前线轨道理论

前线轨道理论
前线轨道理论

前线轨道理论及其应用

前线轨道理论及其应用 摘要:前线轨道理论是一种简化且有效的分子轨道理论。它能成功地说明大量反应事实和规律。本文综合了数篇文献的研究内容,介绍前线轨道理论及其应用情况。 关键词:前线轨道理论; 应用 1.前言 前线轨道理论是由福井谦一教授于五十年代初提出的一种化学理论,它以分子轨道理论为理论基础,但是没有超越实验化学家的经验和理论范围,以其简单、有效和化学概念明确的特点,赢得了众多科学工作者的关注。本文综合了数篇文献的研究内容,将 2.理论思想 早在1952年福井[1]就在HMO理论的基础上提出了最高占据轨道(highest occupied MO)、最低空轨道(lowest unoccupied MO)的概念。并称HOMO, LUMO 这两种特殊的分子轨道为“前线轨道”[2]。考虑到在化学反应中原子的价电子起着关键作用,可以联想到,在分子的所有MO中,能量最高的HOMO上的电子最活泼最易失去;能量最低的LUMO最易接受电子。因此,有理由认为在分子反应中,这些特殊的MO贡献最大,对反应起主导作用。这一概念和观点,起初只引起了极少数人的注意。但是福井等人却注意到了这一点,并且进行了深入的研究。他们将“前线轨道及各种前线轨道间的相互作用”发展成为了解分子反应能力和预测反应机理的强有力的理沦方法—“前线轨道理论”,35年来前线轨道理论大致经过了七个重要发展阶段[3]。前线电子密度基本概念的提出和研究;前线电子密度在共轭化合物中应用的研究;在饱和化合物中应用的研究;在立体选择反应中推广应用的研究;解释,说明化学反应中的HOMO-LUMO的相互作用;建立化学反应途径的极限反应坐标理论(简称IRC);提出化学反应的相互作用前线轨道理论(简称IFO)。今天,这一理论已成为讨论化学问题的必不可少的工具,对于人们的化学实践具有重要的指导意义。

分子轨道理论的发展及其应用

分子轨道理论的发展及其应用 北京师范大学段天宇学号201111151097 摘要:分子轨道理论是目前发展最成熟,应用最广泛的化学键理论之一。本文简述了分子轨道理论的基本思想及发展历程,列举了其在配位化学、矿物学、气体吸附领域的应用实例,并对其前景作出展望。 0 前言 化学键是化学学科领域中最为重要的概念之一。通常,化学键被定义为存在于分子或晶体中或两个或多个原子间的,导致形成相对稳定的分子或晶体的强相互作用。从二十世纪初期至今,科学家们为了解释化学键现象相继提出了价键理论、分子轨道理论、配位场理论等化学键理论。其中分子轨道理论(Molecular Orbital Theory)具有容易计算、计算结果得到实验支持的优势,并不断得到完善与拓展,因而自二十世纪五十年代以来,已经逐渐确立了其主导地位[1]。目前,作为相对最为成熟的化学键理论,分子轨道理论的应用已经涵盖了化学研究的几乎全部领域中。 1 分子轨道理论发展 1926至1932年,Mulliken和Hund分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论[2]-[3]。分子轨道理论认为,电子是在整个分子中运动,而不是定域化的。他们还提出了能级相关图和成键、反键轨道等重要概念。 1929年,Lennard-Jones提出原子轨道线性组合(Linear Combination of Atomic Orbitals)的理论[4]。后来,原子轨道线性组合的思想被应用于分子轨道理论中,成为分子轨道理论的基本原理。这一原理指出,原子轨道波函数通过线性组合,即各乘以某一系数相加得到分子轨道波函数。这种组合要遵循三个基本原则,即:组合成分子轨道的原子轨道必须对称性匹配;组成分子轨道的原子轨道须能级相近;原子轨道达到最大程度重叠以降低组成分子轨道的能量。其中,最重要的是对称性匹配原则,对称性相同的原子轨道组合成能量低于自身的成键分子轨道,对称性相反的原子轨道组合成高于自身的反键分子轨道。 1931-1933年,Huckel提出了一种计算简便的分子轨道理论(HMO)[5],是分子轨道理论的重大进展。HMO理论的基本思想是,把两电子间的相互作用近似地当做单电子的平均位场模型处理,导出单电子运动方程: Hψ=Eψ 其中H是该电子的Hamilton算符,ψ是该电子所占据的分子轨道波函数,E为轨道能量。同时,ψ是由原子轨道φk线性组合得到,即 ψ=c1φ 1 +c2φ 2 +?+c kφ k 代入运动方程,利用变分法得到久期方程式 H ij?ES ij=0 其中H和S分别为Hamilton算符和重叠积分的矩阵元,求解久期方程式即可求得分子轨道能量E。这种方法计算简便,发表之处即得到运用,尤其是对于共轭分子性质的讨论取得巨大成功,后来发展成为分子轨道理论的重要分支。 HMO理论虽然简单有效,但只能进行定性讨论,而不能进行严格的定量计算。这个问题的解决,得益于1951年,Roothaan在的Hartree-Fock方程[6]-[7] h fψ k =E kψ k (h f为Hartree-Fock算符)的基础上,将分子 轨道ψ k 写成原子轨道线性组合的形式,得到 Hartree-Fock-Roothaan方程(HFR方程)[8] h f C k=E k C k 而1950年,Boys提出利用Gauss函数研究原子

有机化学理论课 第十八章 分子轨道理论简介

第十八章分子轨道理论简介 一、教学目的和要求 (1)了解分子轨道理论的原理。 (1)了解周环反应的一般规律。 (2)了解分子轨道对称守恒原理在有机合成中的作用。 二、教学重点与难点 分子轨道理论的原理,周环反应的理论。 三、教学方法和教学学时 1、教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合。 2、教学学时:2学时 四、教学内容 第一节电环化反应 第二节环加成反应 第三节σ迁移反应 第四节周环反应的理论 一、电环化反应机理 二、环加成反应机理 三、σ键迁移反应机理 五、课后作业、思考题 习题:1、2、4、6、11。 §18-1 周环反应的理论 一、周环反应 前面各章讨论的有机化学反应从机理上看主要有两种,一种是离子型反应,另一种是自由基型反应,它们都生成稳定的或不稳定的中间体。还有另一种机理,在反应中不形成离子或自由基中间体,而是由电子重新组织经过四或六中心环的过渡态而进行的。这类反应表明化学键的断裂和生成是同时发生的,它们都对过渡态作出贡献。这种一步完成的多中心反应称为周环反应。 周环反应:反应中无中间体生成,而是通过形成过渡态一步完成的多中心反应。 反应物——→产物

周环反应的特征: (1) 多中心的一步反应,反应进行时键的断裂和生成是同时进行的(协同反 应)。 例如: (2) 反应进行的动力是加热或光照。不受溶剂极性影响,不被酸碱所催化,不受任何引发剂的引发。 (3) 反应有突出的立体选择性,生成空间定向产物。 例如: 二、周环反应的理论 (一) 轨道和成键 周环反应的过程,广泛的应用轨道来描述,这些轨道往往是用图形来表示。有机化学中涉及最多的原子轨道为1p 轨道和2s 轨道。 原子轨道线形组合成分子轨道。当两个等价原子轨道组合时,总是形成两个新的分子轨道,一个是能量比原子轨道低的成键轨道,另一个是能量比原子轨道高的反键轨道。 (二)分子轨道对称守恒原理 原子轨道组合成分子轨道时,遵守轨道对称守恒原理。即当两个原子轨道的对称性相同(位相相同)的则给出成键轨道,两个原子轨道的对称性不同(位相不同)的则给出反键轨道。 CHO + CHO R h υ R = -COOCH 3 成键轨道 原子轨道 X 1 2

前线轨道理论在氙氟化合物的应用

前线轨道理论在氙氟化合物的应用 摘要:前线轨道理论在有机化学领域有着广泛的应用.实际上,它也可以用来阐释或说明一些无机化学反应.例如,氟化氙的生成机理及结构.大学教材【1】对氟化氙的结构作了解释,而用前线轨道理论可以更加直观的解释氟化氙的结构、性质,以及八氟化氙不存在的原因和稀有气体的稳定性 关键词:前线轨道理论; 氟化氙; 结构 ; 稳定性 一、引言 前线轨道理论,是一种分子轨道理论,是日本理论化学家福井谦一赖以成名的理论,这一理论将分子周围分布的电子云根据能量细分为不同能级的分子轨道,福井认为有电子排布的,能量最高的分子轨道(即最高占据轨道HOMO )和没有被电子占据的,能量最低的分子轨道(即最低未占轨道LUMO )是决定一个体系发生化学反应的关键,其他能量的分子轨道对于化学反应虽然有影响但是影响很小,可以暂时忽略.HOMO 和LUMO 便是所谓前线轨道. 1962年,巴特列在研究无机氟化物时,发现强氧化性的六氟化铂可将O 2氧化为O 2+.由于O 2到O 2+的电离能(1165 kJ /mol )与Xe 到Xe 的电离能相差不大(1170 kJ /mol ),因此他尝试用PtF 6氧化Xe.结果反应得到了橙黄色的固体.巴特利特 认为它是六氟合铂酸氙(Xe[PtF 6]). 这是第一个制得的稀有气体化合物.后期 的实验证明该化合物化学式并非如此简单,包括XeFPtF 6和XeFPt2F 11.在成功合 成六氟合铂酸氙,化学家又尝试用类似的六氟化钌来氧化氙.结果发现除了生成Xe(RuF 6)x 外,还存在有氙和氟气直接生成二元氙氟化物的副反应.因此克拉森 (Howard Claassen )通过让氙和氟在高温下反应,成功合成了四氟化氙. 二、前线轨道理论(FOT) 1、二氟化氙的反应机理【2】【4】 氙与氟的化合反应不可能是一步进行的双分子基元反应.它的反应历程应该是如下两个基元步骤: ①F F F +→2 ②2XeF F F Xe =++ 根据分子轨道理论,Xe 和F 2的电子排布式分别为: Xe[AO(原子轨道):5s 25p 6] F 2[MO(分子轨道):(σ2s)2(σ*2s)2(σ2p x )2(π2p y )2(π2p z )2(π*2p y )2(π*2p z )2] 根据前线轨道理论,如果Xe 和F 2的化合是双分子基元反应,则在前线轨道中,电子转移的方向有两种可能:HOMO(Xe )→LUMO(F 2),或HOMO(F 2)→LUMO(Xe ).

分子轨道理论的发展及其应用

分子轨道理论的发展及其应用 一、前言: 分子轨道理论(MO理论)是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的认知,即认为分子中的电子围绕整个分子运动。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重要的地位。分子轨道理论描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分子结构,并联系到分子性质的系统解释。有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。 二、分子轨道理论产生,分子轨道的含义,常用的构成分子轨道的方法: 1、分子轨道理论产生: 1926一1932年,在讨论分子(特别是双原子分子)光谱时,Mulliken和Hund分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论.分子轨道理论认为,电子是在整个分子中运动,而不是定域化的.他们还提出能级相关图和成键、反键轨道等重要概念.1931一1933年,Huckel提出了一种简单的分子轨道理论(HMO),用以讨论共扼分子的性质,相当成功,是分子轨道理论的重大进展。 1951年,Roohtaan在Hartree一Fock方程的基础上,把分子轨道写成原子轨道的线性组合,得到TRoothaan方程,1950年Boys用Gauss函数研究原子轨道,解决了多中心积分的问题.从Hartree一Fock一Roohtaan方程出发,应用Gauss函数,是今天广为应用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。 1952年,福井谦一提出了前线轨道理论,用以讨论分子的化学活性和分子间的相互作用等,可以解释许多实验结果.1965年,Woodward和Hoffmann提出了分子轨道对称守恒原理,发展成为讨论基元化学反应可能性的重要规则,已成功地用于指导某些复杂有机化合物的合成.上述各个年代提出的基本理论和方法,是分子轨道理论发展过程中的几个里程碑。 2、分子轨道的含义: 分子中的电子能级称为分子轨道。分子轨道可以通过相应的原子轨道线性组合而成。有几个原子轨道相组合,就形成几个分子轨道。在组合产生的分子轨道中,能量低于原子轨道的称为成键轨道;高于原子轨道的称为反键轨道;无对应的(能量相近,对称性匹配)的原子轨道直接生成的称为非键轨道。 原子A及B相互作用,即可形成分子A-B中的两个分子轨道,其中一个分子轨道能量比原来的轨道要低,叫分子的成键轨道;而另一个则比原来要高,叫反键轨道。例如,两个H原子相互作用形成H2分子时,其分子轨道能级上的电子排列情况可用线性组合图来表示,其上反键轨道是空着的。 3、构成分子轨道的方法: [轨迹原则]原子轨道在组成分子轨道时候,必须满足下面三条原则才能有效的组成分子轨道: (1)对称性匹配原则:两个原子轨道的对称性匹配的时候它们才能够组成分子

结构化学 期末题及部分答案

1. 波尔磁子是哪一种物理量的单位(c ) (A )磁场强度 (B )电子在磁场中的能量 (C )电子磁矩 (D )核磁矩 2. 用来表示核外某电子运动状态的下列各组量子数(n ,l ,m ,m s )中,合理的是( D ) (A )(2 ,1 ,0 ,0 ) (B )(0 ,0,0 ,21 ) (C )(3 ,1 ,-1 ,21) (D )(2,1 ,-1 ,-21) 3. 就氢原子波函数ψ 2p x 和 ψ2p y 两状态的图像,下列说法错误的是( ) (A )原子轨道的角度分布图相同 (B )电子云相同 (C )径向分布图不同 (D )界面图不同 4.下列各组分子中,哪些有极性但无旋光性( ) (1)I3 - (2)O3 (3)N3- 分子组: (A )2 (B )1,3 (C )2,3 (D )1,2 凡是具有反轴对称性的分子一定无旋光性,而不具有反轴对称性的分子则可能出现旋光性。“可能”二字的含义是:在理论上,单个分子肯定具有旋光性,但有时由于某种原因(如消旋或仪器灵敏度太低等)在实验上测不出来。 反轴的对称操作是一联合的对称操作。一重反轴等于对称中心,二重反轴等于镜面,只有4m 次反轴是独立的。因此,判断分子是否有旋光性,可归结为分子中是否有对称中心,镜面和4m 次反轴的对称性。具有这三种对称性的分子(只要存在三种对称元素中的一种)皆无旋光性,而不具有这三种对称性的分子都可能有旋光性。 看不懂的话就不要看啦 因为我也不知上面说的是神马. 5.Fe的原子序数为26,化合物K3[FeF6]的磁矩为5.9波尔磁子,而K3[Fe( CN)6]的磁矩为1.7波尔磁子,这种差别的原因是( ) (A )铁在这两种化合物中有不同的氧化数 (B )CN —离子F – 离子引起的配位长分裂能更大 (D )氟比碳或氮具有更大的电负性 (C )K3[FeF6]不是络合物 6.Be 2+的3s 和3p 轨道的能量是( ) (A )E (3p )>E (3s ) (B )E (3p )<E (3s ) (C )E (3p )=E (3s ) (D )无法判定 7.下列说法正确的是( )

分子轨道理论

分子轨道理论 2011级弘毅学堂化学班 2011301040014 田健吾 分子轨道理论(又称MO法)是建立在量子力学理论体系基础之上的理论,以薛定谔波动方程为基础。通过对原子轨道的线性组合(LCAO,linear combination of atomic orbitals)来确定其组合而成的分子轨道的形状以及能量高低。 分子轨道理论与现有的其他几种理论的比较 现有的常用分析分子构型与能量的理论有路易斯结构理论,VESPER theory,VB法,杂化轨道理论与MO法。此外还有建立于VB法上的共振理论,这些理论在各自适用范围内对分子进行处理各有其优点:路易斯结构理论最为简单,仅需考虑最外层电子数为8(氢为2)来调整共用电子对数即可,但是局限性也相对较大,仅能粗略分析共用电子对情况,不能预测与解释分子构型与能量;VESPER理论也是较为简单的理论,但是在处理很多的分子中都取得了非常好的结果,如对甲烷、六氟化硫等分子的构型,都能很成功的预测与解释,使用起来十分方便。缺点也比较明显:过于强调价层电子的排斥效应而忽略了其内层电子以

及轨道之间相互作用对构型的影响,特别是涉及到过渡金属配合物的John-Taller效应的时候,就完全无法解释,由于没有考虑到具体中心离子与配体轨道的作用,这是可想而知的结果;经典VB法基于自旋反平行的两电子波函数符号一致,通过组合使得体系能量降低而形成稳定分子。有单电子原子轨道与另一原子上填充单电子的原子轨道相结合形成共价键或带成对电子的轨道与另一原子中的空轨道重叠形成配位键两种。经典VB法也是较为朴素的理论之一,因此局限性也是较大的,只能得出与参与成键的AO形状及伸展方向相同的分子构型,对于甲烷等分子的构型就完全不能解释,此时则需要引入杂化轨道理论,杂化轨道理论总体思想是通过两个或多个原子轨道的组合变形,使得达到成键轨道重叠最大的目的,从而使得体系能量达到较低的值。但是Pauling对于杂化轨道理论的解释特别是对电子的激发与轨道杂化的能量来源的解释比较牵强,用薛定谔波动方程来理解其杂化过程可能可以用原子接近时对其各自波动方程的势能项有影响,从而改变了其原子轨道的形状来解释,但是如此也并不能解释电子的激发是如何进行的,除此之外,是否势能项的变化真的总是朝着使得轨道变形后趋向于与其他原子轨道重叠更充分的方向进行,这还是一个很大的问题。并且杂化轨道理论过于强调参与杂化的几个轨道对成键的影响,而忽略了其他轨道之间的相互作用,这必然会导致一些误差。 此外,由于未从整个分子的层面来考虑问题,上述理论也认

用前线轨道理论和分子轨道对称守恒原理

用前线轨道理论和分子轨道对称守恒原理 分析乙烯环加成变为环丁烷 孙娟 湖北师范学院化学与环境工程系化教0202班435002 摘要:本文在于利用前线轨道理论和分子轨道对称守恒原理对乙烯环加成变为环丁烷的反应条件及轨道叠加情况进行分析,为搞清一系列问题,本文对周环反应、分子轨道守恒理论、前线轨道理论进行了讨论,借以对乙烯环加成为环丁烷的情况进行理论阐述,并以此展开,讨论了诸多环加成的实例,以此完善相关学识。 关键词:前线轨道理论分子轨道对称守恒原理乙烯环加成环丁烷反应条件轨道叠加Analyzing How Ethylene Become Cyclobutane Through Cyclization By Frontline Molecule Orbital Theory and Symmetrical Conservation Principle of the Molecule Theory Sun Juan Chemistry and Environmental project Department of HuBei Normal University Chemistry educating Specialty Class0202 HuBei Huang Shi 435002 Abstract The purpose and scope of this paper is to explain how ethylene become cyclobutane through cycloaddition reaction this time ,I’ll chose Frontline Molecule Orbital Theory(FMO) and Symmetr ical Conservation Principle of the Molecule Theory to analyze how it reaction ,What are the essential conditions which needs and how the orbits overlap .In order to expound it clearly, I’ll introduce the accurate meanings of Cyclization Molecule Orbital T heory ,FMO and Symmetrical Conservation Principle of the Molecule Theory by definitions and illustrations, Furthermore, according these foundations, we can discuss the more instances with more complicated structure ,Thus we can master the knowledge perfectly. Keywords Frontline Molecule Orbital Theory(FMO) Symmetrical Conservation Principle of the Molecule Theory Ethylene cycloaddition reaction Cyclobutane the essential conditions orbits overlap 分子成键的三大条件是:(1)、能量相近,(2)、轨道最大重叠,(3)、对称匹配。这三点中最重要的就是对称匹配,然而,对乙烯环加成为环丁烷的反应中,就存在着不匹配的情况,那么,这时候它的反应又是怎样进行的呢?这里我们就要用前线轨道理论和分子轨道对称守恒原理对乙烯环加成变为环丁烷的反应条件及轨道叠加情况进行分析。 一、周环反应[1] 有机化学反应从机理上看主要有两种,一种是离子型反应,另一种是自由基型反应,它们都生成稳定的或不稳定的中间体。还有另一种机理,在反应中不形成离子或自由基中间体,而是由电子重新组织经过四或六中心环的过渡态而进行的。这类反应表明化学键的断裂和生成是同时发生的,它们都对过渡态作出贡献。这种一步完成的多中心反应称为周环反应。 一)周环反应的特点 周环反应:反应中无中间体生成,而是通过形成过渡态一步完成的多中心反应。 反应物——→产物 1、只在光和热下进行反应,不受溶剂、引发剂、亲电试剂、亲核试剂、酸、碱等催化剂的影响

【论文】分子轨道理论的发展及其应用(化教1班 王玥珉)

分子轨道理论的发展及其应用 王玥珉 (安庆师范学院化学化工学院12级化学1班160112008) 摘要:分子轨道是指分子中每个电子是在原子核与其他电子组成的平均势场V 中运动,其运动状态可用单电子波函数ψi表示.分子轨道理论的基本观点是把 分子看做是一个整体,其中电子不再从属于某一个原子而是在整个分子的势场范围内运动,分子轨道理论是基于单电子近似来处理双原子分子及多原子分子结构的一种有效的近似方法.现常用休克尔分子轨道理论、前线轨道理论来表示分子轨道理论,分子轨道理论在用来解释配合物的稳定性、芳香性物质的稳定性以及有机化学中的迪尔斯阿尔德反应的运用中有着明显的优势,在未来的发展中分子轨道将会走出理论向着实际应用的方向发展. 关键词:分子轨道;分子结构 分子轨道理论(Molecular Orbital,简称MO)最初是由Mulliken和Hund提出,经过Huckel (简单分子轨道理论,简称HMO),Roothaan(自洽场分子轨道理论), 福井谦一(前线分子轨道理论,简称FMO),Woodward和Hoffmann(分子轨道对称守恒原理)等众多科学家的不断探索,形成了一套成熟的理论,与价键理论(VB )和配位场理论(LF)一通解决分子结构问题。 分子轨道理论经过半个世纪的迅猛发展,已经成为当代化学键理论的主流。如今多用于共轭分子的性质的研究,量子化学的研究,分子的化学活性和分子间的相互作用的研究,基元化学反应的研究,指导某些复杂有机化合物的合成。 一、分子轨道理论产生,分子轨道的含义,常用的构成分子轨道的方法 1、分子轨道理论产生 1926一1932年,在讨论分子(特别是双原子分子)光谱时,Mulliken1和Hund2分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论.分子轨道理论认为,电子是在整个分子中运动,而不是定域化的.他们还提出能级相关图和成键、反键轨道等重要概念.1931一1933年,Huckel提出了一种简单的分子轨道理论(HMO),用以讨论共扼分子的性质,相当成功,是分子轨道理论的重大进展。 1951年,Roohtaan在Hartree一Fock方程的基础上,把分子轨道写成原子轨道的线性组合,得到TRoothaan方程,1950年Boys用Gauss函数研究原子轨道,解决了多中心积分的问题.从Hartree一Fock一Roohtaan方程出发,应用Gauss函数,是今天广为应用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。 1罗伯特·马利肯(Robert Sanderson Mulliken1896~1986),美国化学家,物理学家。美国科学院院士。2弗里德里希·洪特(Friedrich Hund1896-1997),德国理论物理学家

相关文档
最新文档