导学案(22)第三章31用树状图或表格求概率(2)

合集下载

《用树状图或表格求概率3》优秀教案

《用树状图或表格求概率3》优秀教案

九年数学导学案课题31用树状图或表格求概率(2)课型新授课课时第一课时学习目标1、通过实验进行感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系,并能用实验频率估计事件发生的概率。

2、借助于树状图、列表法计算随机事件的概率提高在求概率时处理各种情况出现可能性不同时的能力学习重点画树状图或列表的方法求一些简单的事件的概率学习难点画树状图或列表的方法求一些简单的事件的概率导学流程教学过程教学内容预习交流问题导学交流展示评价一、复习巩固1(2021山东日照,8,3分)两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为()A.41B.163C.43D.832从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)二、自主学习:1、“配紫色”游戏:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色(1)利用树状图或列表的方法表示游戏者所有可能出现的结果树状图画在下面:A B(2)游戏者获胜的概率是2、游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏 1利用树状图或列表的方法表示游戏者所有可能出现的结果 2游戏者获胜的概率是多少阅读教材P66中两位同学的做法,你认为谁的做法对?在小组中讨论。

3、说说你的看法:利用画树状图和列表的方法求概率时应注意些什么?。

《用树状图或表格求概率》概率的进一步认识PPT课件2

《用树状图或表格求概率》概率的进一步认识PPT课件2
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
(2,6)
(3,6)
(4,6)
(5,5)
解:
(1,4)
(1,5)
(1,6)
(1,7)
(2,4)
(2,5)
(2,6)
(2,7)
(3,4)
(3,5)
(3,6)
(3,7)
共有12种不同结果,每种结果出现的可能性相同,其中数字和为偶数的有 6 种
探究
3
1
甲转盘
乙转盘
4
共 12 种可能的结果
与“列表”法对比,结果怎么样?
甲转盘指针所指的数字可能是 1、2、3, 乙转盘指针所指的数字可能是 4、5、6、7。
(6,6)


此题用列树图的方法好吗?
P(点数相同)=
P(点数和是9)=
P(至少有个骰子的点数是2 )=
2.一个均匀的小正方体,各面分别标有1~6六个数字,求下列事件的概率:随机掷这个小正方体,落地后朝上面数字是6的概率是 ;随机掷这个小正方体两次,两次落地后朝上面数字之和为6的概率是 .
“同时掷两个质地相同的骰子”与 “把一个骰子掷两次”,所得到的结果有变化吗?
“同时掷两个质地相同的骰子”

《用树状图或表格求概率》概率的进一步认识PPT(第2课时)教学课件

《用树状图或表格求概率》概率的进一步认识PPT(第2课时)教学课件

思考: 一位同学画出如图所示的树状图.
第1次摸出球 第2次摸出球


红 白红 白
知1-导
从而得到,“摸出两个红球”和“摸出两个白球”的 概 率相等,“摸出一红一白”的概率最大.
他的分析有道理吗?为什么?
分析:把两个白球分别记作白1,和白2.如图, 用画树 状图的 方法看看有哪些等可能的结果:
知1-导
并且它们发生的可能性都相等,事件A包含其
中的m种结果,那么事件A发生的概率P(A)
=

知识点 1 两步试验的树状图
知1-导
问题
口袋中装有1个红球和2个白球,搅匀后从中摸出 1个球, 放回搅匀,再摸出第2个球,两次摸球就可能出现3种结 果:
(1)都是红球; (2)都是白球; (3)一红一白. 这三个事件发生的概率相等吗?
知1-练
2 质地均匀的骰子六个面分别刻有1到6的点数,掷
两次骰子,得到向上一面的两个点数,则下列事
件中,发生可能性最大的是( )
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于13 D.点数的和小于2
(来自《典中点》)
知1-练
3 如图,一个小球从A点入口往下落,在每个交叉口 都有向左或向右两种可能,且两种可能性相等.则
同步练习
如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一 个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成 相等的三个扇形).
12
12 3
如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏 者获胜的概率.
解:每次游戏时,所有可能出现的结果如下:
关注的结果数,既不能遗漏任何一种

31用树状图或表格求概率的导学案

31用树状图或表格求概率的导学案

课题:3.1.1 用树状图或表格求概率(1)【学习目标】1、通过实验进行感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系,并能用实验频率估计事件发生的概率。

2、能用画树状图或列表的方法求一些简单的事件的概率。

【教学过程】【复习巩固】1、随机抛掷一枚质地均匀的硬币,则出现“正面朝上”的概率为__________。

2、随机抛掷一枚质地均匀的骰子,则出现点数为2的概率为_____________。

3、一个不透光的黑色袋子中放入除颜色外均相同的2个白球和4个黑球,则从中任意抽取一个球,则抽到黑球的概率为__________。

【自主探究】小明、小颖和小凡都想去看周末电影,但只有一张电影票,3人决定一起做游戏,谁获胜谁就去看电影,游戏规则如下:连续抛掷2枚质地均匀的硬币,若2枚正面朝上,则小明获胜;若2枚反面朝上,则小颖获胜;若1枚正面朝上,1枚反面朝上,则小凡获胜。

你认为这个游戏公平吗?通过以上大量重复试验我们发现,在一般情况下,“1枚正面朝上,1枚反面朝上”发生的概率大于其他两个事件发生的概率。

所以这个游戏_________(公平/不公平),对__________更有利。

那么我们怎样求他们三人分别获胜的概率呢?在上面掷硬币的试验中:(1)掷一枚硬币可能出现哪些结果?_____________________________________它们发生的可能性是否一样?____________________________(2)掷第二枚硬币可能出现哪些结果?___________________________________它们发生的可能性是否一样?____________________________ (3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?___________________________________它们发生的可能性是否一样?____________________________如果第一枚硬币是反面朝上,情况是否一样?__________________________我们通常利用树状图或表格列出所有可能出现的结果:第1枚硬币第2枚硬币所有可能出现的结果_________ ————————————————开始_________ ————————————————列表:所以总共有种结果,而且每种结果出现的可能性相同,其中,小明获胜的结果有种:,所以P(小明获胜)= ;小颖获胜的结果有种:,所以P(小颖获胜)= ;小凡获胜的结果有种:,所以P(小凡获胜)= ;所以P(获胜)> P(获胜)=P(获胜)因此,这个游戏不公平,它对更有利。

《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案

《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案

第三章概率的进一步认识3.1 用树状图或表格求概率第 2 课时一、教学目标1.能运用画树状图和列表的方法计算一些简单事件的概率.2.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《石头、剪刀、布》图片、《用列举法求概率——列表法》微课.五、教学过程【复习引入】1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师出示问题,学生回忆上节课节课所学内容.设计意图:通过对上节课的复习帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?师生活动:教师出示问题,学生思考、讨论,教师适当引导,最后师生共同得出答案.解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状共同图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布),所以小凡获胜的概率为31 93 =;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为31 93 =;小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为31 93 =.因此,这个游戏对三人是公平的.师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.设计意图:本例题从理论上求出了在玩“石头、剪刀、布”的游戏时双方胜、平、负的概率,让学生进一步体会“数学就在我们身边”,发展“用数学”的意识与能力.通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.【典例精析】例小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?师生活动:教师找几名学生板演,讲解出现的问题.分析:掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就最大.解:选择数字7;理由:列表如下:由表可知,共有36种可能的结果,每种结果出现的可能性相同,其中和为7的概率最大,概率为61366=,所以选择数字7获胜的概率最大.【课堂练习】1.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得的面朝上的点数之和是3的倍数的概率是().A .B .C .D .2.“石头、剪刀、布”是民间广为流传的游戏.游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,那么双方出现相同手势的概率P =_________.3.小莉和爸爸玩“锤子、剪刀、布”的游戏,每次用一只手可以出“锤子、剪刀、布”三种手势之一,规则是:锤子赢剪刀、剪刀赢布、布赢锤子.若两人出相同手势,则算打平.如果小莉这次出“布”手势,则小莉赢的概率是___________.4.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏________(填“公平”或“不公平”).5.有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.师生活动:教师找几名学生板演,讲解出现的问题.6.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字1,2,3,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.参考答案1.A .2..3.13.4.不公平.5.解:将三张大小一样而画面不同的画片分别记为A ,B ,C ,将出现的可能结果列表如下:由表可知,出现的总结果有9种,其中,能拼成原来的一幅画的结果有(A 上,A 下),13165185613(B 上,B 下),(C 上,C 下)三种,所以所求的概率为3193. 解:列表分析如下:由列表可知,所有可能出现的结果有9种,其中第二次抽取的数字大于第一次抽取的数字的情况有3种,所以P (第二次抽取的数字大于第一次抽取的数字)==.设计意图:让学生加深对所学知识的理解.六、课堂小结1.用树状图或表格求概率注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同. 师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(2)1.用树状图或表格求概率3913。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是衡量事件发生可能性的数值,范围在0到1之间。

举例说明概率的应用,如抛硬币、掷骰子等。

1.2 样本空间和事件介绍样本空间是所有可能结果的集合,事件是样本空间的一个子集。

利用树状图展示样本空间和事件的关系。

第二章:树状图法求概率2.1 树状图的绘制讲解如何利用树状图表示事件的概率。

示范绘制树状图,展示单次试验和多次试验的树状图。

2.2 利用树状图求概率教授如何通过树状图计算概率。

练习计算简单事件的概率。

第三章:表格法求概率3.1 表格的绘制讲解如何利用表格表示事件的概率。

示范绘制表格,展示单次试验和多次试验的表格。

3.2 利用表格求概率教授如何通过表格计算概率。

练习计算简单事件的概率。

第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指一个事件的发生不影响另一个事件的发生。

利用树状图和表格展示独立事件的概率计算。

4.2 利用树状图和表格求独立事件的概率教授如何通过树状图和表格计算独立事件的概率。

练习计算独立事件的概率。

第五章:条件概率5.1 条件概率的定义解释条件概率是在某一事件已发生的情况下,另一事件发生的概率。

利用树状图和表格展示条件概率的计算。

5.2 利用树状图和表格求条件概率教授如何通过树状图和表格计算条件概率。

练习计算条件概率。

第六章:组合与排列6.1 组合的定义解释组合是指从n个不同元素中取出m(m≤n)个元素的有序列的个数。

利用树状图和表格展示组合的计算。

6.2 排列的定义解释排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。

利用树状图和表格展示排列的计算。

第七章:概率的加法规则7.1 概率的加法规则讲解当两个事件互斥时,可以使用概率的加法规则计算它们的概率。

利用树状图和表格展示概率的加法规则的计算。

7.2 应用概率的加法规则教授如何应用概率的加法规则解决实际问题。

练习计算互斥事件的概率。

31 用树状图或表格求概率 第2课时

第三章概率的进一步认识
31 用树状图或表格求概率(二)
第一环节:温故知新,做好铺垫
提问:上节课,你学会了用什么方法求某个事件发生的概率?1
目的:通过学生回答,回想上节课主要内容,为这节课计算概率做好铺垫。

第二环节:创设情景,导入课题
本节是从“石头、剪刀、布”这个耳熟能详的游戏作为切入点,使学生产生学习新知的兴趣,使学生进一步掌握用列表法或树状图计算某事件发生的概率,进而得到判断游戏规则公平与否的依据。

本节课提供了多种具体情境,一方面使学生感受概率存在的普遍性,另一方面适应不同的情境,得到概率。

假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?
第三环节:激发兴趣,探求新知
内容:在例题结束后,适时抛出一个类似的情境:
小明和小军两人一起做游戏游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负如果你是游戏者,你会选择哪个数?第四环节:巩固基础,检测自我
内容:有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率。

第五环节:课堂小结,布置作业课后作业:习题32 123
作业内容重点突出,适合检查学生对本节课的了解。

第六环节:教学反思。

《用树状图或表格求概率》教案

一、教学目标:1. 让学生理解概率的基本概念,掌握用树状图和表格求概率的方法。

2. 培养学生运用概率知识解决实际问题的能力。

3. 培养学生合作交流、思考问题的能力。

二、教学重点与难点:1. 教学重点:树状图和表格求概率的方法。

2. 教学难点:如何运用树状图和表格求复杂事件的概率。

三、教学准备:1. 教师准备:教学课件、树状图和表格示例、实际问题案例。

2. 学生准备:笔记本、彩笔。

四、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生理解概率的概念。

2. 讲解树状图求概率的方法:(1)介绍树状图的基本结构;(2)讲解如何通过树状图求解事件的概率;(3)举例演示树状图求概率的过程。

3. 讲解表格求概率的方法:(1)介绍表格的基本结构;(2)讲解如何通过表格求解事件的概率;(3)举例演示表格求概率的过程。

4. 练习环节:让学生独立完成练习题,巩固所学方法。

五、课后作业:(1)抛一枚硬币,求正面向上的概率;(2)抽取一副扑克牌,求抽到红桃的概率;(3)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。

2. 结合生活实际,自主创作一个概率问题,并用树状图或表格求解。

六、教学拓展:1. 引导学生思考:在实际生活中,还有哪些事件可以用树状图或表格求解概率?2. 讨论:如何运用树状图和表格求解更复杂的事件概率?3. 举例:分析彩票中奖概率、体育比赛胜负概率等问题,引导学生运用树状图和表格进行求解。

七、课堂小结:2. 强调树状图和表格在解决实际问题中的重要性。

八、教学反思:1. 教师反思:本节课教学目标是否达成?学生掌握情况如何?2. 学生反馈:学生对树状图和表格求概率的方法是否理解?是否存在疑惑?九、章节练习:1. 选择题:A. 树状图B. 表格C. 抛硬币D. 猜谜语(2)在抛一枚硬币的实验中,正面向上的概率是____。

A. 0B. 1C. 0.5D. 100%2. 解答题:抽取一副扑克牌,求抽到红桃的概率;(2)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。

2022年初中数学精品导学案《用树状图或表格求概率2》导学案

第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率一、读一读〔学习目标〕1.学会用树状图和列表法计算涉及两步试验的随机事件发生的概率。

2.进一步经历用树状图、列表法计算两步以上随机实验的概率的过程.二、试一试〔一〕计算涉及两步试验的随机事件发生的概率60页—61页内容并完成以下问题。

〔1〕现有两组相同的牌,每组两张。

牌面数字分别为1和2. 〔如右图〕从每组牌中各摸出一张,在一次试验中,如果摸得第一张牌的牌面数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大?如果摸得第二张牌的牌面数字为2呢?要写出解答的过程。

〔2〕随机掷一枚均匀的硬币两次,至少有一次反面朝上的概率是多少?〔用两种方法解答〕〔3〕小颖有两件上衣,分别是红色和白色,有两条裤子,分别是黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?〔二〕计算涉及两步以上试验的随机事件发生的概率认真阅读课本62页—63页,思考课本中提出的问题。

例1.小明、小颖和小凡做“石头、剪刀、布〞游戏。

游戏规那么如下:由小明和小颖做“石头、剪刀、布〞游戏,如果两个人手势相同,那么小凡胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜拳头〞的规那么决定小明和小颖中的获胜者。

做一做:例2.小明和小军两人一起做游戏。

游戏规那么如下:每人从1,2,…,12中任选一个数,然后两个人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数和谁就获胜;如果两个人选择的数都不等于掷得的点数之和;就再做一次上述游戏,直至决出胜负。

如果你是游戏者你会选择哪个数?三、练一练1.掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是_______________.2.随机掷三枚硬币,出现三个正面朝上的概率是___________________3.一只箱子里面有3个球,其中2个白球,1个红球,他们出颜色外均相同。

用树状图或表格求概率2导学案

假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?
做一做:请你利用树状图和列表法计算概率验证你的想法
学者如禾如稻,不学者如蒿如草。
二、第二次“先学后教”——概率的运用
活动内容:
小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?
掌握一个解题方法,比做一百道题更重要。
(提示:计算那个数字出现的概率最大)
三、当堂检测:
有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率?
借助树状图和列表法计算随机事件发生的概率。
【难点】
正确应用树状图和列表法计算随机事件发生的概率.
【学法指导】
合作交流,自主探究
【课时安排】
1课时
总第24课时
相关知识回顾:
现有两个除颜色外都相同的红球和白球,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求:两次都摸到白球的概率?
(通过预习找出本节知识点)
我的收获
(学生)/
课后反思
(教师)
人贵有志,学贵有恒。
学习不怕根基浅,只要迈步总不迟。
(出示课件)
第一பைடு நூலகம்“先学后教”——利用树状图和列表法计算概率
活动内容:小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:3.1用树状图或表格求概率(2)
主编:黄静审核:初三备课组班级______ 姓名________小组____ 家长签名________
【教学目标】会用树状图或表格求概率.
【课前预习】(阅读课本P62-67)
1.掷两枚完全相同的硬币,两个都是正面朝上的概率是多少?
2.抛骰子时,出现点数为6的概率是多少?
【探究新知】
例1.小明、小颖和小凡做“石头、剪刀、布”游戏。

游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者。

假如小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?为什么?
做一做:小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直到决出胜负。

如果你是游戏者,你会选择哪个数?
为什么?
练习一:
1、如果有两组牌,它们的牌面数字分别是1,2,3。

那么从每组牌中各摸出一张牌.
(1)两张牌的牌面数字和等于1的概率是多少?
(2)两张牌的牌面数字和等于2的概率是多少?
(3)两张牌的牌面数字和为几的概率最大?
(4)两张牌的牌面数字和大于3的概率是多少?
例2、小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘。

每个转盘被分成面积相等的几个扇形。

游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。

(1)利用画树状图或列表的方法表示游戏所有可能出现的结果。

(2)游戏者获胜的概率是多少?
练习二:
2、一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同,从中随机摸一个球,记下颜色后放回,再从中随机摸一个球,求两次摸到的球的颜色能配成紫色的概率。

批阅:_______小组长:_______ 科任:_______ 日期:_______
B 盘A 盘绿蓝黄白红。

相关文档
最新文档