2017-2018学年高二上学期期中数学试卷(文科) Word版含解析
湖北省部分重点中学联考2017-2018学年高二上学期期中数学试卷(文科) Word版含解析

2017-2018学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.123.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.48.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.311.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为)12.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是.14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为.15.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)509020.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.21.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面【考点】平面的基本性质及推论.【分析】根据公理2以及推论判断A、B、D,再根据空间四边形判断C.【解答】解:A、根据公理2知,必须是不共线的三点确定一个平面,故A不对;B、根据一条直线和直线外的一点确定一个平面知,故B不对;C、比如空间四边形则不是平面图形,故C不对;D、两两相交且不共点的三条直线,则三个交点不共线,故它们确定一个平面,由公理1知三条直线都在此平面内,故D正确.故选D.2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.12【考点】系统抽样方法.【分析】系统抽样中,分段的间隔(抽样距)=【解答】解:抽样距==40.故选A3.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④【考点】平面与平面之间的位置关系.【分析】由两平行平面中的一个和直线垂直,另一个也和平面垂直得直线l⊥平面β,再利用面面垂直的判定可得①为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,故②为假命题;由两平行线中的一条和平面垂直,另一条也和平面垂直得直线m⊥平面α,再利用面面垂直的判定可得③为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,如果直线m 在平面α内,则有α和β相交于m,故④为假命题.【解答】解:l⊥平面α且α∥β可以得到直线l⊥平面β,又由直线m⊂平面β,所以有l⊥m;即①为真命题;因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.所以真命题为①③.故选C.4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】由组合数公式可得从5根木棒中任取3根的情况数目,由三角形的三边关系分析可得取出的三根可以搭成三角形的情况数目,由等可能事件的概率公式,计算可得答案.【解答】解:根据题意,从5根木棒中任取3根,有C53=10种情况,其中能构撘成三角形的有3、5、7,3、7、9,5、7、9,共3种情况,则能搭成三角形的概率为;故选D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定【考点】众数、中位数、平均数;茎叶图.【分析】由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,根据样本平均数的计算公式,代入数据可以求得甲和乙的平均分,把两个平均分进行比较,得到结果.【解答】解:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分,,∴a2>a1故选B.7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.4【考点】极差、方差与标准差.【分析】由题意知这组数据的平均数为10,方差为2可得到关于x,y的一个方程组,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,利用换元法来解出结果.【解答】解:由题意这组数据的平均数为10,方差为2可得:x+y=20,(x﹣10)2+(y﹣10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,设x=10+t,y=10﹣t,由(x﹣10)2+(y﹣10)2=8得t2=4;∴|x﹣y|=2|t|=4,故选D.8.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条【考点】空间中直线与直线之间的位置关系.【分析】过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,异面直线a、b成60°角,直线a′、b′所成锐角为60°,过点P与a′、b′都成60°角的直线,可以作3条.【解答】解:过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,∵异面直线a、b成60°角,∴直线a′、b′所成锐角为60°.①当直线l在平面α内时,若直线l平分直线a′、b′所成的钝角,则直线l与a、b都成60°角;②当直线l与平面α斜交时,若它在平面α内的射影恰好落在直线a′、b′所成的锐角平分线上时,直线l与a、b所成角相等.此时l与a′、b′所成角的范围为[30°,90°],适当调整l的位置,可使直线l与a、b也都成60°角,这样的直线l有两条.综上所述,过点P与a′、b′都成60°角的直线,可以作3条.∵a′∥a,b′∥b,∴过点P与a′、b′都成60°角的直线,与a、b也都成60°的角.故选:C.9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④【考点】棱柱的结构特征.【分析】正方体的平面展开图复原为正方体,不难解答本题.【解答】解:由题意画出正方体的图形如图:显然①②不正确;③CN与BM成60°角,即∠ANC=60°正确;④DM⊥平面BCN,所以④正确;故选C.10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.3【考点】棱柱的结构特征.【分析】对于①由题意及图形利用异面直线所成角的概念及求异面直线间的方法及可求解;对于②由题意及平面具有延展性可知实质为平面ABC1D1与平面BDC1所成的二面角;对于③由题意及三棱锥的体积的算法中可以进行顶点可以轮换性求解体积,和点P的位置及直线AD1与平面BDC1的位置即可判断正误.【解答】解:对于①因为在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,有正方体的及题意易有B1C⊥平面ABC1D1,而C1P⊂平面ABC1D1,所以B1C⊥C1P,故这两个异面直线所成的角为定值90°,所以①正确;对于②因为二面角P﹣BC1﹣D的大小,实质为平面ABC1D1与平面BDC1所成的二面角而这两的平面为固定的不变的平面所以夹角也为定值,故②正确;对于③三棱锥D﹣BPC1的体积还等于三棱锥的体积P﹣DBC1的体积,而平面DBC1为固定平面且大小一定,又因为P∈AD1,而AD1∥平面BDC1,所以点A到平面DBC1的距离即为点P到该平面的距离,所以三棱锥的体积为定值,故③正确.故选D.11.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为)【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出x、y的平均数,即可求出m值.【解答】解:根据题意,计算=×=200,=×(1+3+6+7+m)=,代入回归方程=0.8x﹣155中,可得=0.8×200﹣155=25,解得m=8.故选:D.12.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB 与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选B.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是②③④.【考点】命题的真假判断与应用.【分析】根据空间线面之间的位置关系及几何特征,逐一分析四个命题的真假,可得答案.【解答】解:①a⊥M,若M⊥N,则a∥N,或a⊂N,故错误;②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b,故正确;③a⊥M,b⊄M,若b∥M,则b⊥a,故正确;④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b,故正确.故答案为:②③④14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.【考点】循环结构.【分析】由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.【解答】解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:815.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是90°.【考点】异面直线及其所成的角.【分析】以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.【解答】解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2)•=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.【考点】几何概型.【分析】分析知如两船到达的时间间隔超过了停泊的时间则不需要等待,要求一艘船停靠泊位时必须等待一段时间的概率;即计算一船到达的时间恰好另一船还没有离开,此即是所研究的事件.【解答】解:设甲船在x点到达,乙船在y点到达,必须等待的事件需要满足如下条件:,画出不等式组表示的平面区域如图所示;所以p(A)=1﹣=;所以一艘船停靠泊位时必须等待一段时间的概率是.故答案为:.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【考点】古典概型及其概率计算公式.【分析】(I)利用频率分布直方图,求出频率,进而根据频数=频率×样本容量,得到答案;(II)先计算从参加社区服务时间不少于90小时的学生中任意选取2人的情况总数,再计算所选学生的参加社区服务时间在同一时间段内的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为20×0.04×5=4(人),参加社区服务在时间段[95,100]的学生人数为20×0.02×5=2(人).所以参加社区服务时间不少于90小时的学生人数为4+2=6(人).…(Ⅱ)设所选学生的服务时间在同一时间段内为事件A.由(Ⅰ)可知,参加社区服务在时间段[90,95)的学生有4人,记为a,b,c,d;参加社区服务在时间段[95,100]的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率.…18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.【考点】平面与平面垂直的判定;直线与平面平行的判定;点、线、面间的距离计算.【分析】(1)取PC的中点G,连接FG、EG,证出AF∥EG,由线面平行的判定定理,即可证出:AF∥平面PCE.(2)先证出AF⊥平面PCD,再由(1),可证EG⊥平面PCD,由面面垂直的判定定理即可证出平面PCE⊥平面PCD;(3)过点D作DH⊥PC于H,DH的长为点D到平面PEC的距离.【解答】(1)证明:取PC的中点为G,连结FG、EG∵FG∥DC,FG=DC,DC∥AB,AE=AB∴FG∥AE且FG=A∴四边形AFGE为平行四边形,∴AF∥EG.又∵AF⊄平面PCE,EG⊂平面PCE,∴AF∥平面PCE…(2)证明:∵PA⊥平面ABCD,AD⊥D,∴PD⊥DC∴∠PDA为二面角P﹣CD﹣B的平面角,∴∠PDA=45°,即△PAD为等腰直角三角形又∵F为PD的中点,∴AF⊥PD ①由DC⊥AD,DC⊥PD,AD∩PD=D,得:DC⊥平面PAD.而AF⊂平面PAD,∴AF⊥DC ②由①②得AF⊥平面PDC.而EG∥AF∴EG⊥平面PDC,又EG⊂平面PCE,∴平面PCE⊥平面PDC…(3)解:过点D作DH⊥PC于H.∵平面PCE⊥平面PDC,∴DH⊥平面PEC.即DH的长为点D到平面PEC的距离.在Rt△PAD中,PA=AD=a,PD= a在Rt△PDC中,PD=a,CD=a,PC=a,DH=a.即:点D到平面PCE的距离为a…19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)5090【考点】用样本的频率分布估计总体分布;频率分布直方图;众数、中位数、平均数.【分析】(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果即得;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在[50,90)之外的人数.【解答】解:(1)依题意得,10(2a+0.02+0.03+0.04)=1,解得a=0.005;(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分);(3)数学成绩在[50,60)的人数为:100×0.05=5,数学成绩在[60,70)的人数为:,数学成绩在[70,80)的人数为:,数学成绩在[80,90)的人数为:,所以数学成绩在[50,90)之外的人数为:100﹣5﹣20﹣40﹣25=10.20.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.【考点】异面直线及其所成的角.【分析】(Ⅰ)直接作出异面直线所成角的平面角,通过余弦定理求解.(Ⅱ)由线线垂直转化为线面垂直及面面垂直然后建立比例关系,最后求参数的值.【解答】解:(Ⅰ)在平面ABCD内,过C点作CH∥EG交AD于H,连结PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.在△PCH中,由余弦定理得,cos∠PCH=∴异面直线GE与PC所成角的余弦值为.(Ⅱ)在平面GBCD内,过D作DM⊥GC,M为垂足,连结MF,又因为DF⊥GC ∴GC⊥平面MFD,∴GC⊥FM由平面PGC⊥平面GBCD,∴FM⊥平面GBCD∴FM∥PG由得GM⊥MD,∴GM=GD•cos45°=∵,∴k=321.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.【考点】直线与平面垂直的判定;余弦定理.【分析】(I)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.利用面面垂直和线面垂直的判定与性质定理和二次函数的单调性即可得出;(II)在等腰△ADC中,使用余弦定理和利用余弦函数的单调性即可得出.【解答】解:(Ⅰ)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.∵平面APQ⊥平面PBCQ,又∵AR⊥PQ,∴AR⊥平面PBCQ,∴AR⊥RB.在Rt△BRD中,BR2=BD2+RD2=,AR2=x2.故d2=BR2+AR2=.∴当时,d2取得最小值.(Ⅱ)∵AB=AC=d,BC=2,∴在等腰△ADC中,由余弦定理得,即,∴当时,cosθ取得最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.【考点】棱锥的结构特征.【分析】(1)分别作出三角形的高,求出四个三角形的面积,然后求三棱锥D﹣ABC的表面积;(2)要证AC⊥平面DEF,先证AC⊥DE,再证AC⊥EF,即可.(3)M为BD的中点,连CM,设CM∩DE=O,连OF,只要MN∥OF即可,求出CN.【解答】解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D﹣ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.2016年11月26日。
精选2017-2018学年高二数学上学期期中试题文(含解析)

2017-2018学年上期中考19届高二文科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知数列,则是这个数列的第()项A. 20B. 21C. 22D. 23【答案】D【解析】由,得即,解得,故选D2. 已知为等差数列,为公比,则“”是“为递增数列”的()A. 既不充分也不必要条件B. 必要不充分条件C. 充要条件D. 充分不必要条件【答案】A【解析】当等比数列的首项而公比时,是递减数列,反过来,当为递增数列,也可以,公比,故为等差数列,为公比,则“”是“为递增数列”的既不充分也不必要条件选A3. 已知数列的前项和为,若,,则()A. 90B. 119C. 120D. 121【答案】C【解析】,故,故;故选C.4. 在等差数列中,已知5是和的等差中项,则()A. 9B. 10C. 12D. 14【答案】B【解析】由题意在等差数列中,已知5是和的等差中项,则,则由等差数列的性质可得故选B5. 下列说法正确的是()A. 在中,三边分别为,若,则该三角形为钝角三角形B. 是的充分不必要条件C. 若,则成等比数列D. 若为真命题,则为真命题【答案】A【解析】对于A.根据题意,由余弦定理可得∴是钝角三角形.反之也成立,故A正确;对于B. 对于,反之不成立,因此是的必要不充分条件,不正确;对于C.若,则不成等比数列,不正确;对于D. 若为真命题,则则不一定为真命题故选A.6. 已知等差数列的前项和为,,,则当取得最大值时,为()A. 7B. 8C. 9D. 10【答案】C【解析】∵等差数列中,,,,,∴数列的前9项和最大.故选C【点睛】本题考查等差数列的性质和前项和,本题解题的关键是根据等差数列的性质得到所给的数列的项的正负7. 若的角所对应的边分别为,且,,,则()A. B. C. D.【答案】B【解析】在中,,,可得,解得.由余弦定理可得:故选B.8. 已知数列是递减数列,且对任意的正整数,恒成立,则实数的取值范围为()A. B. C. D.【答案】D【解析】由已知数列是递减数列,恒成立又由恒成立即,又由故选D【点睛】本题考查等差数列的单调性,利用二次函数单调性讨论较繁,且易错,利用恒成立较方便.但要注意的隐含条件,这也是本题的易忽略点.9. 在锐角中,所对应的边分别为,若,则的取值范围是()A. B. C. D.【答案】C【解析】,因为是锐角三角形∴需满足,故选C10. 若实数满足,则的取值范围是()A. B. C. D.【答案】A【解析】作出不等式组表示的可行域如图.令,则,则表示直线在轴上的截距,截距越大,越大由题意可得,此时)又可行域过点时,最大,过点时最小,,,则故选A11. 已知等比数列的前项和为,且,若,则()A. 2B. 3C. 4D. 5【答案】D【解析】时,.时,对于上式也成立,..解得.故选D.12. 已知,且,若恒成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】,且(当且仅当时取到等号)..恒成立,即,解得:.故选B.【点睛】本题考查基本不等式与函数恒成立问题,,考查学生分析转化与应用基本不等式的能力.其中将问题转化为求的最小值是解题的关键.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若成等差数列,则__________.【答案】4【解析】成等差数列,,∴,即答案为4.14. 已知不等式的解集为,则__________.【答案】5【解析】由已知不等式的解集为,则对应方程的两个根分别为1和2,则即答案为515. 已知命题“若存在,使得”为真命题,得不等式成立,则实数的取值范围为__________.【答案】【解析】当时,。
辽宁省沈阳市2017_2018学年高二数学上学期期中试题文 Word版 含答案

2017—2018学年度上学期高二年级期中考试数学科试卷(文科)答题时间:120分钟;满分:150分第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题1:R p x ∃∈,使得210x x ++<;2:[1,2]p x ∀∈,使得210x -≥.以下命题为真命题的为( )A .12p p ⌝∧⌝B .12p p ∨⌝C .12p p ⌝∧D .12p p ∧ 2.已知等比数列{}n a 的前三项依次为4,1,1++-a a a ,则=n a ( ) A .n)23(4⋅ B .n)32(4⋅ C .1)23(4-⋅n D .1)32(4-⋅n3.设等比数列{}n a 的前n 项和为n S ,则“10a >”是“32S S >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.下列命题正确的个数是( )①对于实数c b a ,,,若b a >,则22bc ac >;②命题“若1x <-,则2230x x -->”的否命题为:“若1x <-,则2320x x -+≤”;③“5x =”是“2450x x --=”的充分不必要条件;④命题“2000,13x R x x ∃∈+≥”的否定是“2,13x R x x ∀∈+≤”. A . 1 B .2 C .3 D .4 5.已知R m ∈,命题p :方程my m x -+-6222=l 表示椭圆,命题0107:2<+-m m q ,则命题p 是命题q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.设{}n a 是等差数列,公差为d ,n S 是其前n 项的和,且65S S <,876S S S >=, 则下列结论错误..的是( )A .0<dB .07=aC .59S S >D .6S 和7S 均为n S 的最大值 7.两等差数列{}n a 、{}n b 的前n 项和分别为n S 和n T ,且(27)(53)n n n S n T +=+,则55b a 的值是( ) A .2817 B .2315 C .5327 D .48258.设1F ,2F 分别是椭圆1422=+y x 的左右焦点,若Q 是该椭圆上的一个动点,则 12QF QF ⋅的最大值和最小值分别为( )A .1与2-B .2与2-C .1与1-D .2与1-9.椭圆22221x y a b+=(a >0b >)的左、右焦点分别是12F F ,,过2F 作倾斜角为120 的直线与椭圆的一个交点为M ,若1MF 垂直于x 轴,则椭圆的离心率为( ) A.2B.2(2 C.3 D .1211- 10.设集合(){},|||||1,A x y x y =+≤(){},()()0B x y y x y x =-+≤,M A B = ,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B.5[]22C.1[2 D.[2 11.已知等差数列{}n a 的公差0d ≠,且1a ,3a ,13a 成等比数列,若11a =,n S 是数列{}n a 的前n 项的和,则*216()3n n S n N a +∈+的最小值为( )A .4B .3 C.2 D .9212.如图,椭圆的中心在坐标原点,焦点在x 轴上,1212,,,A A B B 为椭圆顶点,2F 为右焦点,延长12B F 与22A B 交于点P ,若12B PA ∠为钝角,则该椭圆离心率的取值范围是( )A .)1,225(-B .)225,0(-已知数列n a 满足)(222121+-∈=+⋅⋅⋅++N n na a a n n (Ⅰ)求数列{}n a 的通项;(Ⅱ)若n n a n b )3(-=,求数列{}n b 的前n 项和n S .19.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是12,其左、右顶点分别为1A 、2A ,B 为短轴的一个端点,12A BA ∆的面积为 (Ⅰ)求椭圆C 的方程;(Ⅱ)直线:l x =x 轴交于D ,P 是椭圆C 上异于1A 、2A 的动点,直线1A P 、2A P 分别交直线l 于E 、F 两点,求证:||||DE DF ⋅为定值.20.(本题满分12分)已知数列{}n a 的前n 项和为n S ,且112n n S n a +=⋅,其中11a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若1221n n n n n a a b a a ++++=+,数列{}n b 的前n 项和为n T ,求证:212+<n T n .21.(本题满分12分)设椭圆22221(0)x y a b a b+=>>的左焦点为F,过点F 且与x 轴垂直的直线被椭圆(Ⅰ)求椭圆的方程;(Ⅱ)设A ,B 分别为椭圆的左右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若8=⋅+⋅,求k 的值.22.(本题满分12分)。
山东省潍坊市20172018学年高二上学期期中考试数学文试题Word版含答案

2017-2018学年度第一学期模块监测高二数学(文科)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知b a >,d c >,那么下列不等式一定正确的是( )A .bc ad >B .bd ac >C .d b c a ->-D .c b d a ->-2.设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B . 7C . 9D .113.若ABC ∆的三个内角满足13:11:5sin :sin :sin =C B A ,则ABC ∆( )A .一定是锐角三角形 B.一定是直角三角形C .一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形4.设}{n a 是等比数列,下列说法一定正确的是( ) A .931,,a a a 成等比数列 B .632,,a a a 成等比数列 C. 842,,a a a 成等比数列 D .963,,a a a 成等比数列5. 若关于x 的不等式mx x x >+-2212的解集为)2,0(,则实数m 的值是( ) A .1 B .2 C. 3 D .46.《莱茵德纸草书》是世界最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的71是较小的两份之和,则最小的一份为( )A .35B .310 C. 65 D .6117.若变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,则y x z +=2的最大值为( )A . 4B .3 C. 2 D .18.设}{n a 是等差数列,下列结论中正确的是( )A .若031<+a a ,则021<+a a B .若210a a <<,则312a a a > C.若031>+a a ,则021>+a a D .若01<a ,则0))((3212>--a a a a9.在等腰ABC ∆中,内角C B A ,,所对应的边分别为c b a ,,,32=a ,0120=∠A ,则此三角形的外接圆半径和内切圆半径分别为( )A .4和2B .4和32 和332- D .2和332+10.若b a ,是函数)0,0()(2>>+-=q p q px x x f 的两个不同的零点,且b a ,2,-这三个数依次成等比数列,a b ,,2-这三个数依次成等差数列,则=pq ( )A .4B . 5 C. 9 D .2011.设b a x x f <<=0,ln )(,若)(ab f p =,)2(b a f q +=,))()((21b f a f r +=,则下列关系中正确的是( )A . q r p >=B .q r p <= C. p r q <= D .p r q >=12.已知两个等差数列}{n a 和}{n b 的前n 项和分别为n S ,n T ,且n n T n S n )237()1(+=+,则使得n nb a 为整数的正整数n 的个数是( )A . 2B . 3 C. 4 D .5第Ⅱ卷(共90分) 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数)3(31>-+=x x x y 的最小值为 . 14.已知数列}{n a 是递减等比数列,且274=a ,36=a ,则数列 }{n a 的通项公式=n a .15.已知ABC ∆中,满足060=B ,2=c 的三角形有两解,则边长b 的取值范围为 .16.寒假期间,某校长委员会准备租赁B A ,两种型号的客车安排900名学生到重点高校进行研学旅游,B A ,两种客车的载客量分别为36人和60人,租金分别为1200元/辆和1800元/辆,家长委员会为节约成本,要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为 元.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 解下列关于x 的不等式:(1)321≥-+x x ;(2)0222≤--a ax x )(R a ∈.18. 已知ABC ∆的内角C B A ,,所对应的边分别为c b a ,,,且满足B A B A sin sin 2)cos(=-.(1)判断ABC ∆的形状;(2)若3=a ,6=c ,CD 为角C 的平分线,求BCD ∆的面积.19. 设n S 是等差数列}{n a 的前n 项和,已知231-=+a a ,7515=S ,)(*N n ∈. (1)求9S ; (2)若数列)4)(4(11++=+n n n a a b ,求数列}{n b 的前n 项和n T .20. 已知ABC ∆的内角C B A ,,所对应的边分别为c b a ,,,且b A c C a B =+)cos cos (cos 2.(1)求B ;(2)若1=+c a ,求b 的取值范围.21. 潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔AE 的高度H (单位:米),如图所示,垂直放置的标杆BC 的高度4=h 米,已知α=∠ABE ,β=∠ADE .(1)该班同学测得βα,一组数据:31.1tan ,35.1tan ==βα,请据此算出H 的值;(2)该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离d (单位:米),使α与β的差较大,可以提高测量精确度,若观光塔高度为136米,问d 为多大时,)tan(βα-的值最大?22.已知数列}{n a 的前n 项和n S ,n n S n 22+=.(1)求数列}{n a 的通项公式;(2)令n n n a b 2=,设数列}{n b 的前n 项和为n T ,求n T . (3)令π)1cos(1+=+n a a c n n n ,若221tn c c c n ≥+++ 对*N n ∈恒成立,求实数t 的取值范围.试卷答案一、选择题:1-5 D A C D A 6-10 A B B C D 11-12 B C二、填空题:13. 5 14.n -73 15. (3,2) 16. 27600三、解答题17.(本小题满分10分)解:(I )将原不等式化为0272≤--x x ,即),2(0)2)(72(≠≤--x x x ,272 ≤<∴x 所以原不等式的解集为7{2}.2x x <≤ (II )当0a =时,不等式的解集为{0};当0a ≠时,原不等式等价于()(2)0x a x a +-≤,因此 当0a >时,2a a -<, 2,a x a ∴-≤≤当0a <时,2a a ->, 2,a x a ∴≤≤-综上所述,当0a =时,不等式的解集为{0},当0a >时,不等式的解集为,{2}x a x a -≤≤,当0a <时,不等式的解集{2}.x a x a ≤≤-18. (本小题满分12分)解:(I )由B A B A sin sin 2)cos(=-,得 B A B A B A sin sin 2sin sin cos cos =+,0sin sin cos cos =-∴B A B A ,0)cos( =+∴B A .︒=∴90 C , 故ABC ∆为直角三角形.(II)由(I )知︒=90C ,又6,3==c a ,∴3322=-=a c b ,︒=∠︒=105,30ADC A ,由正弦定理得ADC AC A CD ∠=sin sin ,26329214263330sin 105sin 33 -=⨯+=︒⨯︒=∴CD ,.439274sin 32632921sin 21 -=⋅⋅-⋅=∠⋅⋅⋅=∴πBCD a CD S19. (本小题满分12分)解:(I )设数列}{n a 的公差为d ,则{112221510575a d a d +=-+=,即 {1111510575a d a d +=-+=, …2分解得{211-==a d ,所以9989(2)1182S ⨯=⨯-+⨯=.(也可利用等差数列的性质解答)(II)由(I )知21(1)3n a n n =-+⋅-=-,2111)2)(1(1)4)(4(11+-+=++=++=+n n n n a a b n n n ,∴=++++=n nb b b b T 321)2111()4131()3121(+-++-+-n n .422121+=+-=n n n20. (本小题满分12分)解:(I )由已知及正弦定理得,B A C C A B sin )cos sin cos (sin cos 2=+,即B C A B sin )sin(cos 2=+,B B B sin sin cos 2 =∴,在ABC ∆中,可得,21cos =B 所以3π=B .(II )∵1a c +=,即1c a =-,1cos 2B =,∴由余弦定理得:2222cos b a c ac B =+-⋅,即2222()313(1)b a c ac a c ac a a =+-=+-=--2113(),24a =-+∵01a <<,∴211,4b ≤<则1 1.2b ≤<21. (本小题满分12分)解:(I )由αtan H AB =,βtan h BD =,βtan H AD =, 及AD BD AB =+,得ββαtan tan tan H h H =+, 解得tan 4 1.35135tan tan 1.35 1.31h H ααβ⨯===--,因此算出观光塔的高度H 是135m.(II )由题设知AB d =,得d H =αtan ,由ββtan tan h H BD AD AB -=-=得d h H -=βtan , 所以)(2)(tan tan 1tan tan )tan(h H H h d h H H d h -≤-+=+-=-βαβαβα.当且仅当d d H H d )(-=,即()136(1364)41122()d H H d m -=⨯-=时, 上式取等号,所以当m d 11224=时)tan(βα-最大.22.(本小题满分12分)解:(I)当2≥n 时,,12)]1(2)1[(2221+=-+--+=-=-n n n n n S S a n n n当1=n 时,31=a ,适合上式, ∴12+=n a n (*∈N n ).(II)n n nb 212+=,则n n n T 21221322122211232++++⨯++⨯++⨯= ,143221221)1(2213221222112 21++++-⨯+++⨯++⨯++⨯=n n n n n T ,-得1322122222222321++-++++=n n n n T ,125225++-=n n.n n n T 2525 +-=∴ .(III)ππ)1cos()32)(12()1cos(1+++=+=+n n n n a a c n n n ,当n 为奇数时,1)1cos(=+πn ,=+⨯+++⨯-⨯+⨯-⨯=+++)32()12(11997755321n n c c c n.7624)1)(82(415)12117(4532++=-+⨯+=++++⨯+⨯n n n n n, 2tn T n ≥ ,762 22tn n n ≥++∴,75)731(726722++=++≤∴n n n t 2.t ∴≤当n 为偶数时,1)1cos(-=+πn ,=+⨯+-+⨯-⨯+⨯-⨯=+++)32()12(11997755321n n c c c n.62)121395(42n n n --=+++++⨯-, 2tn T n ≥ ,62 22tn n n ≥--∴,62 n t --≤∴.5 -≤∴t综上所述, 5.t ≤-2017—2018学年度第一学段模块监测高二数学(文科)参考答案一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 D A C D A 6-10 A B B C D 11-12 B C二、填空题:本大题共4个小题,每小题5分,共20分)答案填写在答题卡相应的位置上.13. 5 14.n -73 15. (3,2) 16. 27600三、解答题(本大题包括6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤,把正确答案填在答题卡中的对应位置上).17.(本小题满分10分)解:(I )将原不等式化为0272≤--x x , …………………2分即),2(0)2)(72(≠≤--x x x ,272 ≤<∴x …………………4分 所以原不等式的解集为7{2}.2x x <≤ ………… …………………5分 (II )当0a =时,不等式的解集为{0}; ……………………6分当0a ≠时,原不等式等价于()(2)0x a x a +-≤,因此 当0a >时,2a a -<, 2,a x a ∴-≤≤当0a <时,2a a ->, 2,a x a ∴≤≤- ……… ……………………9分综上所述,当0a =时,不等式的解集为{0},当0a >时,不等式的解集为,{2}x a x a -≤≤,当0a <时,不等式的解集{2}.x a x a ≤≤- ……… ……… …………10分18. (本小题满分12分)解:(I )由B A B A sin sin 2)cos(=-,得 B A B A B A sin sin 2sin sin cos cos =+, … ………………2分0sin sin cos cos =-∴B A B A ,0)cos( =+∴B A . ……… …………4分︒=∴90 C , 故ABC ∆为直角三角形. …………………………6分(II)由(I )知︒=90C ,又6,3==c a ,∴3322=-=a c b ,︒=∠︒=105,30ADC A , … …………8分由正弦定理得ADC AC A CD ∠=sin sin ,26329214263330sin 105sin 33 -=⨯+=︒⨯︒=∴CD , ………………10分.439274sin 32632921sin 21 -=⋅⋅-⋅=∠⋅⋅⋅=∴πBCD a CD S ………12分19. (本小题满分12分)解:(I )设数列}{n a 的公差为d ,则{112221510575a d a d +=-+=,即 {1111510575a d a d +=-+=, …2分解得{211-==a d , ……………………………………4分 所以9989(2)1182S ⨯=⨯-+⨯=. ……………………………………6分 (也可利用等差数列的性质解答)(II)由(I )知21(1)3n a n n =-+⋅-=-, ……… ………… ………7分 2111)2)(1(1)4)(4(11+-+=++=++=+n n n n a a b n n n , ………………9分∴=++++=n n b b b b T 321)2111()4131()3121(+-++-+-n n.422121+=+-=n n n ……………… ………………12分20. (本小题满分12分)解:(I )由已知及正弦定理得,B A C C A B sin )cos sin cos (sin cos 2=+,即B C A B sin )sin(cos 2=+,B B B sin sin cos 2 =∴, 在ABC ∆中,可得,21cos =B 所以3π=B . ……………………6分(II )∵1a c +=,即1c a =-,1cos 2B =, ∴由余弦定理得:2222cos b a c ac B =+-⋅,即2222()313(1)b a c ac a c ac a a =+-=+-=--2113(),24a =-+∵01a <<,∴211,4b ≤<则1 1.2b ≤< …………………………12分21. (本小题满分12分)解:(I )由αtan H AB =,βtan h BD =,βtan H AD =, ………………2分 及AD BD AB =+,得ββαtan tan tan H h H =+, ……………………3分 解得tan 4 1.35135tan tan 1.35 1.31h H ααβ⨯===--, ………… ………………5分因此算出观光塔的高度H 是135m. ………………6分(II )由题设知AB d =,得d H =αtan ,由ββtan tan h H BD AD AB -=-=得d h H -=βtan , ………………8分 所以)(2)(tan tan 1tan tan )tan(h H H h d h H H d h -≤-+=+-=-βαβαβα.………………10分当且仅当d d H H d )(-=,即()136(1364)41122()d H H d m -=⨯-=时, 上式取等号,所以当m d 11224=时)tan(βα-最大. ………………12分22.(本小题满分12分)解:(I)当2≥n 时,,12)]1(2)1[(2221+=-+--+=-=-n n n n n S S a n n n …………2分当1=n 时,31=a ,适合上式, ∴12+=n a n (*∈N n ). …………3分百度文库 - 让每个人平等地提升自我 11 (II)n n n b 212+=,则n n n T 21221322122211232++++⨯++⨯++⨯= ,……………4分 143221221)1(2213221222112 21++++-⨯+++⨯++⨯++⨯=n n n n n T , ………5分-得 1322122222222321++-++++=n n n n T , ………………………6分125225++-=n n .n n n T 2525 +-=∴ . ………… ………………………………………7分(III)ππ)1cos()32)(12()1cos(1+++=+=+n n n n a a c n n n , ………………8分 当n 为奇数时,1)1cos(=+πn ,=+⨯+++⨯-⨯+⨯-⨯=+++)32()12(11997755321n n c c c n .7624)1)(82(415)12117(4532++=-+⨯+=++++⨯+⨯n n n n n, 2tn T n ≥ ,762 22tn n n ≥++∴ ,75)731(7267 22++=++≤∴n n n t 2.t ∴≤ ………………………10分 当n 为偶数时,1)1cos(-=+πn ,=+⨯+-+⨯-⨯+⨯-⨯=+++)32()12(11997755321n n c c c n.62)121395(42n n n --=+++++⨯-, 2tn T n ≥ ,62 22tn n n ≥--∴ ,62 n t --≤∴.5 -≤∴t 综上所述, 5.t ≤- ………………………………………12分。
天津市七校2017-2018学年高二上学期期中考试数学(文)试卷 Word版含解析

2017~2018学年度第一学期期中七校联考高二数学试卷一、选择题:(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线:10l mx y m -+-=与圆22:(1)5C x y +-=的位置关系是( ).A .相切B .相交C .相离D .不确定【答案】A【解析】直线:10l mx y m -+-=,即1(1)y m x -=-,即直线过(1,1)点,∵把(1,1)点代入圆的方程有10+∴点(1,1)在圆的内部,∴过(1,1)点的直线一定和圆相交.故选A .2.在梯形ABCD 中,π2ABC ∠=,AD BC ∥,222BC AD AB ===.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ). A .2π3 B .4π3 C .5π3 D .2π【答案】C【解析】由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆锥,挖去一个相同底面高为1的倒圆锥, 几何体的体积为:2215π1π21π133⋅-⨯⨯=,综上所述.故选C .3.已知平面α,β,直线l ,m ,且有l α⊥,m β⊂,则下列四个命题正确的个数为( ). ①若αβ∥,则l m ⊥;②若l m ∥,则l β∥; ③若αβ⊥,则l m ∥;④若l m ⊥,则l β⊥; A .1B .2C .3D .4 【答案】A【解析】若αβ∥,则l β⊥,又由m β⊂,故l m ⊥,故①正确;若l m ∥,m β⊂,则l β∥或l β⊂,故②错误;若αβ⊥,则l 与m 相交、平行或异面,故③错误;若l m ⊥,则l 与β相交,平行或l β⊂,故④错误.故四个命题中正确的命题有1个.故选A .4.已知点(4,2)(0,0)a b a b >>在圆22:4C x y +=和圆22:(2)(2)4M x y -+-=的公共弦上,则12a b+的最小值为( ).A .1B .2C .4D .8 【答案】D【解析】根据题意,圆C 的方程为224x y +=,圆M 的方程为22(2)(2)4x y -+-=,则其公共弦的方程为2x y +=,又由点(4,2)a b 在两圆的公共弦上,则有422a b +=,即21a b +=,1212(2)a b a b a b ⎛⎫+=++ ⎪⎝⎭,44a b b a=++,4+≥ 8=, 即12a b+的最小值为8. 故选D .5.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是( ).A .B. C. D .【答案】A【解析】作出该直观图的原图形,因为直观图中的线段C B x '''∥轴,所以在原图形中对应的线段平行于x 轴且长度不变,点C '和B '在原图形中对应的点C 和B 的纵坐标是O B ''的2倍,则OB =3OC =.故选A .6.如图,直三棱柱111ABC A B C -,AC BC ⊥,且12CA CC CB ==,则直线1BC 与直线1AB 所成角的余弦值为( ).A BCC 1B 1A 1AB C D .35【答案】A【解析】如图所示,建立空间直角坐标系.不妨取1CB =,则122CA CC CB ===.∴(2,0,0)A ,(0,0,1)B ,1(0,2,0)C ,1(0,2,1)B ,∴1(2,2,1)AB =-u u u u r ,1(0,2,1)BC =-u u u u r .∴111111cos ,||||AB BC AB BC AB BC ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r 故选A .7.设点P是函数y =(2,3)()Q a a a -∈R ,则||PQ 的最大值为( ).A2 B2 CD【答案】B【解析】由函数y =,得22(1)4x y -+=,(0)y ≤,对应的曲线为圆心在(1,0)C ,半径为2的圆的下部分,∵点(2,3)Q a a -,∴2x a =,3y a =-,消去a 得260x y --=,即(2,3)Q a a -在直线260x y --=上,过圆心C作直线的垂线,垂足为A,则max||||222PQ CA=+=+=.故选B.8.已知圆22630x y x y++-+=上的两点P,Q关于直线40kx y-+=对称,且OP OQ⊥(O为坐标原点),则直线PQ的方程为().A.1322y x=-+B.1122y x=-+或1524y x=-+C.1124y x=-+D.1322y x=-+或1524y x=-+【答案】D【解析】联立得2263012x y x yy x b⎧++-+=⎪⎨=-+⎪⎩,代入整理得225(4)6304x b x b b+-+-+=,设11(,)P x y,22(,)Q x y,∵OP OQ⊥,∴1212x x y y+=,∴212125()042bx x x x b-++=,∴222263(4)05b b b b b-+--+=,∴32b=或54b=,所以直线PQ的方程为:1322y x=-+或1524y x=-+,经验证符合题意.故选D.二、填空题:(本大题共6个小题,每小题5分,共30分.请将答案填在答题卡上)9.如图,直三棱柱111ABC A B C -的所有棱长都是2,以A 为坐标原点建立空间直角坐标系,则顶点1B 的坐标是__________.【答案】【解析】∵直三棱柱111ABC A B C -的所有棱长都是2,∴B ,∴顶点1B的坐标是,故答案为:.10.经过点(2,)M m -、(,4)N m 的直线的斜率等于1,则m 的值为__________.【答案】1【解析】经过点(2,)M m -、(,4)N m 的直线斜率为1, ∴412m m -=+, 解得:1m =.故答案为:1.11.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为__________.【答案】312【解析】如图所示,DA BC OD A B C O 设对角线AC BD O =I ,∴OB OD ==.∵222222OB OD a BD ⎫+=⨯==⎪⎪⎝⎭, ∴OB OD ⊥,又OD AC ⊥,AC OB O =I ,∴OD ⊥平面ACB ,∴三棱锥D ABC -的体积,13ABC V OD S =⨯⨯△,21132a =⨯,=.12.一只虫子从点(0,0)出发,先爬行到直线:10l x y -+=上的P 点,再从P 点出发爬行到点(1,1)A ,则虫子爬行的最短路程是__________.【答案】2【解析】如图所示:设(1,1)A 关于直线1y x =+的对称点是(,)B a b , 连接OB 和直线1y x =+交于C 点,则OC CA +最短,由11111122b a b a -⎧=-⎪⎪-⎨++⎪=+⎪⎩, 解得(0,2)B ,故直线OB 和1y x =+的交点是(0,1),故112OC CA +=+=.故答案为:2.13.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为__________.正视图侧视图俯视图【答案】3(6π)m +【解析】由图得,此图形是由一个长为3,宽为2,高为1的长方体和一个底面半径1,高为3的圆锥组成, 所以21321π133V =⨯⨯+⨯⨯⨯, 6π=+.∴体积为3(6π)m +.14.若圆2221:240()C x y ax a a +++-=∈R 与圆2222:210()C x y by b b +--+=∈R 恰有三条公切线,则a b +的最大值为__________.【答案】D【解析】曲线22630x y x y ++-+=可变为:22215(3)22x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭, 得到圆心1,32⎛⎫- ⎪⎝⎭,半径为52. 因为圆上有两点P 、Q 关于直线40kx y -+=对称,得到圆心在直线40kx y -+=上, 把1,32⎛⎫- ⎪⎝⎭代入到40kx y -+=中求出2k =,且PQ 与直线垂直, 所以直线PQ 的斜率112k -==-, 设PQ 方程为12y x b =-+, 联立得2263012x y x y y x b ⎧++-+=⎪⎨=-+⎪⎩, 代入整理得225(4)6304x b x b b +-+-+=, 设11(,)P x y ,22(,)Q x y ,∴12120x x y y +=,∴212125()042b x x x x b -++=, ∴222263(4)05b b b b b -+--+=, ∴32b =或54b =, 所以直线PQ 的方程为:1322y x =-+或1524y x =-+,经验证符合题意. 故选D .三、解答题:(本大题共6个小题,共80分.解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分13分)已知圆22:2220C x y x y ++--=和直线:34140l x y ++=.(1)求圆C 的圆心坐标及半径.(2)求圆C 上的点到直线l 距离的最大值.【答案】见解析.【解析】(1)圆22:2220C x y x y ++--=,转化为:22(1)(1)4x y ++-=,则:圆心坐标为(1,1)-,半径2r =.(2)利用(1)的结论,圆心(1,1)-到直线34140x y ++=的距离3d ==.最大距离为:325d r +=+=.16.(本小题满分13分)如图,四棱锥P ABCD -的底面ABCD 是菱形,60BCD ∠=︒,PA ⊥平面ABCD ,E 是AB 的中点,F 是PC 的中点.D AB C E FP(1)求证:平面PDE ⊥平面PAB .(2)求证:BF ∥平面PDE .【答案】见解析.【解析】(1)∵底面ABCD 是菱形,60BCD ∠=︒,∴ABD △为正三角形,E 是AB 的中点,DE AB ⊥,PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴DE AP ⊥,∵AP AB A =I ,∴DE ⊥平面PAB ,∵DE ⊂平面PDE ,∴平面PDE ⊥平面PAB .(2)取PD 的中点G ,连结FG ,GE ,GPF E C B A D∵F ,G 是中点,∴FG CD ∥且12FG CD =, ∴FG 与BE 平行且相等,∴BF GE ∥,∵GE ⊂平面PDE ,BF ⊄平面PDE ,∴BF ∥平面PDE .17.(本小题满分13分)已知点(2,1)P -.(1)求过点P 且与原点距离为2的直线l 的方程.(2)求过点P 且与原点距离最大的直线l 的方程,最大距离是多少?【答案】见解析.【解析】(1)①当l 的斜率k 不存在时显然成立,此时l 的方程为2x =. ②当l 的斜率k 存在时,设:1(2)l y k x +=-,即210kx y k ---=,2=,解得34k =, ∴:34100l x y --=.故所求l 的方程为2x =或34100x y --=.(2)即与OP 垂直的直线为距离最大的. ∵12OP k =-, ∴2l k =.∴直线为250x y --=.最大距离d =18.(本小题满分13分)如图,四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF CE ∥,BF BC ⊥,BF CE <,2BF =,1AB =,AD =.DA B CEF(1)求证:BC AF ⊥.(2)求证:AF ∥平面DCE .(3)若二面角E BC A --的大小为120︒,求直线DF 与平面ABCD 所成的角.【答案】见解析.【解析】证明:(1)∵四边形ABCD 为矩形,∴AB BC ⊥,又∵BF BC ⊥,AB ,BF ⊂平面ABF ,AB BF B =I ,∴BC ⊥平面ABF ,∵AF ⊂平面ABF ,∴BC AF ⊥.(2)∵BF CE ∥,BF ⊄平面CDE ,CE ⊂平面CDE ,∴BF ∥平面CDE .∵四边形ABCD 是矩形,∴AB CD ∥,又AB ⊄平面CDE ,CD ⊂平面CDE ,∴AB ∥平面CDE ,又AB ,BF ⊂平面ABF ,AB BF B =I ,∴平面ABF ∥平面CDE ,∵AF ⊂平面ABF ,∴AF ∥平面DCE .(3)过F 作FN 与AB 的延长线垂直,N 是垂足,连结DN .FECA D∵BC AB ⊥,BC BF ⊥,∴ABF ∠就是二面角E BC A --的平面角,∴120ABF ∠=︒,60FBN ∠=︒, ∴112BN BF ==,FN , ∵1AB =,AD 90BAD ∠=︒,∴3DN =.∵BC ⊥平面ABF , BC ⊂平面ABCD ,∴平面ABF ⊥平面ABCD ,又平面ABF I 平面ABCD AB =,FN AB ⊥, ∴FN ⊥平面ABCD ,∴FDN ∠是直线DF 与平面ABCD 所成的角,∴tan FN FDN DN ∠== ∴30FDN ∠=︒,∴直线DF 与平面ABCD 所成的角为30︒.19.(本小题满分14分)如图,三棱柱111ABC A B C -的所有棱长都是2,1AA ⊥平面ABC ,D ,E 分别是AC ,1CC 的中点.D A B CE C 1B 1A 1(1)求证:AE ⊥平面1A BD .(2)求二面角1D BA A --的余弦值.(3)求点1B 到平面1A BD 的距离.【答案】见解析.【解析】(1)证明:∵1AA ⊥平面ABC ,BD ⊂平面ABC , ∴1AA BD ⊥,∵ABC △是等边三角形,∴BD AC ⊥,又1AA AC A =I ,∴BD ⊥平面11AA C C ,以D 为原点建立空间直角坐标系如图所示:A则(1,0,0)A ,(1,1,0)E -,1(1,2,0)A ,(0,0,0)D,B , ∴(2,1,0)AE =-u u u r ,1(1,2,0)DA =u u u u r,DB =u u u r ,∴10AE DA ⋅=u u u r u u u u r ,0AE DB ⋅=u u u r u u u r , ∴1AE DA ⊥,AE DB ⊥,又1DA DB D =I ,∴AE ⊥平面1A BD .(2)1(0,2,0)AA =u u u r,(AB =-u u u r ,设平面1AA B 的法向量为(,,)n x y z =r ,则100n AA n AB ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r ,∴200y x =⎧⎪⎨-=⎪⎩, 令1z =得n =r ,又AE u u u r 为平面1A BD 的法向量,∴二面角1D BA A --的余弦值为cos ,||||n AE n AE n AE ⋅==r u u u r r u u u r r u u u r ,=. (3)11(A B AB ==-u u u u r u u u r ,1111112cos ,22||||A B AE A B AE A B AE ⋅==⋅u u u u r u u u r u u u u r u u u r u u u u r u u u r , 12=, ∴直线11A B 与平面1A BD 所成角的正弦值为12, ∴点1B 到平面1A BD 的距离为11112A B ⨯=.20.(本小题满分14分) 已知圆22:(2)1M x y +-=,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点. (1)当Q 的坐标为(1,0)时,求切线QA ,QB 的方程.(2)求四边形QAMB 面积的最小值.(3)若||3AB =MQ 的方程. 【答案】见解析.【解析】(1)当过Q 的直线无斜率时,直线方程为1x =,显然与圆相切,符合题意; 当过Q 的直线有斜率时,设切线方程为(1)y k x =-,即0kx y k --=, ∴圆心(0,2)到切线的距离1d ==, 解得34k =-, 综上,切线QA ,QB 的方程分别为1x =,3430x y +-=.(2)2MAQ QAMB S S =四边形△,【注意有文字】1212=⨯⨯=∴当MQ x ⊥轴时,MQ 取得最小值2,∴四边形QAMB(3)圆心M 到弦AB 13=, 设MQ x =,则221QA x =-,又AB MQ ⊥,∴222113x x ⎛⎫-+=- ⎪⎝⎭⎝⎭, 解得3x =.∴M 或(M ,∴直线MQ 的方程为2y x =+或2y =+。
广东省深圳市高级中学2017-2018学年高二上学期期中考试 数学(文) Word版含答案

深圳市高级中学2017-2018学年第一学期期中考试高二文科数学本试卷由两部分组成。
第一部分:高二数学第一学期前的基础知识和能力考查,共79分选择题包含第1、2、4、5、6、9、11题,共35分 填空题包含第14、16题,共10分 解答题包含第17、18、20题,共34分第二部分:高二数学第一学期的基础知识和能力考察,共71分选择题包含第3、7、8、10、12题,共25分 填空题包含第13、15题,共10分 解答题包含第19、21、22题,共36分本试卷4页,22小题,全卷共计150分。
考试时间为120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再填涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,监考人员将答题卡按座位号、页码顺序收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}2,4,6B =,则()U A B =I ð A .{}1B .{}2C .{}4D .{}1,22.已知向量()1,1λ=+m ,()2,2λ=+n ,若()()+⊥-m n m n ,则λ= A .4-B .3-C .2-D .1-3.已知命题p :0x ∀>,总有()1e 1xx +>,则p ⌝为A .00x ∃≤,使得()001e 1xx +≤B .00x ∃>,使得()001e 1xx +≤C .0x ∀>,总有()1e 1x x +≤D .0x ∀≤,总有()1e 1xx +≤4.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-<⎩.若()()22f a f a ->,则实数a 的取值范围是 A .()(),21,-∞-+∞U B .()1,1-C .()2,1-D .()1,2-5.为了得到函数πsin 26y x ⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象 A .向右平移π6个单位长度 B .向右平移π3个单位长度 C .向左平移π6个单位长度D .向左平移π3个单位长度6.已知,过点()2,2P 的直线与圆()2215x y -+=相切,且与直线10ax y -+=垂直,则a = A .2B .1C .12-D .127.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .2233125100x y -= B .2233110025x y -= C .221520x y -= D .221205x y -= 8.若()42f x ax bx c =++满足()12f '=,则()1f '-= A .1-B .2-C .2D .09.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为 A.2-B .12-C .12D.210.设集合{}260A x x x =+-=,{}10B x mx =+=,则B 是A 的真子集的一个充分不必....要.的条件是 A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .0m ≠C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭11.若正数,x y 满足315x y+=,则34x y +的最小值为 A .245B .285C .5D .612.椭圆M :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆上任一点,且12PF PF ⋅u u u r u u u u r 的最大值的取值范围是22,3c c ⎡⎤⎣⎦,其中c =M 的离心率e 的取值范围是A .11,42⎡⎤⎢⎥⎣⎦B .1,22⎡⎢⎣⎦C .2⎛⎫⎪ ⎪⎝⎭D .1,12⎛⎫⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。
2017-2018年四川省眉山中学高二(上)期中数学试卷和参考答案(文科)
2017-2018学年四川省眉山中学高二(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)给出下列三个命题:①若平面α∥平面β,直线m⊂α,直线n⊂β,则m∥n;②若直线m∥直线n,直线m∥平面α,n∥平面β,则α∥β;③平面α∥平面β,直线m⊂α,则m∥β;.其中正确命题的个数为()A.0 B.1 C.2 D.32.(5分)若圆x2+y2+2x﹣2y=m的面积为4π,则m的值为()A.B.2 C.4 D.63.(5分)命题P:“若a<b,则a+c<b+c”,则命题P的原命题、逆命题、否命题和逆否命题中正确命题的个数是()A.0 B.2 C.3 D.44.(5分)过点(1,2)且与原点距离最大的直线方程是()A.x+2y﹣5=0 B.2x+y﹣4=0 C.x+3y﹣7=0 D.3x+y﹣5=05.(5分)在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外6.(5分)“直线l1:ax+(1﹣a)y﹣3=0与直线l2:(a﹣1)x+(2a+3)y﹣2=0互相垂直”是“a=﹣3”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)已知点M(a,b)(ab≠0),是圆x2+y2=1内一点,直线m是以M为中点的弦所在的直线,直线l的方程是ax+by=1,则()A.l∥m且l与圆相交B.l⊥m且l与圆相切C.l∥m且l与圆相离D.l⊥m且l与圆相离8.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或﹣1 D.2或19.(5分)已知命题p1:∃x∈R,使得x2+x+1<0;命题p2:∀x∈[﹣1,2],使得x2﹣1≥0,则下列命题是真命题的是()A.(¬p1)∧p2 B.p1∨p2C.p1∧(¬p2).D.(¬p1)∨(¬p2)10.(5分)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围是()A.[2﹣,1] B.[2﹣,2+] C.[,]D.[0,+∞)11.(5分)若直线y=k(x+2)与曲线有交点,则()A.k有最大值,最小值 B.k有最大值,最小值C.k有最大值0,最小值D.k有最大值,最小值012.(5分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.当|OP|=|OM|时,则直线l的斜率()A.k=3 B.k=﹣3 C.k= D.k=﹣二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)空间直角坐标系中,点A(﹣3,4,0)与点B(x,﹣1,6)的距离为,则x等于.14.(5分)已知点P(1,1)在圆x2+y2+2x﹣4y+a=0的外部,则实数a的取值范围是.15.(5分)已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,若直线l被圆C截得的弦长最短,则m的值为.16.(5分)如图,在△ABC中,,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC=PD,连接PC,得到三棱锥P﹣BCD.若该三棱锥的所有顶点都在同一球面上,则该球的表面积是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知P(3,2),一直线l过点P,①若直线l在两坐标轴上截距之和为12,求直线l的方程;②若直线l与x、y轴正半轴交于A、B两点,当△OAB面积为12时,求直线l 的方程.18.(12分)已知点M(3,1),直线l:ax﹣y+4=0及圆C:x2+y2﹣2x﹣4y+1=0(1)求过M点的圆的切线方程;(2)若l与圆C相交于A,B两点,且,求a的值.19.(12分)某工厂投资生产A产品时,每生产一百吨需要资金200万元,需要场地200m2,可获利润300万元;投资生产B产品时,每生产一百吨需要资金300万元,需要场地100m2,可获利润200万元.现该工厂可使用资金2800万元,场地1800m2.(1)设生产A产品x百万吨,生产B产品y百万吨,写出x,y满足的约束条件,并在答题卡上的直角坐标系中画出其平面区域;(2)怎样投资利润最大,并求其最大利润.20.(12分)设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.21.(12分)如图,四棱锥P﹣ABCD,底面ABCD为矩形,AB=PA=,AD=2,PB=,E为PB中点,且AE⊥BC.(1)求证:PA⊥平面ABCD;(2)若M,N分别为棱PC,PD中点,求四棱锥B﹣MCDN的体积.22.(12分)已知圆M的圆心在直线x+y=0上,半径为1,直线l:6x﹣8y﹣9=0被圆M截得的弦长为,且圆心M在直线l的右下方.(1)求圆M的标准方程;(2)直线mx+y﹣m+1=0与圆M交于A,B两点,动点P满足|PO|=|PM|(O 为坐标原点),试求△PAB面积的最大值,并求出此时P点的坐标.2017-2018学年四川省眉山中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)给出下列三个命题:①若平面α∥平面β,直线m⊂α,直线n⊂β,则m∥n;②若直线m∥直线n,直线m∥平面α,n∥平面β,则α∥β;③平面α∥平面β,直线m⊂α,则m∥β;.其中正确命题的个数为()A.0 B.1 C.2 D.3【解答】解:对于①,若平面α∥平面β,直线m⊂α,直线n⊂β,则m,n平行或异面,故①错误;对于②,若α∩β=c,且m∥n∥c,直线m∥平面α,n∥平面β,显然符合条件,但结论不成立,故②错误;对于③,若平面α∥平面β,直线m⊂α,则m与β无公共点,故而m∥β,故③正确.故选:B.2.(5分)若圆x2+y2+2x﹣2y=m的面积为4π,则m的值为()A.B.2 C.4 D.6【解答】解:圆x2+y2+2x﹣2y=m,即(x+1)2+(y﹣1)2 =m+2,故圆的半径为,则圆的面积为π(m+2)=4π,则m=2,故选:B.3.(5分)命题P:“若a<b,则a+c<b+c”,则命题P的原命题、逆命题、否命题和逆否命题中正确命题的个数是()A.0 B.2 C.3 D.4【解答】解:根据不等式的基本性质,可得原命题:“若a<b,则a+c<b+c”为真命题,故其逆否命题也为真命题;其逆命题:“若a+c<b+c,则a<b”为真命题,故其否命题也为真命题;故选:D.4.(5分)过点(1,2)且与原点距离最大的直线方程是()A.x+2y﹣5=0 B.2x+y﹣4=0 C.x+3y﹣7=0 D.3x+y﹣5=0【解答】解:设A(1,2),则OA的斜率等于2,故所求直线的斜率等于﹣,由点斜式求得所求直线的方程为y﹣2=﹣(x﹣1),化简可得x+2y﹣5=0,故选:A.5.(5分)在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外【解答】解:∵EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,∴P在两面的交线上,∵AC是两平面的交线,所以点P必在直线AC上.故选:A.6.(5分)“直线l1:ax+(1﹣a)y﹣3=0与直线l2:(a﹣1)x+(2a+3)y﹣2=0互相垂直”是“a=﹣3”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:a=1时,两条直线相互垂直.a=﹣时,两条直线不垂直,舍去.a,1时,由两条直线相互垂直可得:﹣×=﹣1,解得a=﹣3.∴a=1或﹣3时,两条直线相互垂直.∴“直线l1:ax+(1﹣a)y﹣3=0与直线l2:(a﹣1)x+(2a+3)y﹣2=0互相垂直”是“a=﹣3”的必要不充分条件.故选:B.7.(5分)已知点M(a,b)(ab≠0),是圆x2+y2=1内一点,直线m是以M为中点的弦所在的直线,直线l的方程是ax+by=1,则()A.l∥m且l与圆相交B.l⊥m且l与圆相切C.l∥m且l与圆相离D.l⊥m且l与圆相离【解答】解:由题意可得a2+b2<1,且CM⊥直线l,故直线l的斜率为=﹣直线m的方程是ax+by=1,那么直线m的斜率为﹣,圆心C到直线m的距离d=>1,故l∥m且m与圆c相离,故选:C.8.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或﹣1 D.2或1【解答】解:由题意作出约束条件,平面区域,将z=y﹣ax化为y=ax+z,z相当于直线y=ax+z的纵截距,由题意可得,y=ax+z与y=2x+2或与y=2﹣x平行,故a=2或﹣1;故选:C.9.(5分)已知命题p1:∃x∈R,使得x2+x+1<0;命题p2:∀x∈[﹣1,2],使得x2﹣1≥0,则下列命题是真命题的是()A.(¬p1)∧p2 B.p1∨p2C.p1∧(¬p2).D.(¬p1)∨(¬p2)【解答】解:x2+x+1=0的△=1﹣4=﹣3<0,故命题p1:∃x∈R,使得x2+x+1<0为假命题;x∈(﹣1,1)时,x2﹣1<0,故命题p2:∀x∈[﹣1,2],使得x2﹣1≥0为假命题;故(¬p1)∧p2,p1∨p2,p1∧(¬p2)均为假命题.(¬p1)∨(¬p2)为真命题,故选:D.10.(5分)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围是()A.[2﹣,1] B.[2﹣,2+] C.[,]D.[0,+∞)【解答】解:圆x2+y2﹣4x﹣4y﹣10=0可化为(x﹣2)2+(y﹣2)2=18,则圆心为(2,2),半径为3;则由圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2可得,圆心到直线l:ax+by=0的距离d≤3﹣2=;即≤,则a2+b2+4ab≤0,若a=0,则b=0,故不成立,故a≠0,则上式可化为1+()2+4≤0,由直线l的斜率k=﹣,则上式可化为1+k2﹣4k≤0,则∈[2﹣,2+],故选:B.11.(5分)若直线y=k(x+2)与曲线有交点,则()A.k有最大值,最小值 B.k有最大值,最小值C.k有最大值0,最小值D.k有最大值,最小值0【解答】解:如图所示,曲线表示以(0,0)为圆心,1为半径的圆(x 轴上方部分)当直线y=k(x+2)与曲线相切时,d==1(k>0),∴k=∴k有最小值0,最大值:故选:D.12.(5分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.当|OP|=|OM|时,则直线l的斜率()A.k=3 B.k=﹣3 C.k= D.k=﹣【解答】解:圆C的方程可化为x2+(y﹣4)2=16,所以圆心为C(0,4),半径为4.设M(x,y),则=(x,y﹣4),=(2﹣x,2﹣y).由题设知•=0,故x(2﹣x)+(y﹣4)(2﹣y)=0,即(x﹣1)2+(y﹣3)2=2.由于点P在圆C的内部,所以M的轨迹方程是(x﹣1)2+(y﹣3)2=2.当|OP|=|OM|时,x2+y2=8,∵P(2,2)满足M的轨迹方程,即P在以(1,3)为圆心,为半径的圆上,∴|CP|=|CM|,∴直线l的斜率k PM=﹣=﹣.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)空间直角坐标系中,点A(﹣3,4,0)与点B(x,﹣1,6)的距离为,则x等于2或﹣8.【解答】解:∵空间直角坐标系中,点A(﹣3,4,0)与点B(x,﹣1,6)的距离为,∴=,解得x=2或x=﹣8.故答案为:2或﹣8.14.(5分)已知点P(1,1)在圆x2+y2+2x﹣4y+a=0的外部,则实数a的取值范围是(0,5).【解答】解:点P(1,1)在圆x2+y2+2x﹣4y+a=0的外部,所以,解得0<a<5,所以a的取值范围是(0,5).故答案为:(0,5).15.(5分)已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,若直线l被圆C截得的弦长最短,则m的值为﹣.【解答】解:直线l:(2m+1)x+(m+1)y﹣7m﹣4=0 即(x+y﹣4)+m(2x+y ﹣7)=0,过定点M(3,1),由于点M在圆C:(x﹣1)2+(y﹣2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,故它们的斜率之积等于﹣1,即=﹣1,解得m=﹣,故答案为:﹣.16.(5分)如图,在△ABC中,,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC=PD,连接PC,得到三棱锥P﹣BCD.若该三棱锥的所有顶点都在同一球面上,则该球的表面积是7π.【解答】解:由题意得该三棱锥的面PCD是边长为的正三角形,且BD⊥平面PCD,设三棱锥P﹣BDC外接球的球心为O,△PCD外接圆圆心为O1,则OO1⊥面PCD,∴四边形OO1DB为直角梯形,由BD=,O1D=1,OB=OD,得OB=,∴三棱锥P﹣BDC的外接球半径R=,∴该球的表面积S=4πR2=4=7π.故答案为:7π.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知P(3,2),一直线l过点P,①若直线l在两坐标轴上截距之和为12,求直线l的方程;②若直线l与x、y轴正半轴交于A、B两点,当△OAB面积为12时,求直线l 的方程.【解答】解:①显然直线l有斜率且不为0,设斜率为k,则直线l的方程为:y=k (x﹣3)+2,令x=0得y=﹣3k+2,令y=0得x=+3.∴﹣3k+2++3=12,解得k=﹣或k=﹣2.∴直线l的方程为y=﹣(x﹣3)+2或y=﹣2(x﹣3)+2.②∵直线l与x、y轴交于正半轴,∴﹣3k+2>0,+3>0,∴(﹣3k+2)(+3)=12,解得k=﹣.∴直线l的方程为y=﹣(x﹣3)+2.18.(12分)已知点M(3,1),直线l:ax﹣y+4=0及圆C:x2+y2﹣2x﹣4y+1=0(1)求过M点的圆的切线方程;(2)若l与圆C相交于A,B两点,且,求a的值.【解答】解:(1)圆方程化为(x﹣1)2+(y﹣2)2=4∴圆心(1,2),半径为2斜率不存在时,经过M点的直线方程为x=3,满足题意;设经过M点的圆C的切线方程为y﹣1=k(x﹣3),即kx﹣y﹣3k+1=0∴d==2∴k=,∴切线方程为3x﹣4y﹣8=0综上,经过M点的圆C的切线方程为x=3和3x﹣4y﹣8=0;(2)圆心(1,2)到直线ax﹣y+4=0的距离为,∵直线l与圆C相交与A,B两点,且弦AB的长为2,∴()2+()2=4,解得a=﹣.∴a=﹣.19.(12分)某工厂投资生产A产品时,每生产一百吨需要资金200万元,需要场地200m2,可获利润300万元;投资生产B产品时,每生产一百吨需要资金300万元,需要场地100m2,可获利润200万元.现该工厂可使用资金2800万元,场地1800m2.(1)设生产A产品x百万吨,生产B产品y百万吨,写出x,y满足的约束条件,并在答题卡上的直角坐标系中画出其平面区域;(2)怎样投资利润最大,并求其最大利润.【解答】解:设生产A产品x百吨,生产B产品y百吨,利润为S百万元(1′)则约束条件为:,(5′)目标函数为S=3x+2y,(7′)作出可行域,(11′)使目标函数为S=3x+2y取最大值的(x,y)是直线2x+3y=28与2x+y=18的交点(6.5,5),此时S=3×6.5+2×5=29.5(13′)(15′)答:应作生产A产品6.5百吨,生产B产品5百吨的组合投资,可使获利最大.20.(12分)设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.【解答】解:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部,故1+1﹣2m+2m+2m2﹣4<0,解得:﹣1<m<1,故命题p⇔﹣1<m<1,直线mx﹣y+1+2m=0(k∈R)不经过第四象限,故,解得:m≥0,故命题q⇔m≥0;如果p∨q为真命题,p∧q为假命题,则p,q一真一假,①p真q假时,﹣1<m<0;②p假q真时,m≥1.故m的取值范围为﹣1<m<0或m≥1.21.(12分)如图,四棱锥P﹣ABCD,底面ABCD为矩形,AB=PA=,AD=2,PB=,E为PB中点,且AE⊥BC.(1)求证:PA⊥平面ABCD;(2)若M,N分别为棱PC,PD中点,求四棱锥B﹣MCDN的体积.【解答】证明:(1)由题意有PA2+AB2=3+3=6=PB2,所以PA⊥AB①,因为AB=AP,E为PB中点,所以AE⊥PB,又AE⊥PC,PB∩PC=C,所以,AE⊥平面PBC,又BC⊂平面PBC,所以AE⊥BC,又AB⊥BC,及AE∩AB=A,所以BC⊥平面PAB,又PA⊂平面PAB,所以BC⊥PA②,由①②及AB∩BC=B得PA⊥平面ABCD,故PA⊥平面ABCD.解:(2)因为BA∥CD,CD⊂平面PCD,所以BA∥平面PCD,=V A﹣MCDN,所以四棱锥B﹣MCDN的体积V B﹣MCDN又M,N分别为棱PC,PD的中点,所以,所以.22.(12分)已知圆M的圆心在直线x+y=0上,半径为1,直线l:6x﹣8y﹣9=0被圆M截得的弦长为,且圆心M在直线l的右下方.(1)求圆M的标准方程;(2)直线mx+y﹣m+1=0与圆M交于A,B两点,动点P满足|PO|=|PM|(O 为坐标原点),试求△PAB面积的最大值,并求出此时P点的坐标.【解答】解:(1)由已知可设圆心M(a,﹣a),圆心到直线l的距离为d,则d==,…(1分)于是,整理得|14a﹣9|=5,解得a=1,或a=.…(3分)∵圆心M在直线l的右下方,∴圆心M是(1,﹣1),∴圆M的标准方程为(x﹣1)2+(y+1)2=1.…(4分)(2)直线mx+y﹣m+1=0可变形为m(x﹣1)+y+1=0,即过定点(1,﹣1),∴动直线mx+y﹣m+1=0恰好过圆M的圆心,∴|AB|=2.…(5分)设P(x,y),则由|PO|=|PM|,可得x2+y2=2[(x﹣1)2+(y+1)2],整理得(x﹣2)2+(y+2)2=4,即P点在以(2,﹣2)为圆心,2为半径的圆上,…(7分)设此圆圆心为N,则N(2,﹣2).∴要使△PAB的面积最大,点P到直线AB的距离d最大,d max=|PM|=+2=+2,∴△PAB面积的最大值为=.…(8分)∵MN的方程为y=﹣x,…(9分)代入方程(x﹣2)2+(y+2)2=4中,可解得x=4,或0 (舍去),∴此时P(4,﹣4).…(10分)。
2017-2018学年安徽省蚌埠二中高二(上)数学期中试卷带解析答案(文科)
2017-2018学年安徽省蚌埠二中高二(上)期中数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是()A.一个圆柱B.一个圆锥C.两个圆锥D.一个圆台2.(5分)下列命题正确的是()A.棱柱的侧面都是长方形B.棱柱的所有面都是四边形C.棱柱的侧棱不一定相等D.一个棱柱至少有五个面3.(5分)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中OA=OB=1,则原平面图形的面积为()A.1 B.C.D.24.(5分)某几何体的三视图如图所示,则其表面积为()A.2πB.3πC.4πD.5π5.(5分)下列命题正确的是()A.四边形确定一个平面B.两两相交且不共点的三条直线确定一个平面C.经过三点确定一个平面D.经过一条直线和一个点确定一个平面6.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n7.(5分)已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为()A.B.C.D.8.(5分)已知三棱锥的主视图与俯视图如图,俯视图是边长是2的正三角形,那么该三棱锥的左视图可能为()A.B.C.D.9.(5分)直线x﹣y+2=0的倾斜角为()A.60°B.120°C.45°D.135°10.(5分)已知圆心(2,﹣3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A.x2+y2﹣4x+6y=0 B.x2+y2﹣4x+6y﹣8=0C.x2+y2﹣4x﹣6y=0 D.x2+y2﹣4x﹣6y﹣8=011.(5分)已知点P(1,3)与直线l:x+y+1=0,则点P关于直线l的对称点坐标为()A.(﹣3,﹣1)B.(2,4) C.(﹣4,﹣2)D.(﹣5,﹣3)12.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1;④直线B1D1与BC所成的角为45°.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)圆C:x2+y2+2x+2y﹣2=0,l:x﹣y+2=0,求圆心到直线l的距离.14.(5分)在正方体ABCD﹣A1B1C1D1中,与棱AA1异面的棱有条.15.(5分)直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是.16.(5分)已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17题10分,第18~22题每题12分)17.(10分)菱形ABCD中,A(﹣4,7),C(6,﹣5),BC边所在直线过点P(8,﹣1).求:(1)AD边所在直线的方程;(2)对角线BD所在直线的方程.18.(12分)已知动圆C经过点A(1,﹣2),B(﹣1,4).(1)求周长最小的圆的一般方程;(2)求圆心在直线2x﹣y﹣4=0上的圆的标准方程.19.(12分)四边形ABCD是正方形,O是正方形的中心,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥PC.20.(12分)如图,多面体ABCDE中,BE∥CD,BE⊥BC,AB=AC,平面BCDE⊥平面ABC,M为BC的中点.(1)若N是线段AE的中点,求证:MN∥平面ACD;(2)若BE=1,BC=2,CD=3,求证:DE⊥平面AME.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:在棱AC上存在一点M,使得平面C1FM∥平面ABE;(3)求三棱锥E﹣ABC的体积.22.(12分)如图组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点.(1)求证:无论点C如何运动,平面A1BC⊥平面A1AC;(2)当C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.2017-2018学年安徽省蚌埠二中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是()A.一个圆柱B.一个圆锥C.两个圆锥D.一个圆台【解答】解:如图,三角形ABC为正三角形,以其底边AB所在的直线为旋转轴旋转一周所得的几何体是两个圆锥.故选:C.2.(5分)下列命题正确的是()A.棱柱的侧面都是长方形B.棱柱的所有面都是四边形C.棱柱的侧棱不一定相等D.一个棱柱至少有五个面【解答】解:棱柱的侧面都是平行四边形,但不一定是长方形,故A错误;棱柱的底面可能不是四边形,故B错误;棱柱的侧棱一定相等,故C错误;一个棱柱至少有五个面,故D正确,故选:D.3.(5分)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中OA=OB=1,则原平面图形的面积为()A.1 B.C.D.2【解答】解:根据斜二测画法规则,把直观图还原成原平面图形如图所示,则该平面图形是直角三角形,它的面积为S=O′A′•O′B′=×1×2=1.故选:A.4.(5分)某几何体的三视图如图所示,则其表面积为()A.2πB.3πC.4πD.5π【解答】解:综合三视图可知,几何体是一个半径r=1的半个球体.且表面积是底面积与半球面积的和,其表面积S==3π.故选:B.5.(5分)下列命题正确的是()A.四边形确定一个平面B.两两相交且不共点的三条直线确定一个平面C.经过三点确定一个平面D.经过一条直线和一个点确定一个平面【解答】解:对A,空间四边形不在一个平面内,故A错误.对于B,两条相交直线确定一个平面α,第三条直线与这两条直线分别相交且交点不重合,则第三条直线也在α内,∴两两相交且不共点的三条直线确定一个平面,故B正确;对于C,当三点共线时,平面不确定,故C错误;对于D,当点在直线上时,不能确定平面,故D错误;故选:B.6.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n【解答】解:A、m,n平行于同一个平面,故m,n可能相交,可能平行,也可能是异面直线,故A错误;B、α,β 垂直于同一个平面γ,故α,β 可能相交,可能平行,故B错误;C、α,β平行于同一条直线m,故α,β 可能相交,可能平行,故C错误;D、垂直于同一个平面的两条直线平行,故D正确.故选:D.7.(5分)已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为()A.B.C.D.【解答】解:设圆锥的底面半径为r,母线长为l,∵圆锥的侧面展开图是一个半圆,∴2πr=πl,∴l=2r,∵圆锥的表面积为πr2+πrl=πr2+2πr2=6,∴r2=,即r=,故选:A.8.(5分)已知三棱锥的主视图与俯视图如图,俯视图是边长是2的正三角形,那么该三棱锥的左视图可能为()A.B.C.D.【解答】解:由已知中三棱锥的主视图与俯视图,可得三棱锥的直观图如下图所示:其顶点P在B的正上方,则该三棱锥的左视图为一个两直角边分别为和2的直角三角形,故选:B.9.(5分)直线x﹣y+2=0的倾斜角为()A.60°B.120°C.45°D.135°【解答】解:设直线x﹣y+2=0的倾斜角为θ,直线x﹣y+2=0的方程变为y=x+2.∴tanθ=1.∵θ∈[0°,180°).∴θ=45°.故选:C.10.(5分)已知圆心(2,﹣3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A.x2+y2﹣4x+6y=0 B.x2+y2﹣4x+6y﹣8=0C.x2+y2﹣4x﹣6y=0 D.x2+y2﹣4x﹣6y﹣8=0【解答】解:设直径的两个端点分别A(a,0)B(0,b).圆心C为点(2,﹣3),由中点坐标公式得,a=4,b=﹣6,∴r=|AB|==,则此圆的方程是(x﹣2)2+(y+3)2=13,即x2+y2﹣4x+6y=0.故选:A.11.(5分)已知点P(1,3)与直线l:x+y+1=0,则点P关于直线l的对称点坐标为()A.(﹣3,﹣1)B.(2,4) C.(﹣4,﹣2)D.(﹣5,﹣3)【解答】解:设点P关于直线l的对称点坐标为Q(a,b),则+1=0,=1,联立解得a=﹣4,b=﹣2.∴点P关于直线l的对称点坐标为(﹣4,﹣2).故选:C.12.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1;④直线B1D1与BC所成的角为45°.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:在①中,由正方体的性质得,BD∥B1D1,∴BD∥平面CB1D1,故①正确;在②中,由正方体的性质得AC⊥BD,而AC是AC1在底面ABCD内的射影,由三垂线定理知,AC1⊥BD,故②正确;在③中,由正方体的性质得BD∥B1D1,由②知,AC1⊥BD,∴AC1⊥B1D1,同理可证AC1⊥CB1,故AC1⊥平面CB1D1内的两条相交直线,∴AC1⊥平面CB1D1,故③正确;在④中,异面直线B1D1与BC所成的角就是直线BC与BD所成的角,故∠CBD为异面直线B1D1与BC所成的角,在等腰直角△BCD中,∠CBD=45°,故直线B1D1与BC所成的角为45°,故④正确.故选:D.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)圆C:x2+y2+2x+2y﹣2=0,l:x﹣y+2=0,求圆心到直线l的距离.【解答】解:圆C:x2+y2+2x+2y﹣2=0,配方为:(x+1)2+(y+1)2=4,可得圆心C(﹣1,﹣1).∴圆心到直线l的距离d==.故答案为:.14.(5分)在正方体ABCD﹣A1B1C1D1中,与棱AA1异面的棱有4条.【解答】解:与棱AA1异面的有:BC,CD,C1D1,B1C1故答案为:4.15.(5分)直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是0或.【解答】解:若a=0,则两直线方程为x﹣1=0,﹣x﹣1=0,满足两直线平行,当a≠0时,若两直线平行,则,得a=,故答案为:0或.16.(5分)已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为2.【解答】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣A1B1C1D1的体积V==2.故答案为:2.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17题10分,第18~22题每题12分)17.(10分)菱形ABCD中,A(﹣4,7),C(6,﹣5),BC边所在直线过点P(8,﹣1).求:(1)AD边所在直线的方程;(2)对角线BD所在直线的方程.【解答】(本小题满分10分)解:(1)k BC==2,∵AD∥BC,∴k AD=2.∴AD边所在直线的方程为:y﹣7=2(x+4),化为2x﹣y+15=0. (5)(2)k AC==﹣.∵对角线相互垂直,∴BD⊥AC,∴k BD=.而AC的中点(1,1),也是BD的中点,∴直线BD的方程为y﹣1=(x﹣1),化为5x﹣6y+1=0. (10)18.(12分)已知动圆C经过点A(1,﹣2),B(﹣1,4).(1)求周长最小的圆的一般方程;(2)求圆心在直线2x﹣y﹣4=0上的圆的标准方程.【解答】解:(1)以线段AB为直径的圆的周长最小,则:AB中点坐标(0,1),,圆的标准方程为x2+(y﹣1)2=10,一般方程为x2+y2﹣2y﹣9=0;(2)线段AB中垂线的斜率为,中垂线方程为,联立方程,得圆心坐标(3,2),半径,标准方程为(x﹣3)2+(y﹣2)2=20.19.(12分)四边形ABCD是正方形,O是正方形的中心,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥PC.【解答】证明:(1)连接AC,OE,则AC经过正方形中心点O,且O是AC的中点,又E是PC的中点,∴OE∥PA,又OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.(2)∵PO⊥平面ABCD,BD⊂平面ABCD,∴PO⊥BD,四边形ABCD是正方形,∴BD⊥AC,又PO∩AC=O,PO⊂平面PAC,AC⊂平面PAC,∴BD⊥平面PAC,又PC⊂平面PAC,∴BD⊥PC.20.(12分)如图,多面体ABCDE中,BE∥CD,BE⊥BC,AB=AC,平面BCDE⊥平面ABC,M为BC的中点.(1)若N是线段AE的中点,求证:MN∥平面ACD;(2)若BE=1,BC=2,CD=3,求证:DE⊥平面AME.【解答】证明:(1)取AB的中点H,连接MH,NH,由N是AE的中点,得NH ∥BE,又BE∥CD,得NH∥CD,NH⊄平面ACD,所以NH∥平面ACD,同理可证,MH∥平面ACD,而MH∩NH=H点,所以平面MNH∥平面ACD,从而MN∥平面ACD;(2)连接AM,DM,EM,由AB=AC,M为BC的中点,得AM⊥BC,又平面BCDE⊥平面ABC,平面BCDE∩平面ABC=BC,AM⊂平面ABC,所以AM⊥平面BCDE,则AM⊥DE,由勾股定理,在Rt△EBM中,BE=1,,得,在Rt△DCM中,CD=3,,得,在直角梯形BCDE中,由平面几何知识计算得,所以EM2+DE2=DM2,即EM⊥DE,而AM∩EM=M点,所以DE⊥平面AME.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:在棱AC上存在一点M,使得平面C1FM∥平面ABE;(3)求三棱锥E﹣ABC的体积.【解答】(1)证明:由侧棱垂直于底面,即BB1⊥平面ABC,得BB1⊥AB,又AB⊥BC,BC∩BB1=B,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(2)证明:取AC中点M,连接C1M,FM,由F为BC的中点,知FM∥AB,∵FM⊄平面ABE,AB⊂平面ABE,∴FM∥平面ABE,∵AM∥C1E,AM=C1E,∴四边形AMC1E为平行四边形,则C1M∥AE,∵C 1M⊄平面ABE,AE⊂平面ABE,∴C1M∥平面ABE,又C1M∩FM=M,∴平面C1FM∥平面ABE,即存在AC中点M,使得平面C1FM∥平面ABE;(3)解:点E到底面的距离即为侧棱长AA1=2,在Rt△ABC中,AC=2,BC=1,AB⊥BC,∴,,∴.22.(12分)如图组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点.(1)求证:无论点C如何运动,平面A1BC⊥平面A1AC;(2)当C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.【解答】解:(I)因为侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点,所以AC⊥BC(2分)又圆柱母线AA1⊥平面ABC,BC属于平面ABC,所以AA1⊥BC,又AA1∩AC=A,所以BC⊥平面A1AC,因为BC⊂平面A1BC,所以平面A1BC⊥平面A1AC;(6分)(II)设圆柱的底面半径为r,母线长度为h,当点C是弧的中点时,三角形ABC的面积为r2,三棱柱ABC﹣A1B1C1的体积为r2h,三棱锥A1﹣ABC的体积为,四棱锥A1﹣BCC1B1的体积为r2h﹣=,(10分)圆柱的体积为πr2h,四棱锥A1﹣BCC1B1与圆柱的体积比为2:3π.(12分)。
2017-2018学年高二数学上学期期中联考试题文(含解析)
河南省南阳市八校2017-2018学年高二数学上学期期中联考试题文(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在中,角,,所对的边分别为,,,若,,则()A. B. C. D.【答案】D【解析】得,,所以由正弦定理可知,,故选D。
2. 在中,角,,所对的边分别为,,,若,其中,则角的最大值为()A. B. C. D.【答案】B【解析】由余弦定理可知,,得,所以角最大值为,故选B。
3. 设,,若,则下列结论成立的是()A. B. C. D.【答案】A【解析】令,则B、D错,排除;令,则C错,排除;故选A。
4. 如图,要测出山上信号发射塔的高,从山脚测得,塔顶的仰角为,塔底的仰角为,则信号发射塔的高为()A. B. C. D.【答案】B【解析】由题意可知,,的、得,由正弦定理可知,,解得,故选B。
5. 已知数列的前项和为,且满足,则()A. B. C. D.【答案】D【解析】,得,,,又时,得,,所以,故选D。
6. 若数列满足,,则()A. B. C. D.【答案】C【解析】由题意,,故选C。
7. 已知等比数列的前项和为满足,,称等差数列,且,则()A. B. C. D.【答案】B【解析】由题意可得,得,又,设等比数列的着项为,公比为,得,选B.8. 在中,角,,所对的边分别为,,,若,的面积为,则的最小值为()A. 2B. 4C. 6D. 8【答案】A【解析】由得,,,所以,故选A。
9. 2017年国庆节期间,某数学教师进行了一次“说走就走”的登山活动,从山脚处出发,沿一个坡角为的斜坡直行,走了后,到达山顶处,是与在同一铅垂线上的山底,从处测得另一山顶点的仰角为,与山顶在同一铅垂线上的山底点的俯角为,两山,的底部与在同一水平面,则山高()A. B. C. D.【答案】D【解析】如图,由题可知,,所以,,,故选D。
2017-2018年广东省深圳高级中学高二上学期数学期中试卷及参考答案(文科)
2017-2018学年广东省深圳高级中学高二(上)期中数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},则A∩(∁U B)=()A.{1}B.{2}C.{4}D.{1,2}2.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣13.(5分)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤14.(5分)已知函数f(x)=.若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣1,1)C.(﹣2,1)D.(﹣1,2)5.(5分)为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度6.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.B.1 C.2 D.7.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.B.C.D.8.(5分)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=()A.﹣1 B.﹣2 C.2 D.09.(5分)若,则cosα+sinα的值为()A.B.C.D.10.(5分)设集合A={x|x2+x﹣6=0},B={x|mx+1=0},则B是A的真子集的一个充分不必要的条件是()A.B.m≠0 C.D.11.(5分)若正数x,y满足+=5,则3x+4y的最小值是()A.B.C.5 D.612.(5分)椭圆=1(a>b>0)的左、右焦点分别为F1、F2,P为椭圆M上任一点,且的最大值的取值范围是[c2,3c2],其中.则椭圆M的离心率e的取值范围是()A.B. C.D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设L为曲线C:y=在点(1,0)处的切线,则L的方程为.14.(5分)若非负数变量x、y满足约束条件,则x+y的最大值为.15.(5分)已知双曲线的左、右焦点分别为F1,F2,过F1的直线与双曲线的左支交于A,B两点,线段AB长为5.若a=4,那么△ABF2的周长是.16.(5分)在数列{a n}中,a1=1,a1+++…+=a n(n∈N*),则数列{a n}的通项公式a n=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)设△ABC的内角为A,B,C,且sinC=sinB+sin(A﹣B).(I)求A的大小;=,求△ABC的周长.(II)若a=,△ABC的面积S△ABC18.(12分)已知数列{a n}的前n项和S n=.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n•2n﹣1}的前n项和T n.19.(12分)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.20.(12分)已知向量=(2sinA,1),=(sinA+cosA,﹣3),⊥,其中A 是△ABC的内角.(1)求角A的大小;(2)设△ABC的角A,B,C所对的边分别为a,b,c,D为BC边中点,若a=4,AD=2,求△ABC的面积.21.(12分)如图,等边三角形OAB的边长为,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=﹣1相较于点Q.证明以PQ 为直径的圆恒过y轴上某定点.22.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=,且椭圆C经过点P(2,3),过椭圆C的左焦点F1且不与坐标轴垂直的直线交椭圆C 于A,B两点.(1)求椭圆C的方程;(2)设线段AB的垂直平分线与x轴交于点G,求△PF1G的面积S的取值范围.2017-2018学年广东省深圳高级中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},则A∩(∁U B)=()A.{1}B.{2}C.{4}D.{1,2}【解答】解:因为全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},∴∁U B={1,3,5},∴A∩(∁U B)={1}.故选:A.2.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣1【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.3.(5分)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1【解答】解:根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)e≤1,故选:B.4.(5分)已知函数f(x)=.若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣1,1)C.(﹣2,1)D.(﹣1,2)【解答】解:函数f(x)=,由f(x)的解析式可知,f(x)的图象经过原点,且x≥0,f(x)递增;x<0时,f(x)递增,则f(x)在(﹣∞,+∞)上是单调递增函数,在由f(2﹣a2)>f(a),得2﹣a2>a,即a2+a﹣2<0,解得﹣2<a<1.故选:C.5.(5分)为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【解答】解:∵y=sin(2x﹣)=cos[﹣(2x﹣)]=cos(﹣2x)=cos (2x﹣)=cos[2(x﹣)],∴将函数y=cos2x的图象向右平移个单位长度.故选:B.6.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.B.1 C.2 D.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选:C.7.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.B.C.D.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为=1.故选:D.8.(5分)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=()A.﹣1 B.﹣2 C.2 D.0【解答】解:∵f(x)=ax4+bx2+c,∴f′(x)=4ax3+2bx,∴f′(﹣x)=﹣4ax3﹣2bx=﹣f′(x),∴f′(﹣1)=﹣f′(1)=﹣2,故选:B.9.(5分)若,则cosα+sinα的值为()A.B.C.D.【解答】解:∵,∴,故选:C.10.(5分)设集合A={x|x2+x﹣6=0},B={x|mx+1=0},则B是A的真子集的一个充分不必要的条件是()A.B.m≠0 C.D.【解答】解:A={x|x2+x﹣6=0}={2,﹣3},当m=0时,B={x|mx+1=0}=∅,满足B是A的真子集,当m≠0时,B={x|mx=﹣1}={﹣},若满足B是A的真子集,则﹣=2或﹣=﹣3,即m=﹣或m=,综上若B是A的真子集,则m=﹣或或0,则B是A的真子集的一个充分不必要的条件是,故选:D.11.(5分)若正数x,y满足+=5,则3x+4y的最小值是()A.B.C.5 D.6【解答】解:由于正数x,y满足+=5,则3x+4y=(3x+4y)()=++≥+2+2×=5,当且仅当=,即y=2x,即+=,∴x=,y=时取等号.故3x+4y的最小值是5,故选:C.12.(5分)椭圆=1(a>b>0)的左、右焦点分别为F1、F2,P为椭圆M上任一点,且的最大值的取值范围是[c2,3c2],其中.则椭圆M的离心率e的取值范围是()A.B. C.D.【解答】解:由题意可知F1(﹣c,0),F2(c,0),设点P为(x,y)∵∴∴,∴=x2﹣c2+y2=﹣c2+y2=当y=0时取到最大值a2﹣c2,即c2≤a2﹣c2≤3c2,∴,∴.故椭圆m的离心率e的取值范围.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设L为曲线C:y=在点(1,0)处的切线,则L的方程为x﹣y ﹣1=0.【解答】解:由y=,得,∴,即曲线C:y=在点(1,0)处的切线的斜率为1,∴曲线C:y=在点(1,0)处的切线方程为y﹣0=1×(x﹣1),即x﹣y﹣1=0.故答案为:x﹣y﹣1=0.14.(5分)若非负数变量x、y满足约束条件,则x+y的最大值为4.【解答】解:画出可行域如图阴影部分,其中,可得A(4,0)目标函数z=x+y可以变形为y=﹣x+z,可看做斜率为﹣1的动直线,其纵截距越大z越大,=4+0=4由图数形结合可得当动直线过点A时,z最大故答案为:415.(5分)已知双曲线的左、右焦点分别为F1,F2,过F1的直线与双曲线的左支交于A,B两点,线段AB长为5.若a=4,那么△ABF2的周长是26.【解答】解:设|AF1|=m,|BF1|=n,由题意可得m+n=5,由双曲线的定义可得|AF2|=m+2a,|BF2|=n+2a,则△ABF2的周长是|AB|+|AF2|+|BF2|=m+n+(m+n)+4a=4a+2|AB|=4×4+2×5=26,故答案为:26.16.(5分)在数列{a n}中,a1=1,a1+++…+=a n(n∈N*),则数列{a n}的通项公式a n=.【解答】解:∵a1=1,a1+++…+=a n(n∈N*),n≥2时,a1+++…+=a n﹣1.,∴=a n﹣a n﹣1化为:=.∴=…=2a1=2.∴a n=.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)设△ABC的内角为A,B,C,且sinC=sinB+sin(A﹣B).(I)求A的大小;=,求△ABC的周长.(II)若a=,△ABC的面积S△ABC【解答】解:(I)∵A+B+C=π,∴C=π﹣(A+B).∴sinC=sin(A+B)=sinB+sin(A﹣B),∴sinA•cosB+cosA•sinB=sinB+sinA•cosB﹣cosAsinB,∴2cosA•sinB=sinB,∴,∴.(II)依题意得:,∴,∴(b+c)2=b2+c2+2bc=25,∴b+c=5,∴,∴△ABC的周长为.18.(12分)已知数列{a n}的前n项和S n=.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n•2n﹣1}的前n项和T n.【解答】解:(Ⅰ)∵,当n=1时,∴,∴a1=1∴,∴,两式相减得a n=n(n≥2)而当n=1时,a1=1也满足a n=n,∴a n=n;(Ⅱ)由于:a n=n,则:,所以:,则两式相减得,∴.19.(12分)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x 1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.【解答】解:(1)依题意可知抛物线的焦点坐标为(,0),故直线AB的方程为y=2x﹣p,联立,可得4x2﹣5px+p2=0.∵x1<x2,p>0,△=25p2﹣16p2=9p2>0,解得,x2=p.∴经过抛物线焦点的弦|AB|=x1+x2+p=p=9,解得p=4.∴抛物线方程为y2=8x;(2)由(1)知,x1=1,x2=4,代入直线y=2x﹣4,可求得,,即A(1,﹣2),B(4,4),∴=+λ=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),∴C(4λ+1,4λ﹣2),∵C点在抛物线上,故,解得:λ=0或λ=2.20.(12分)已知向量=(2sinA,1),=(sinA+cosA,﹣3),⊥,其中A 是△ABC的内角.(1)求角A的大小;(2)设△ABC的角A,B,C所对的边分别为a,b,c,D为BC边中点,若a=4,AD=2,求△ABC的面积.【解答】解:(1)△ABC中,∵⊥,∴=(2sinA,1)•(sinA+cosA,﹣3)=2sinA•(sinA+cosA)﹣3=2sin2A+2sinAcosA﹣3=sin2A﹣cos2A﹣2=0,即:sin(2A﹣)=1,∴A=.(2)因为D为BC边中点,∴2=+,平方得:42=+2+2,即:b2+c2+bc=48 …①.又=﹣,∴=+2﹣2,即::b2+c2﹣bc=16 …②,由①﹣②可得:2bc=32,故△ABC的面积S=bc•sin A==4.21.(12分)如图,等边三角形OAB的边长为,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=﹣1相较于点Q.证明以PQ 为直径的圆恒过y轴上某定点.【解答】解:(1)依题意,|OB|=8,∠BOy=30°,设B(x,y),则x=|OB|sin30°=4,y=|OB|cos30°=12∵B(4,12)在x2=2py(p>0)上,∴∴p=2,∴抛物线E的方程为x2=4y;(2)由(1)知,,设P(x0,y0),则x0≠0.l:即由得,∴取x0=2,此时P(2,1),Q(0,﹣1),以PQ为直径的圆为(x﹣1)2+y2=2,交y轴于点M1(0,1)或M2(0,﹣1)取x0=1,此时P(1,),Q(﹣,﹣1),以PQ为直径的圆为(x+)2+(y+)2=2,交y轴于点M(0,1)或M4(0,﹣)3故若满足条件的点M存在,只能是M(0,1),证明如下∵∴=2y0﹣2﹣2y0+2=0故以PQ为直径的圆恒过y轴上的定点M(0,1).22.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=,且椭圆C经过点P(2,3),过椭圆C的左焦点F1且不与坐标轴垂直的直线交椭圆C 于A,B两点.(1)求椭圆C的方程;(2)设线段AB的垂直平分线与x轴交于点G,求△PF1G的面积S的取值范围.【解答】解:(1)由题意可知:焦点在x轴上,设椭圆的标准方程为:(a>b>0),由椭圆的离心率e==,即a=2c,b2=a2﹣c2=3c2,将P(2,3)代入椭圆方程:,解得:c2=4,∴a2=16,b2=12,∴椭圆的标准方程为:;(2)设直线AB方程为y=k(x+2),A(x1,y1),B(x2,y2),AB中点M(x0,y0),∴,整理得:(3+4k2)x2+16k2x+16(k2﹣3)=0,由△>0,由韦达定理可知:x1+x2=﹣,x1•x2=﹣,则x0==﹣,y0=k(x0+2)=,M(﹣,),线段AB的垂直平分线MG的方程为y﹣=﹣(x﹣x0),令y=0,得x G=x0+ky0=﹣+=﹣,由k≠0,∴﹣<x G<0,由=丨F 1G丨•丨y P丨=丨x G+2丨,x G∈(﹣,0),∴S求△PF1G的面积的取值范围是(,3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年高二上学期期中试卷(文科数学)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .2.已知△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,a=,b=,B=60°,那么∠A 等于( )A .135°B .45°C .135°或45°D .60° 3.设a >b ,则下列不等式中恒成立的是( )A .<B .a 3>b 3C .>D .a 2>b 24.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .85.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .148.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .10.某企业生产甲、乙两种产品均需用A 、B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨) 128A .12万元B .16万元C .17万元D .18万元 11.若等差数列{a n }的公差为2,且a 5是a 2与a 6的等比中项,则该数列的前n 项和S n 取最小值时,n 的值等于( ) A .4B .5C .6D .712.定义算式⊗:x ⊗y=x (1﹣y ),若不等式(x ﹣a )⊗(x+a )<1对任意x 都成立,则实数a 的取值范围是( )A .﹣1<a <1B .0<a <2C .D .二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x 2+x ﹣2>0的解集为 .14.在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列的通项a n = .15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 .16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 .三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD 中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD 的长;(2)求∠ADC 的度数.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm 2(版心是指图中的长方形阴影部分,dm 为长度单位分米),上、下两边各空2dm ,左、右两边各空1dm .(1)若设版心的高为xdm ,求海报四周空白面积关于x 的函数S (x )的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?20.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2ccosA+a=2b .(Ⅰ)求角C 的值;(Ⅱ)若a+b=4,当c 取最小值时,求△ABC 的面积.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.2017-2018学年高二上学期期中试卷(文科数学)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .【考点】数列的函数特性.【分析】利用符号为(﹣1)n 与绝对值为即可得出.【解答】解:数列﹣,,,,…的一个通项公式可能是a n =(﹣1)n.故选:D .【点评】本题考查了数列的通项公式,参考老头老娘了与计算能力,属于基础题.2.已知△ABC中,a、b、c分别是角A、B、C的对边,a=,b=,B=60°,那么∠A等于()A.135°B.45°C.135°或45°D.60°【考点】正弦定理.【分析】结合已知条件a=,b=,B=60°,由正弦定理可得,可求出sinA,结合大边对大角可求得A【解答】解:a=,b=,B=60°,由正弦定理可得,a<b A<B=60°A=45°故选B【点评】本题考查正弦定理和大边对大角定理解三角形,属于容易题3.设a>b,则下列不等式中恒成立的是()A.<B.a3>b3C.>D.a2>b2【考点】不等式比较大小.【分析】A.取a=2,b=﹣1时不成立;B.利用函数y=x3在R上单调递增即可判断出正误.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.【解答】解:A.取a=2,b=﹣1时不成立;B.由于函数y=x3在R上单调递增,∵a>b,∴a3>b3,成立.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.故选:B.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .8 【考点】等差数列的前n 项和.【分析】利用等差数列的通项公式与求和公式即可得出. 【解答】解:设等差数列{a n }的公差为d ,∵S 6=3,a 4=2,∴6a 1+d=3,a 1+3d=2,解得a 1=﹣7,d=3. 则a 5=﹣7+3×4=5, 故选:A .【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用的几何意义是区域内的点到原点的斜率,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率, 由图象知OC 的斜率最小,OA 的斜率最大,由得,即A (1,5),此时OA 的斜率k=5,由得,即C (2,4),此时OC 的斜率k==2,即2≤≤5,则的取值范围是[2,5],故选:A .【点评】本题主要考查线性规划的应用,利用的几何意义是区域内的点到原点的斜率是解决本题的关键.6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .【考点】余弦定理.【分析】直接利用余弦定理化简求解即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,由余弦定理可得:cosA=,解得A=.故选:A .【点评】本题考查余弦定理的应用,考查计算能力.7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .14 【考点】等比数列的前n 项和.【分析】直接利用等比数列的性质,化简求解即可.【解答】解:等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,可得S 4,S 8﹣S 4,S 12﹣S 8,也是等比数列,S 12﹣S 8===8.S 12=14. 故选:D .【点评】本题考查等比数列的简单性质的应用,考查计算能力.8.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形【考点】三角形的形状判断.【分析】利用正弦定理转化求解三角形的角的关系,判断三角形的形状即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,可得,可得sin2A=sin2B . 可得2A=2B 或2A+2B=π,即:A=B 或A+B=;故选:D .【点评】本题考查正弦定理的应用,三角形的形状的判断,考查计算能力.9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .【考点】等差数列的性质.【分析】利用===,即可得出结论.【解答】解: =====,故选C.【点评】本题考查等差数列通项的性质,考查等差数列的求和公式,比较基础.10.某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元【考点】简单线性规划的应用.【分析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.【解答】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,则,目标函数为 z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z=3x+4y=6+12=18.max即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故选:D.【点评】本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.若等差数列{an }的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于()A.4 B.5 C.6 D.7【考点】等差数列与等比数列的综合.【分析】由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值.【解答】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{an}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=﹣11,a n =a1+(n﹣1)d=﹣11+2(n﹣1)=2n﹣13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和Sn取最小值时,n=6.故选:C.【点评】等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.12.定义算式⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是()A.﹣1<a<1 B.0<a<2 C.D.【考点】二次函数的性质.【分析】由已知中算式⊗:x⊗y=x(1﹣y),我们可得不等式(x﹣a)⊗(x+a)<1对任意x都成立,转化为一个关于x的二次不等式恒成立,进而根据二次不等式恒成立的充要条件,构造一个关于a的不等式,解不等式求出实数a的取值范围.【解答】解:∵x⊗y=x(1﹣y),∴若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则(x﹣a)(1﹣x﹣a)﹣1<0恒成立即﹣x2+x+a2﹣a﹣1<0恒成立则△=1+4(a2﹣a﹣1)=4a2﹣4a﹣3<0恒成立解得故选D【点评】本题考查的知识点是二次函数的性质,其中根据二次不等式ax2+bx+c<0恒成立充要条件是a<0,△<0构造一个关于a的不等式,是解答本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1} .【考点】一元二次不等式的解法.【分析】不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解出即可得出.【解答】解:不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解得x>1或x<﹣2.∴不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1}.故答案为:{x|x<﹣2或x>1}.【点评】本题考查了一元二次不等式的解法,考查了推理能力与计算能力,属于基础题.14.在数列{an }中,若a1=1,an+1=2an(n≥1),则该数列的通项an= 2n﹣1.【考点】等比数列的通项公式.【分析】由题意可得,该数列是以1为首项,以2为公比的等比数列,由此求得它的通项公式.【解答】解:由于在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列是以1为首项,以2为公比的等比数列,故它的通项公式为 a n =1×2n ﹣1=2n ﹣1,故答案为 2n ﹣1.【点评】本题主要考查等比数列的定义和通项公式,属于基础题.15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 1或2 .【考点】正弦定理.【分析】由已知及余弦定理可得b 2﹣3b+2=0,进而可解得b 的值.【解答】解:∵a=1,c=,∠A=30°,∴由余弦定理a 2=b 2+c 2﹣2bccosA ,可得:1=b 2+3﹣2×b ×,整理可得:b 2﹣3b+2=0,∴解得:b=1或2. 故答案为:1或2.【点评】本题主要考查了余弦定理在解三角形中的应用,属于基础题.16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 ①②③ .【考点】命题的真假判断与应用;基本不等式;数列的函数特性;正弦定理.【分析】逐项判断.①利用正弦定理易得;②先平方在利用基本不等式即可;③由等差数列的函数特征易得;④易知当q=1时,结论不正确.【解答】解:①由正弦定理,当sinA>sinB时,由 a>b,故有A>B,所以①为真;②≤9+(a+3)+(b+2)=18,所以“=”当且仅当“”成立,故②为真;③由等差数列的通项公式的函数特征知③正确;④易知,当q=1时结论不正确.总上可得①②③正确.故答案为:①②③.【点评】本题考查了正弦定理,基本不等式,等差数列的通项以及等比数列的前n项和问题.其中第2个命题的判断是本题难点.属于中档题.三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD的长;(2)求∠ADC的度数.【考点】余弦定理;正弦定理.【分析】(1)方法一:在△BCD中,由题意和正弦定理求出BD;方法二:由∠BDC=30°求出BC,利用条件和余弦定理列出方程,求出BD;(2)在△ABD中,利用条件和余弦定理求出cos∠ADB的值,结合图象求出∠ADC的度数.【解答】解:(1)方法一:在△BCD中,由正弦定理得:,即…解得BD=3…方法二:由已知得∠BDC=30°,故…由余弦定理得:BD2=CD2+BC2﹣2CDBCcos∠BCD= …∴BD=3…(2)在△ABD 中,由余弦定理得:…∴∠ADB=45° … 由已知∠BDC=30°…∴∠ADC=∠ADB+∠BDC=45°+30°=75°…【点评】本题考查正弦、余弦定理在解三角形中的应用,考查一题多解,化简、计算能力.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .【考点】数列递推式;数列的求和.【分析】(I )利用等差数列的通项公式即可得出. (II )利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)设公差为d ,∵a 1+a 4=10,a 3=6.∴,解得, ∴数列{a n }的通项公式为a n =2n .(Ⅱ)由(Ⅰ)知,从而,∴.【点评】本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm2(版心是指图中的长方形阴影部分,dm为长度单位分米),上、下两边各空2dm,左、右两边各空1dm.(1)若设版心的高为xdm,求海报四周空白面积关于x的函数S(x)的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?【考点】函数模型的选择与应用.【分析】(1)由已知版心的高为xdm,则版心的宽为dm,求出海报四周空白面积.(2)利用基本不等式求解即可.【解答】(本小题满分12分)解:(1)由已知版心的高为xdm,则版心的宽为dm…故海报四周空白面积为,…即S(x)=2x++8,x>0…(2)由基本不等式得:…当且仅当时取等号…∴要使海报四周空白面积最小,版心的高应该为18 dm、宽为9 dm…【点评】本题考查实际问题选择函数的模型,基本不等式的应用,考查计算能力.20.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.(Ⅰ)求角C的值;(Ⅱ)若a+b=4,当c取最小值时,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】方法一:(Ⅰ)利用正弦定理、诱导公式、两角和的正弦公式化简已知的式子,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,由条件和完全平方公式化简后,利用基本不等式求出c的最小值,由面积公式求出△ABC的面积;方法二:(Ⅰ)利用余弦定理化简已知的式子得到边的关系,由余弦定理求出cosC的值,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,结合条件消元后,利用一元二次函数的性质求出c的最小值,由面积公式求出△ABC的面积.【解答】解:方法一:(Ⅰ)∵2ccosA+a=2b,∴2sinCcosA+sinA=2sinB,…∵A+B+C=π,∴2sinCcosA+sinA=2sin(A+C),…即 2sinCcosA+sinA=2sinAcosC+2cosAsinC,…∴sinA=2sinAcosC,…∵sinA≠0,∴cosC=,…又∵C是三角形的内角,∴C=.…(Ⅱ)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,…∵a+b=4,故c2=a2+b2﹣ab=(a+b)2﹣3ab=16﹣3ab,…∴(当且仅当a=b=2时等号成立),…∴c的最小值为2,故.…方法二:(Ⅰ)∵2ccosA+a=2b,∴,…∴b2+c2﹣a2+ab=2b2,即 c2=a2+b2﹣ab,…∴,…又∵C是三角形的内角,∴c=.…(Ⅱ)由已知,a+b=4,即b=4﹣a,由余弦定理得,c 2=a 2+b 2﹣ab=(a+b )2﹣3ab ,…∴c 2=16﹣3a (4﹣a )=3(a ﹣2)2+4,…∴当a=2时,c 的最小值为2,故. …【点评】本题考查正弦、余弦定理,三角恒等变换中的公式,以及求最值的方法:基本不等式、一元二次函数的性质,考查一题多解,化简、变形能力.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1. 【考点】二次函数的性质.【分析】(Ⅰ)利用方程的根,列出方程组,即可求解a ,b 的值;(Ⅱ)化简不等式为乘积的形式,通过因式的根的大小对m 讨论,求解不等式的解集即可.【解答】(本小题满分12分)解:(Ⅰ)根据题意可知,方程x 2+ax+b=0两根分别为0,2,…将两根代入方程得∴.…(Ⅱ)由(Ⅰ)可知不等式f (x )<m 2﹣1为x 2﹣2x <m 2﹣1, 即[x ﹣(1﹣m )][x ﹣(1+m )]<0,…∴当m=0时,1﹣m=1+m ,不等式的解集为Φ;…当m >0时,1﹣m <1+m ,不等式的解集为{x|1﹣m <x <1+m}; … 当m <0时,1+m <1﹣m ,不等式的解集为{x|1+m <x <1﹣m}.… (如上,没有“综上所述…”,不扣分)【点评】本题考查二次函数的简单性质的应用,考查分类讨论思想以及转化思想的应用,考查计算能力.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由已知数列的前n 项和,利用a n =S n ﹣S n ﹣1(n ≥2)求数列的通项公式;(Ⅱ)把b n =变形,利用裂项相消法化简,代入S n =得答案;(Ⅲ)把a n 、T n 代入T n ﹣λa n ≥3λ,分离参数λ,利用不等式求得最值得答案.【解答】解:(Ⅰ)当n ≥2时,a n =S n ﹣S n ﹣1==n ,当n=1时,a 1=S 1=1也符合上式,∴a n =n ;(Ⅱ)∵,∴=;(Ⅲ)∵存在n ∈N *,使得T n ﹣λa n ≥3λ成立,∴存在n ∈N *,使得成立,即有解,∴,而,当n=1或n=2时取等号,∴λ的取值范围为.【点评】本题考查数列递推式,训练了裂项相消法求数列的前n 项和,训练了利用分离参数法求解数列恒成立问题,是中档题.。