初中数学一元一次不等式

合集下载

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法。

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:1.掌握一元一次不等式的`解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。

在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。

在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学。

五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。

初中数学一元一次不等式组

初中数学一元一次不等式组
2<x<7+a,且x的整数解为3,4,5,
因此,5<7+a≤6,即 -2<a≤-1.
练习 1. 若不等式组
a的取值范围是( A.a>3 B.a≥3
)B C.a<3
的解集为空集,则
D.a≤3
解析:由①得x<3, 因为不等式组的解集为空集, 所以a的取值范围为 a≥3. 故选B.
2.
不等式组
3x 1<x 1 2(2x 1) 5x
1
2( x 1 2 x
3)>3x 7,
1>3
3 2
x.
解:解不等式,得 x<1, 解不等式,得 x>2, 所以此不等式无解.
2
2x x 3,
x
3
2
>x.
解:解不等式,得 x≥﹣3,
解不等式,得 x<1,
所以此不等式组的解集为﹣3≤x<1.
一元一次不等式组解法的应用
例1 求不等式组
数满足x≥0,y>0,求m的取值范围并在数轴上应
表示出来.
解:①×2﹣②得 3x=3m+6,即x=m+2,
把x=m+2代入②得 y=3﹣m,
由x≥0,y>0,得到
m 2 0, 3 m>0,

m 2, m<3.
1. 下列选项中是一元一次不等式组的是( D )
A. x y>0
y
z>0
B. x2 x>0
x
2<0

y 2>0
x
y<0

4 x 8<9
一元一次不等式组的解集
不等式组
x<80
x>60
中,和的解集分别在数轴上

初中数学 如何判断一元一次不等式的解集是否为空集

初中数学  如何判断一元一次不等式的解集是否为空集

初中数学如何判断一元一次不等式的解集是否为空集要判断一元一次不等式的解集是否为空集,我们需要考虑不等式的形式以及未知数的取值范围。

一元一次不等式是指只含有一个未知数的一次函数,并且包含不等式符号(如大于、小于、大于等于、小于等于等)。

下面,我将详细介绍如何判断一元一次不等式的解集是否为空集。

首先,让我们回顾一下一元一次不等式的一般形式:ax + b < c 或ax + b > c,其中a、b、c 为实数,且a ≠ 0。

我们可以将一元一次不等式的解集分为以下三种情况来讨论:情况1:无解的情况(解集为空)如果一元一次不等式的解集为空,那么不等式表示的条件在实数范围内无解。

这种情况可能出现在不等式的两侧无交集的情况下,例如:1. 当不等式为ax + b < c,其中a > 0时,如果不等式的右侧c小于不等式左侧的最小值(即x的取值范围的下界),则不等式无解。

2. 当不等式为ax + b > c,其中a < 0时,如果不等式的右侧c大于不等式左侧的最大值(即x的取值范围的上界),则不等式无解。

情况2:有解的情况(解集非空)如果一元一次不等式的解集非空,那么不等式表示的条件在实数范围内至少有一个解。

这种情况可能出现在不等式的两侧有交集的情况下,例如:1. 当不等式为ax + b < c,其中a > 0时,如果不等式的右侧c大于等于不等式左侧的最小值(即x的取值范围的下界),则不等式有解。

2. 当不等式为ax + b > c,其中a < 0时,如果不等式的右侧c小于等于不等式左侧的最大值(即x的取值范围的上界),则不等式有解。

综上所述,要判断一元一次不等式的解集是否为空集,我们需要考虑不等式的形式以及未知数的取值范围。

如果不等式的解集为空,那么不等式在实数范围内无解;如果不等式的解集非空,那么不等式在实数范围内至少有一个解。

希望这个解答能够帮助你理解如何判断一元一次不等式的解集是否为空集。

中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式关键信息项1、一元一次不等式的定义及一般形式名称:____________________________解释:____________________________2、求解一元一次不等式的基本步骤步骤 1:____________________________步骤 2:____________________________步骤 3:____________________________步骤 4:____________________________步骤 5:____________________________3、常见的不等式符号及其含义符号 1:____________________________含义 1:____________________________符号 2:____________________________含义 2:____________________________符号 3:____________________________含义 3:____________________________4、不等式的性质性质 1:____________________________性质 2:____________________________性质 3:____________________________11 一元一次不等式的定义一元一次不等式是指只含有一个未知数,且未知数的次数是 1,不等号两边都是整式的不等式。

其一般形式为:$ax + b > 0$(或$ax + b < 0$,$ax + b \geq 0$,$ax + b \leq 0$),其中$a$、$b$为常数,且$a \neq 0$。

111 与一元一次方程的区别一元一次方程是等式,而一元一次不等式是用不等号连接的式子。

方程的解是使等式成立的未知数的值,而不等式的解是使不等式成立的未知数的取值范围。

一元一次不等式-图

一元一次不等式-图

一元一次不等式图像的基本概念
定义
一元一次不等式图像是指将一元 一次不等式表示的数学关系转换 为图形表示,通过图形直观地展 示不等式的解集。
特点
一元一次不等式图像具有直观、 简洁、易于理解的特点,能够清 晰地表达不等式的解集和取值范 围。
一元一次不等式图像的绘制方法
确定不等式的解集
根据一元一次不等式的解 法,确定不等式的解集, 即不等式成立的x的取值范 围。
总结词
一元一次不等式的解集是指满足该不等式的未知数的取值范围。
详细描述
解集是满足一元一次不等式条件的未知数的取值范围。解集可以通过移项、合 并同类项、化简等步骤求得。解集通常表示为区间或集合的形式。
02
一元一次不等式的解法
代数法解一元一次不等式
01
02
03
04
移项
将不等式两边的项进行移位, 使不等式只包含一个变量。
时间安排
在安排时间时,我们也会使用到一元一次不等式。例如,我们需要在一个小时内 完成一项任务,那么我们可以用一元一次不等式来表示这个时间范围。
数学建模中的一元一次不等式
线性规划
在解决线性规划问题时,我们需要使用 一元一次不等式来描述约束条件。例如 ,如果我们需要最大化一个目标函数, 同时满足一些约束条件,那么这些约束 条件可以用一元一次不等式来表示。
一元一次不等式-图
目录 CONTENT
• 一元一次不等式的概念 • 一元一次不等式的解法 • 一元一次不等式的图解法 • 一元一次不等式的实际应用
01
一元一次不等式的概念
一元一次不等式的定义
总结词
一元一次不等式是只含有一个变量, 且变量的指数为1的不等式。
详细描述

一元一次不等式与一次函数整理

一元一次不等式与一次函数整理

一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。

本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。

一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。

一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。

二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。

2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。

3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。

三、解法1. 一元一次不等式的解法有两种:图像法和代数法。

图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。

代数法是通过移项、化简等代数运算来求解。

2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。

四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。

2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。

3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。

一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。

掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。

初中数学重点梳理:一元一次不等式(组)

初中数学重点梳理:一元一次不等式(组)

一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。

知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。

(表示不等关系的常用符号:≠,<,>)。

2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。

(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。

3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。

不等式的所有解的集合,叫做这个不等式的解集。

不等式组中各个不等式的解集的公共部分叫做不等式组的解集。

2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。

(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。

2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

(2)解法:先求出各不等式的解集,再确定解集的公共部分。

注:求不等式组的解集一般借助数轴求解较方便。

一元一次不等式

一元一次不等式

一元一次不等式一元一次不等式是初中数学中的一个重要概念。

它是一种用来描述数之间大小关系的数学式子,由一个未知数和一个或多个常数构成。

本文将从基本概念、求解方法和应用场景三个方面介绍一元一次不等式的相关知识。

1. 基本概念一元一次不等式是指由一个未知数和一个或多个常数构成的不等式。

一元一次不等式的一般形式为Ax + B > 0(或< 0),其中A和B为实数,且A ≠ 0。

在求解一元一次不等式时,需要注意以下几个基本规则:- 若A > 0,则不等式两端同时乘以正数(或正数的等价形式)不改变不等式的方向。

- 若A < 0,则不等式两端同时乘以负数(或负数的等价形式)会改变不等式的方向。

- 不等式两端同时加(或减)同一个数值,不等式的方向不变。

2. 求解方法对于一元一次不等式的求解,我们可以采用图像法、试值法或代数法等不同方法。

2.1 图像法图像法是一种直观的方法,通过绘制函数图像来确定不等式的解。

对于一元一次不等式Ax + B > 0(或< 0),我们可以绘制出函数y = Ax + B 的图像,并根据图像在数轴上的位置来确定不等式的解集。

2.2 试值法试值法是一种简单有效的方法,在不等式两边选择一些特定的数值进行代入,然后判断不等式的成立情况。

通过不断尝试,最终找到满足不等式的解集。

2.3 代数法代数法是一种更为精确的方法,它基于等价变形和性质运算对不等式进行求解。

通过将一元一次不等式进行等价变形,将未知数的系数化为1,从而得到不等式的解集。

3. 应用场景一元一次不等式在实际问题中有着广泛的应用。

以下是两个常见的应用场景:3.1 财务管理在财务管理中,一元一次不等式可以用来描述投资、贷款或收入等方面的问题。

例如,假设一个人每月的收入为x元,他将其中的40%用于生活费,那么可以通过不等式0.4x > 1000 来计算他每月的最低收入。

3.2 生产与销售在生产与销售中,一元一次不等式可以用来描述成本、销售量和利润等关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一元一次不等式2019年4月9日(考试总分:160 分考试时长: 120 分钟)一、单选题(本题共计 12 小题,共计 48 分)1、(4分)不等式2(x-1)≥4的解集在数轴上表示为()A .B .C .D .2、(4分)已知关于的方程的根大于关于的方程的根,则应是()A.不为0的数B.正数C.负数D.大于-1的数3、(4分)太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A.11 B.8 C.7 D.54、(4分)不等式1﹣3x<x+10的负整数解有()A.1个B.2个C.3个D.4个5、(4分)不等式3(x﹣1)≤5﹣x的非负整数解有()A. 1个B. 2个C. 3个D. 4个6、(4分)一个不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣1<x≤2B.﹣1≤x≤2C. x>﹣1 D. x≤27、(4分)不等式组的解集在数轴上表示正确的是A.B.C.D.8、(4分)设m 为整数,若方程组的解x,y满足x+y>,则m的最大值是()A. 4 B. 5 C. 6 D.7 9、(4分)满足关于x的一次不等式2(1﹣x)+3≥0的非负整数解的个数有()A.2个B.3个C.4个D.无数个10、(4分)如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围为()A.m≤9B.m<12 C.m≥9D.9≤m<1211、(4分)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18 12、(4分)在平面直角坐标系中,点A、B、C、D是坐标轴上的点且点C坐标是(0,﹣1),AB=5,点(a ,b)在如图所示的阴影部分内部(不包括边界),已知OA=OD=4,则a的取值范围是()A.B.C.D.二、填空题(本题共计 4 小题,共计 16 分)--+>的解集是__________.13、(4分)不等式x3x1214、(4分)不等式2x+5<3的解集是_____.15、(4分)小明的身高h超过了160cm,用不等式可表示为_________.16、(4分)不等式2x-1≥5的最小整数解为__________.三、解答题(本题共计 8 小题,共计 96 分)17、(12分)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?在(2)的条件下,请说明哪种方案的总费用最少?18、(12分)已知函数是关于的二次函数,求不等式的解集.19、(12分)解不等式:|x-1|+|x-3|>4.20、(12分)列不等式:a的相反数的绝对值与3的和是正数.21、(12分)当k满足什么条件时,关于x的方程x-=2-的解是非负数?22、(12分)若不等式的最小整数解是方程的解,求的值.23、(12分)(1)化简:﹣;(2)解不等式2(x+1)>3x﹣1,并将解集在数轴上表示出来.24、(12分)解不等式组,并把解集在数轴上表示出来.一、单选题(本题共计 12 小题,共计 48 分)1、(4分)【答案】C【解析】去括号得:2x﹣2≥4,移项得:2x≥4+2,合并同类项得:2x≥6,系数化为1,得:x≥3.故选C.2、(4分)【答案】C【解析】解方程5(x-a)=-2a可得x=a,解方程3(x-a)=2(x+a)可得x=5a,∵方程5(x-a)=-2a的根大于关于x的方程3(x-a)=2(x+a)的根,∴a>5a,解得a<0,即a为负数,故选:C.3、(4分)【答案】B【解析】可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x﹣3)×1.6+8≤16,解得:x≤8.即此人从甲地到乙地经过的路程最多为8km.故选:B.4、(4分)【答案】B【解析】解:1-3x<x+10,-3x-x<10-1,-4x<9,x>-,所以不等式1-3x<x+10的负整数解有-1,-2,共2个,故选:B.5、(4分)【答案】C【解析】解不等式得:3x﹣3≤5﹣x,4x≤8,x≤2,所以不等式的非负整数解有0、1、2这3个,故答案选C.6、(4分)【答案】B【解析】∵−1处是实心圆点且折线向右,2处是实心圆点且折线向左,∴﹣1≤x≤2.故答案选B.7、(4分)【答案】A【解析】∵,解得x≥3且x>﹣2;故选A.8、(4分)【答案】B【解析】,①×3+②得:10x=4﹣2m,解得:x=,①﹣②×3得:10y=﹣2﹣4m,解得:y=﹣,∵x+y >﹣,∴﹣>﹣,∴2﹣m﹣(1+2m)>﹣17,∴﹣3m+1>﹣17,∴﹣3m>﹣18,即m<6∵m为整数,∴m的最大值是5.故选B.9、(4分)【答案】B【解析】,即则∴一次不等式的非负整数解有:0,1,2.共3个.故选:B.10、(4分)【答案】D【解析】解不等式3x-m≤0,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选D.11、(4分)【答案】C【解析】解不等式20<5﹣2(2+2x)<50,得:,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17.故选C.12、(4分)【答案】D【解析】∵AB=5,OA=4,∴OB=,∴点B(-3,0).∵OA=OD=4,∴点A(0,4),点D(4,0).设直线AD的解析式为y=kx+b,将A(0,4)、D(4,0)代入y=kx+b,,解得:,∴直线AD的解析式为y=-x+4;设直线BC的解析式为y=mx+n,将B(-3,0)、C(0,-1)代入y=mx+n,,解得:,∴直线BC的解析式为y=-x-1.联立直线AD、BC的解析式成方程组,,解得:,∴直线AD、BC 的交点坐标为(,-).∵点(a,b)在如图所示的阴影部分内部(不包括边界),∴-3<a <.故选D.二、填空题(本题共计 4 小题,共计 16 分)13、(4分)【答案】x0<【解析】x<-1时,-x+3-x-1>2,∴x<0,-1≤x≤3时,-x+3-x-1>2,x<0;x>3时,x-3-x-1>6,不成立.故答案是:x<0故选C.14、(4分)【答案】x<﹣1.【解析】故答案为:15、(4分)【答案】h>160【解析】∵小明的身高h超过了160cm,∴h>160.故答案为:h>160.16、(4分)【答案】3【解析】解不等式2x-1≥5得x≥3,所以最小整数解为3,故答案为3. 三、解答题(本题共计 8 小题,共计 96 分)17、(12分)【答案】(1)共运往D地90立方米,运往E地50立方米(2)有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案的总费用最少【解析】(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,∴2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.18、(12分)【答案】且.【解析】∵函数是关于的二次函数,∴,解得:,,解得:,故不等式的解集为:且.19、(12分)【答案】x<0或x>4【解析】当x≤1时,原式可变形为1-x+3-x=4-2x>4,解得x<0.当1<x≤3时,原式可变形为x-1+3-x>4,得2>4,不合题意.当x>3时,原式可变形为x-1+x-3=2x-4>4,解得x>4.∴x<0或x>4.20、(12分)【答案】|﹣a|+3>0【解析】由题意得:a的相反数是−a,绝对值是|−a|,再表示与3的和是正数为|−a|+3>0.21、(12分)【答案】k≤2【解析】去分母得:6x﹣3(x﹣k)=12﹣2(x+3)去括号,合并同类项得:5x=6﹣3k∴x=.∵关于x的方程x -=2-的解是非负数,∴≥0,解得:k≤2.22、(12分)【答案】3【解析】由不等式得,所以最小整数解为将代入中,解得a=3.23、(12分)【答案】(1);(2)x<3,解集在数轴上表示出来见解析.【解析】(1)化简:原式=;(2)2(x+1)>3x﹣1,去括号得,2x+2>3x﹣1,移项合并同类项得x<3,如图,解集在数轴上表示出来为:.24、(12分)【答案】﹣1≤x<3.【解析】∵解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为﹣1≤x<3,在数轴上表示为:。

相关文档
最新文档