , 都是偶数
C. , , 中至少有两个偶数
D. , , 中至少有两个偶数或都是奇数
3.用反证法证明命题“设 , 为实数,则方程 至少有一个实根”时,要做的假设是()

2.2.2 反证法题库

2.2.2  反证法题库

数学2-22.2.2 反证法一、选择题1.(较易)应用反证法推出矛盾的推导过程中,可以把下列哪些作为条件使用()①结论的反设;②已知条件;③定义、公理、定理等;④原结论.A.①②B.②③C.①②③D.①②④【解析】考查反证法的基本思想.【答案】C2.(容易)(2012·河南省安阳市期末)用反证法证明命题:“三角形的内角中至少有一个不大于60o”时,假设正确的是()A.假设三内角都不大于60oB.假设三内角都大于60oC.假设三内角至少有一个大于60oD.假设三内角至多有两个大于60o【解析】“至少有一个”即“全部中最少有一个”【答案】B>)3.(容易)用反证法证明命题“如果a bA BC D【解析】“大于”的否定为“小于或等于”.【证明】C4.)A BC D【解析】【答案】D5.(容易)(1)已知332p q +=,求证2p q +….用反证法证明时,可假设2p q +….(2)已知,,1a b ab ?<R ,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ….以下结论正确的是( ) A .(1)与(2)的假设都错误 B .(1)与(2)的假设都正确 C .(1)的假设正确;(2)的假设错误 D .(1)的假设错误;(2)的假设正确【解析】“…”的反面是“>”,故(1)错误.“两根的绝对值都小于1”的反面是“至少有一个根的绝时值大于或等于1”,故(2)对. 【答案】D6.(容易)用反证法证明命题“,a b ÎN ,如果ab 可被5整除,那么,a b 至少有1个能被5整除”,则假设的内容是( ) A .,a b 都能被5整除 B .,a b 都不能被5整除 C .a 不能被5整除D .,a b 有1个不能被5整除【解析】用反证法只否定结论即可,而“至少有一个”的反面是“一个也没有”,故B 正确. 【答案】B7.“自然数,,a b c 中恰有一个偶数”的否定正确的为( ) A .,,a b c 都是奇数 B .,,a b c 都是偶数 C .,,a b c 中至少有两个偶数D .,,a b c 中都是奇数或至少有两个偶数【解析】自然数,,a b c 的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是,,a b c 中都是奇数或至少有两个偶数. 【答案】D8.(容易)用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( ) A .三个内角中至少有一个钝角 B .三个内角中至少有两个钝角 C .三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角【解析】“至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.【答案】B9.(容易)用反证法证明命题“关于x的方程()0ax b a=有且只有一个解”时,反设是关于x的方程()0ax b a=()A.无解B.有两解C.至少有两解D.无解或至少有两解【解析】“唯一”的否定上“至少两解或无解”.【答案】D10.(容易)设a、b、c都是正数,则三个数111,,a b cb c a+++()A.都大于2 B.至少有一个大于2 C.至少有一个不大于2 D.至少有一个不小于2 【解析】因为a、b、c都是正数,则有1111116a b c a b cb c a a b c骣骣骣骣骣骣鼢鼢鼢珑珑珑+++++=+++++鼢鼢鼢珑珑珑鼢鼢鼢珑珑珑桫桫桫桫桫桫….故三个数中至少有一个不小于2.【答案】D11.(容易)实数a、b、c不全为0是指()A.a、b、c均不为0 B.a、b、c中至少有一个为0C.a、b、c至多有一个为0 D.a、b、c至少有一个不为0【解析】“不全为0”并不是“全不为0”,而是“至少有一个不为0”.【答案】D12.(容易)用反证法证明命题“三角形的内角中至少有一个不大于60o”时,反设正确的是()A.假设三个内角都不大于60oB.假设三个内角都大于60oC.假设三个内角至多有一个大于60oD.假设三个内角至多有两个大于60o【解析】“至少有一个”的反面是“一个也没有”,故选B.【答案】B13.(容易)实数,,a b c 满足0a b c ++=,则正确的说法是( ) A .,,a b c 都是0B .,,a b c 都不为0C .,,a b c 中至少有一个为0D .,,a b c 不可能均为正数【解析】满足0a b c ++=有两种情况:一是,,a b c 都是0;二是,,a b c 必须有正数也有负数,也可能有0.故选D . 【答案】D14.(中等)已知数列{}{},n n a b 的通项公式分别为21(,)n n a an b bn a b =+=+,是常数,且a b >,那么两个数列中序号与数值均相同的项的个数有( ) A .0个 B .1个 C .2个D .无穷多个【解析】假设存在序号和数值均相等的项,即存在n 使得n n a b =, 由题意,*a b n > N ,则恒有an bn >, 从而21an bn +>+恒成立, ∴不存在n 使n n a b =. 【答案】A15.(中等)设,,(0,)x y z ? ,则三数111,,x y z y z x+++中( ) A .都不大于2 B .都不小于2 C .至少有1个不小于2 D .至少有1个不大于2 【解析】1111116x y z x y z y z x x y z 骣骣骣骣骣骣鼢珑鼢鼢珑珑鼢+++++=+++++鼢鼢珑珑珑鼢鼢鼢珑珑珑鼢桫桫桫桫桫桫…,则三者中至少有一个不小于2. 【答案】C16.(容易)“M 不是N 的子集”的充分必要条件是 ( ) A .若x M Î则x N Ï B .若x N Î则x M Î C .存在11x M x N 无 ,又存在22x M x N 无D .存在00x Mx N 无【解析】先找充要条件,再变化范围. 【答案】D17.(容易)a b c d +>+的必要而不充分条件是( ) A .a c >B .b d >C .a c >且b d >D .a c >或b d >【解析】先找出充要条件,再变化范围. 【答案】D18.(容易)给定一个命题“已知120,1x x > ,且312331n nn n x x x x ++=+,证明对任意正整数n 都有1n n x x +>”,当此题用反证法否定结论时应是( ) A .对任意正整数n 有1n n x x +… B .存在正整数n 使1n n x x +… C .存在正整数n 使1n n x x +>D .存在正整数n 使1n n x x -…,且1n n x x +…【解析】“对任意正整数n 都有1n n x x +>”的反设命题是“存在正整数n 使1n n x x +…”.故B 正确. 【答案】B19.(容易)已知三角形的三边长分别为,,a b c ,设11a b M a b =+++,1cN c=+,1a b Q a b +=++,则,M N 与Q 的大小关系是( ) A .M N Q << B .M Q N << C .Q N M <<D .N Q M <<【解析】由a b c +>,得11a b c<+,111111a b c a b a b c c ++++=<=+++. 【答案】D20.(中等)设不等的两个正数,a b 满足3322a b a b -=-,则a b +的取值范围是( ) A .(1,)+B .4(1)3,C .4[1]3,D .(0,1]【解析】由条件得22a ab b a b ++=+,所以222()a b a ab b a b +>++=+, 故1a b +>. 又()20a b ->,可得()()222234a ab b a ab b ++<++, 从而()()234a b a b +<+, 所以43a b +<, 故413a b <+<. 【答案】B21.(中等)已知函数()f x 在其定义域内是减函数,则方程()0f x =( ) A .至多一个实根 B .至少一个实根 C .一个实根D .无实根【解析】从结论入手,假设四个选择项逐一成立,导出其中三个与特例矛盾,选A . 【答案】A22.(容易)已知0,10a b <-<<,那么a 、ab 、2ab 之间的大小关系是( ) A .2a ab ab >> B .2ab ab a >> C .2ab a ab >>D .2ab ab a >>【解析】采用“特殊值法”,取1a =-、0.5b =-. 【答案】D23.(容易)已知αβl =I ,αa Ð,βb Ð,若a 、b 为异面直线,则( ) A .a 、b 都与l 相交 B .a 、b 中至少一条与l 相交 C .a 、b 中至多有一条与l 相交 D .a 、b 都与l 相交【解析】从逐一假设选择项成立着手分析. 【答案】B24.(中等)平面内有四边形ABCD 和点O ,OA OC OB OD +=+uu r uuu r uu u r uuu r ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形【解析】∵OA OC OB OD +=+uu r uuu r uu u r uuu r, ∴OA OB OD OC -=-uu r uu u r uuu r uuu r , ∴BA CD =uu r uu u r ,∴四边形ABCD 为平行四边形. 【答案】D25.(容易)[2014·山东高考] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A. 方程x 2+ax +b =0没有实根B. 方程x 2+ax +b =0至多有一个实根C. 方程x 2+ax +b =0至多有两个实根D. 方程x 2+ax +b =0恰好有两个实根[解析] “方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A. 【答案】A二、填空题1.(容易)设2()f x x ax b =++,求证:(1),(2),(3)f f f 中至少有一个不小于12.用反证法证明此题时应假设 .【解析】“至少有一个”反面是“一个也没有”,“不小于”反面是“小于”. 【答案】(1),(2),(3)f f f 全都小于12. 2.(较易)用反证法证明:“ABC △中,若A B ∠>∠,则a b >”的结论的否定为 . 【解析】a b >的否定为a b …. 【答案】a b …3.(容易)将“函数22()42(2)21f x x p x p p =----+在区间[1,1]-上至少存在一个实数c ,使()0f c >”反设,所得命题为“ ”. 【解析】“至少存在一个”反面是“不存在”.【答案】函数22()42(2)21f x x p x p p =----+在区间[1,1]-上恒小于等于04.(中等)若下列两个方程22(1)0x a x a +-+=,2220x ax a +-=中至少有一个方程有实根,则实数a 的取值范围是 .【解析】若方程22(1)0x a x a +-+=有实根, 则22(1)40a a --…, ∴113a-剟. 若方程2220x ax a +-=有实根, 则2480a a +…, ∴2a -…或0a ….∴当两个方程至少有一个有实根时,113a -剟或2a -…或0a …, 即2a -…或1a -…. 【答案】2a -…或1a -…5.(容易)用反证法证明“一个三角形不能有两个直角”有三个步骤:①9090180A B C C ∠+∠+∠=︒+︒+∠>︒,这与三角形内角和为180︒矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设ABC △中有两个直角,不妨设90A ∠=︒,90B ∠=︒. 上述步骤的正确顺序为 .【解析】反证法的步骤是:(1)反设;(2)归谬;(3)存真. 【答案】③①②6.(容易)下列命题适合用反证法证明的是 .①已知函数2()1x x f x a x -=++(1)a >,证明:方程()0f x =没有负实数根; ②若x ,y ∈R ,0x >,0y >,且2x y +>,求证:1x y +和1yx +中至少有一个小于2;③关于x 的方程(0)ax b a =≠的解是唯一的;④同一平面内,分别与两条相交直线垂直的两条直线必相交.【解析】①是“否定”型命题;②是“至少”型命题;③是“唯一”型命题,且题中条件较少;④中条件较少不足以直接证明,因此四个命题都适合用反证法证明. 【答案】①②③④7.(容易)完成反证法证题的全过程.题目:设127,,,a a a …是由数字1,2,…,7任意排成的一个数列,求证:乘积127(1)(2)(7)p a a a =---…为偶数.证明:假设p 为奇数,则 均为奇数.① 因7个奇数之和为奇数,故有…+127(1)(2)(7)a a a -+-+-为 . ②而…+127(1)(2)(7)a a a -+-+- …+127()(127)a a a =++-+++= . ③②与③矛盾,故p 为偶数.【解析】由假设p 为奇数可知1(1)a -,2(2)a -,…,7(7)a -均为奇数, 故127(1)(2)(7)a a a -+-+-…+127()(127)a a a =++-+++=……0为奇数,这与0为偶数矛盾.【答案】①11a -,22a -,…,77a -②奇数③08.(容易)ABC △中,若AB AC =,P 是ABC △内的一点,APB APC ∠>∠,求证:BAP CAP ∠<∠,用反证法证明时的假设为 .【解析】反证法对结论的否定是全面否定,BAP CAP ∠<∠的对立面是BAP CAP ∠=∠或BAP CAP ∠>∠. 【答案】BAP CAP ∠=∠或BAP CAP ∠>∠9.(容易)用反证法证明命题“,a b 为整数,若a b 不是偶数,则,a b 都不是偶数”时,应假设为 . 【解析】“,a b 都不是偶数”,指“,a b 都是奇数”,它的反面是“,a b 不都是奇数”,或“,a b 中至少有一个是偶数” .【答案】,a b 不都是奇数(或,a b 中至少有一个是偶数)10.(容易)设实数a 、b 、c 满足1a b c ++=,则a 、b 、c 中至少有一个数不小于 .【解析】假设a 、b 、c 都小于13,则1a b c ++<与1a b c ++=矛盾.故a 、b 、c 中至少有一个不小于13.【答案】13三、解答题1.(中等)等差数列{}n a 的前n 项和为n S ,11a =+39S =+(1)求数列{}n a 的通项n a 与前n 项和n S ; (2)设*()nn S b n n=∈N ,求证数列{}n b 中任意不同的三项都不可能成为等比数列.(1)【解】∵11a =39S =+,且{}n a 为等差数列,∴1239a a a ++=+∴239a =+∴23a =+ ∴公差212d a a =-=,∴1(1)(12(1)21n a a n d n n =+-=+-=,21(1)(1(1)2n n n S na d n n n n -=+=+-=.(2)【证明】由(1)得n n Sb n n ==+假设数列{}n b 中存在三项p b ,q b ,r b (,,p q r 互不相等)成等比数列,则2q p r b b b =,即2((q p r =,∴2()(20q pr q p r -+--. ∵*,,p q r ∈N , ∴20,20,q pr q p r ⎧-=⎨--=⎩∴2()2p r pr +=,2()0p r -=, ∴p r =, 这与p r ≠矛盾.∴数列{}n b 中任意不同的三项都不可能成为等比数列.2.(稍难)组装甲、乙、丙三种产品,需要A ,B ,C 三种零件,每件甲产品用零件A ,C 各2个;每件乙产品用零件A 2个,零件B 1个;每件丙产品用零件B ,C 各1个.如组装10件甲,8件乙,5件丙,则剩下1个A 零件,1个B 零件,C 零件恰好用完.求证:无论如何改变甲、乙、丙的件数,都不会将零件A ,B ,C 用完.【解析】本题的结论是“无论怎样改变甲、乙、丙的件数,都不会将零件A ,B ,C 用完”,A ,B ,C 不能用完的情况有多种,而结论的反面是“零件A ,B ,C 都恰好用完”,这只是一种确定的情况,即三种零件的剩余数皆为0,因此从反面出发,较易证.【证明】假设组装甲x 件,乙y 件,丙z 件,零件A ,B ,C 都恰好用完, 则有方程组22210281,22105,851,x y x z y z +=⨯+⨯+⎧⎪+=⨯+⎨⎪+=++⎩解得59,628,315,3x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩方程组的解均为非整数,与题设矛盾,即假设错误, 所以原命题成立.3.(中等)已知三个正数,,a b c 成等比数列,但不成等差数列,【证明】即4a c b ++=, 而2b ac =,即b =,∴a c ++∴20=,.从而a b c ==,与,,a b c 不成等差数列矛盾,4.(稍难)证明:对于直线l :1y kx =+,不存在这样的实数k ,使得l 与双曲线C :2231x y -=的交点A ,B 关于直线(y ax a =为常数)对称.【证明】假设存在实数k ,使得,A B 关于直线y ax =对称,设12(,)A x y ,22(,)B x y ,则有:(1)直线l :1y kx =+与直线y ax =垂直; (2)点,A B 在直线l :1y kx =+上; (3)线段AB 的中点1212(,)22x x y y ++在直线y ax =上, 所以121212121,()2,22ka y y k x x y y x x a ⎧⎪=-⎪+=++⎨⎪++⎪=⎩①②.③由221,31,y kx y x =+⎧⎨=-⎩得22(3)220k x kx ---=. ④当23k =时,l 与双曲线仅有一个交点,不合题意. 由②③得1212()()2a x x k x x +=++, ⑤ 由④知12223kx x k +=-, 代入⑤整理得3ak =, 这与①矛盾. 所以假设不成立,故不存在实数k ,使得,A B 关于直线y ax =对称.5.(稍难)已知向量(1,2)=a ,(2,1)=-b ,,k t 为正实数,2(1)t =++x a b ,11k t =-+y a b .是否存在,k t ,使x y ∥?若存在,求出,k t 的取值范围;若不存在,请说明理由. 【解】2222(1)(1,2)(1)(2,1)(21,3)t t t t =++=++-=--+x a b ,11111221(1,2)(2,1)(,)k t k t k t k t =--+-=---+y a +b =.假设存在正实数,k t ,使x y ∥,则222112(21)()(3)()0t t k t k t---+-+--=.化简,得2110t k t++=,即30t t k ++=. ∵,k t 是正实数, ∴满足上式的,k t 不存在.∴不存在这样的正实数,k t ,使x y ∥.6.(中等)已知实数p 满足不等式(21)(2)p p ++0<,用反证法证明:关于x 的方程22250x x p -+-=无实数根.【解】假设方程22250x x p -+-=有实数根, 则该方程的根的判别式244(5)0p ∆=--…, 解得2p …或2p -… ①,而由已知实数p 满足不等式(21)(2)p p ++0<, 解得122p -<<-②. 数轴上表示①②的图形无公共部分,故假设不成立, 从而关于x 的方程22250x x p -+-=无实数根.7.(稍难)(2013·陕西理节选)设{}n a 是公比为q 的等比数列.设1q ≠,证明数列{1}n a +不是等比数列. 【思路分析】假设{1}n a +是等比数列,任取连续三项,利用等比中项构建方程,推出含公比的方程无解或公比为1.【解】假设{1}n a +是等比数列, 则对任意的*k ∈N , 212(1)(1)(1)k k k a a a +++=++,21122211k k k k k k a a a a a a ++++++=+++,2211111111112k k k k k k a q a q a q a q a q a q -+-++=++g ,∵10a ≠,∴112k k k q q q -+=+. ∵0q ≠, ∴2210q q -+=, ∴1q =,这与已知矛盾.∴假设不成立,故{1}n a +不是等比数列.8.(难)(2013·北京理节选)已知{}n a 是由非负整数组成的无穷数列.该数列前n 项的最大值记为n A ,第n 项之后各项1n a +,2n a +,…的最小值记为n B ,n n n d A B =-.证明:若12a =,1(1,2,3,)n d n ==…,则{}n a 的项只能是1或者2,且有无穷多项为1. 【证明】因为12a =,11d =, 所以112A a ==,1111B A d =-=. 故对任意1n …,11n a B =….假设{}n a (2n …)中存在大于2的项. 设m 为满足2m a >的最小正整数, 则2m …,并且对任意1k m <…,2k a …. 又12a =,所以12m A -=,且2m m A a =>.于是,211m m m B A d =->-=,1min{,}2m m m B a B -=…. 故111220m m m d A B ---=--=…,与11m d -=矛盾. 所以对于任意1n …,有2n a …,即非负整数数列{}n a 的各项只能为1或2. 因为对任意1n …,12n a a =…, 所以2n A =.故211n n n B A d =-=-=.因此对于任意正整数n ,存在m 满足m n >,且1m a =, 即数列{}n a 有无穷多项为1.9.(难)已知各项均为正数的两个数列{}n a 和{}n b满足:*1n a n +=∈N ,设*1,n n n bb n a +=∈N g ,且{}n a 是等比数列,求证:*1,n a a n =∈N .【思路分析】由要证的结论可知需证明数列{}n a 的公比1q =,但由条件很难看出思路,因此不妨假设1q ≠,然后结合所给的条件寻找矛盾,即用反证法证明. 【证明】∵0n a >,0n b >, ∴2222()()2n n n n n n a b a b a b ++<+…,∴11n a +<*). 设等比数列{}n a 的公比为q , 由0n a >知0q >, 下面用反证法证明1q =: 若1q >,则212a a a q=<…∴当1log qn >11n n a a q +=>*)矛盾; 若01q <<,则2121a a a q=>>, ∴当11log qn a >时, 111n n a a q +=<,与(*)矛盾.综上所述,1q =,从而*1,n a a n =∈N .10.(中等)设直线11:1l y k x =+,22:1l y k x =-,其中实数12,k k 满足1220k k +=,证明1l 与2l 相交. 【思路分析】判断两直线相交的方法是联立两直线的方程,若该方程组有解,则这组解对应两直线的交点,由于实数12,k k 未知,不易解方程组,考虑从两直线相交的反面——两直线平行入手,利用反证法证明. 【证明】假设直线1l 与2l 不相交, 则1l 与2l 平行,由直线1l 与2l 的方程可知实数12,k k 分别为两直线的斜率, 则有12k k =,代入1220k k +=,消去1k ,得2220k +=,2k 无实数解,这与已知2k 为实数矛盾. 所以12k k ≠, 即1l 与2l 相交.11.(容易)给定实数,0a a ≠且1a ≠,设函数11x y ax -=-(其中x ∈R 且1x a≠),证明:经过这个函数图象上任意两个不同点的直线不平行于x 轴.【证明】设111(,)M x y ,222(,)M x y 是函数图象上任意两个不同的点,则12x x ≠. 假设直线12M M 平行于x 轴,则12y y =, 即12121111x x ax ax --=--, 整理得1212()a x x x x -=-. ∵12x x ≠,∴1a =, 这与已知1a ≠矛盾, ∴假设错误,故直线12M M 不平行于x 轴.12.(稍难)若下列三个方程:24430x ax a +-+=,22(1)0x a x a +-+=,2220x ax a +-=中至少有一个方程有实根,试求实数a 的取值范围. 【解】若三个方程均无实根,则2122223(4)4(43)0,(1)40(2)4(2)0a a a a a a ⎧∆=--+<⎪∆=--<⎨⎪∆=--<⎩ 31,22131,13220a a a a a ⎧-<<⎪⎪⎪⇒<->⇒-<<-⎨⎪⎪-<<⎪⎩或.设3{|1}2A a a =-<<-,则3A {|1}2a a a =--R ðn 剠,故所求实数a 的取值范围是3{|1}2a a a--或剠.13.(容易)设,a b 是异面曲线,在a 上任取两点1A ,2A ,在b 上任取两点1B ,2B ,试证:11A B 与22A B 也是异面直线.【证明】假设11A B 与22A B 不是异面直线,则11A B 与22A B 可以确定一个平面α,点1A ,2A ,1B ,2B 都在平面α内, 于是12A A α⊂,12B B α⊂,即a α⊂,b α⊂, 这与已知,a b 是异面直线矛盾, 所以假设错误.因此11A B 与22A B 也是异面直线. 14.(中等)已知2()(1)1x x f x a a x -=+>+,证明方程()0f x =没有负数根. 【证明】假设0x 是()0f x =的负数根, 则00x <且01x ≠-且00021x x a x -=-+, 由000201011x x a x -<<⇒<-<+, 解得0122x <<, 这与00x <矛盾, 所以假设不成立,故方程()0f x =没有负数根.15.(难)正实数数列{}n a 中,11a =,25a =,且2{}n a 成等差数列.证明数列{}n a 中有无穷多项为无理数.【证明】由已知得2124(1)na n =+-,从而n a ,取21*124()k n k --=∈N ,则*)n a k =∈N .用反证法证明这些n a 都是无理数.假设*)n a k ∈N 为有理数,则n a 必为正整数,且24k n a >,故241k n a -…. 又241k n a +>,所以(24)(24)1k k n n a a -+>,与(24)(24)1k k n n a a -+=矛盾, 故假设错误,即*)n a k =∈N 都是无理数. 故数列{}n a 中有无穷多项为无理数.16.(难)已知,a b 是正有理数,【证明】p =, 因为,a b 是正有理数,所以0p >.p =得22a p b =+-22p b a p+-.因为,,a b p 均为有理数,必为有理数, 这与已知条件矛盾, 故假设错误.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2 反证法
双基达标限时20分钟
1.实数a, b, c不全为0等价于
()
A. a, b, c均不为0
B. a, b, c中至多有一个为0
C. a, b, c中至少有一个为0
D. a, b, c中至少有一个不为0
解析不全为0即至少有一个不为0,故选D.
答案 D
2.下列命题错误的是
()
A.三角形中至少有一个内角不小于60°
B.四面体的三组对棱都是异面直线
C.闭区间[a, b]上的单调函数f(x)至多有一个零点
D.设a、b€ Z,若a、b中至少有一个为奇数,则a+ b是奇数
解析a+ b为奇数? a、b中有一个为奇数,另一个为偶数,故D错误. 答案 D
1 1 1
3.设x, y, z都是正实数,a = x+ —, b=y+一,c= z+ 一,则a, b, c三个数y z
x
().
A.至少有一个不大于2 B .都小于2
C.至少有一个不小于2 D .都大于2
解析若a, b, c都小于2,则a+ b+ c<6①,
1 1 1
而a+ b+c=x+_+y+_+z+-》6②,
x J y z
显然①,②矛盾,所以C正确. 答案 C
4 .命题“△ ABC中,若A>B,则a>b”的结论的否定应该是____________ .
答案a< b
5•命题“三角形中最多只有一个内角是直角”的结论的否定是
答案 至少有两个内角是直角
6 •设SA 、SB 是圆锥SO 的两条母线,
AC 与平面SOB 不垂直.
证明假设AC 丄平面SOB,如图, •••直线SO 在平面SOB 内,
••• SO 丄 AC.
v SO 丄底面圆O ,: SO 丄AB. ••• SO 丄平面SAB.
•••平面SAB//底面圆O.
这显然出现矛盾,所以假设不成立,即
综合提咼 7. 已知an l ,a? a b? B,若a ,b 为异面直线,则
().
A. a ,b 都与I 相交
B. a ,b 中至少有一条与I 相交
C. a ,b 中至多有一条与I 相交
D. a ,b 都不与I 相交
解析 逐一从假设选项成立入手分析,易得 B 是正确选项,故选B. 答案 B
8. 以下各数不能构成等差数列的是
().
A . 3,4,5 B. .'2, . 3, 5 C . 3,6,9
D. ‘2, 2
2
解析 假设.'2, 3 :5成等差数列,则2 :3= '2 + 5 即12= 7 + 2 10, 此等式不成立,故.;2, '3, :5不成等差数列.
答案 B
9. “任何三角形的外角都至少有两个钝角”的否定应是 解析 “任何三角形”的否
定是“存在一个三角形
AC 与平面SOB 不垂直.
限时25分钟
“至少有两个”的否
定是“最多有一个”.
答案存在一个三角形,其外角最多有一个钝角
10•用反证法证明命题“若a2+ b2= 0,则a, b全为0(a、b为实数)”,其反设为________ •
解析“a, b全为0”即是“a = 0且b = 0”,因此它的反设为“a^0或0”.
答案a, b不全为0
11.设二次函数f(x) = ax2+ bx+ c(a^ 0)中,a、b、c 均为整数,且f(0), f(1)均
为奇数.求证:f(x) = 0无整数根.
证明设f(x) = 0有一个整数根k,则
ak2+ bk= — c.①
又••• f(0) = c, f(1) = a+ b+ c均为奇数,
••• a+ b为偶数,当k为偶数时,显然与①式矛盾;
当k为奇数时,设k = 2n+ 1(n€ Z),
则ak2+ bk= (2n+ 1)(2na+ a+ b)为偶数,也与①式矛盾,故假设不成立,所以方程f(x) = 0无整数根.
x2、,
12.(创新拓展)已知函数f(x)= ,如果数列{a n}满足a〔 = 4, a n+1 = f(a n),求
2x一 2
证:当n》2时,恒有a n<3成立.
a
证明法一■(直接证法)由a n+1 = f(a n)得a n+1= -,
2a n — 2
丄=二+ 2 = —2丄-丄2 +孔1
a n+1 a n a n a n 2 2 2'
--a n+1 <0 或a n+1》2;
(1)若a n+1<0,贝U a n+1<0<3,
•••结论“当n》2时,恒有a n<3”成立;
(2)若a n+1》2,
2
a n —a n+ 2a n —a n a n— 2
则当n》2 时,有a n+1 —a n= - —a n= = w0,
2a n— 2 2 a n— 1 2 a n — 1
a2
• a n+1W a n,即数列{a n}在n》2时单调递减;
a 2
16 8
<3 2a i -2 8-2 3 °,
可知a n < a 2<3,在n 》2时成立.
综上,由(1)、⑵知:当n 》2时,恒有a n <3成立. 法二(用反证法)假设a n 》3(n 》2),
a
2
则由已知得 a n +1 = f (a n )= ~ 2,
•••当n 》2时, 这与假设矛盾, •••当n 》2时, a n <3;
故假设不成立, 恒有a n <3成立.
•••当n 》2
时,
亍—20^—2,1+a n 二1 仝 21+2— 4<1?(v
—1》3- 1),
又易证a n >0, •••当 n>2 时, •••当 n 》2 时,a n +
i <a n ,
而当n = 2时, a n <a n -i <…<a 2; a2 16
-8<3, a 2 —
— — c 2a i - 2 8-2 3
由a 2=。

相关文档
最新文档