matlab 验证奈奎斯特定理

合集下载

奈奎斯特准则的仿真实验

奈奎斯特准则的仿真实验

奈奎斯特准则的仿真实验奈奎斯特准则是一种用于系统稳定性判断的方法,可用于确定线性时不变系统的稳定性。

通过奈奎斯特准则,我们可以利用系统的频率响应来判断系统的稳定性。

在进行仿真实验时,我们可以通过数学模型和计算机仿真的方法来验证奈奎斯特准则。

首先,我们需要建立系统的传递函数,以描述系统的输入和输出之间的关系。

传递函数可以通过实验数据或系统建模的方式来获取。

在仿真实验中,我们可以使用软件工具(例如MATLAB或Simulink)来构建系统传递函数,并进行仿真分析。

假设我们现在需要测试的系统传递函数为G(s),其中s是复频率变量。

奈奎斯特准则的基本原理是通过将频率响应G(jω)(其中j是虚数单位,ω是频率)绘制在复平面上,来判断系统的稳定性。

在奈奎斯特图上,我们将频率响应转化为极坐标形式,其中幅值为响应的模长,角度为相位。

通过对频率响应进行奈奎斯特变换,可以得到系统的奈奎斯特图。

根据奈奎斯特准则,系统的稳定性取决于闭环传递函数的极点是否位于左半平面。

进行仿真实验时,我们可以按照以下步骤进行:1.通过数学建模或实验数据获得系统的传递函数G(s)。

2. 使用仿真软件(如MATLAB或Simulink)构建系统的传递函数模型。

3. 绘制该系统的频率响应曲线(例如Bode图)。

4.将频率响应转化为奈奎斯特图,并绘制在复平面上。

5.根据奈奎斯特图判断系统的稳定性,找到系统的极点。

6.若系统的极点位于左半平面,则系统稳定;若有极点位于右半平面,则系统不稳定。

在进行实验时,我们可以先利用奈奎斯特准则对一些已知稳定性的系统进行验证。

例如,对于二阶系统,我们可以验证当系统的两个极点都位于左半平面时,系统稳定;若有一个极点位于右半平面,则系统不稳定。

此外,我们还可以通过添加控制器来调节系统的稳定性。

例如,可以添加比例、积分或者微分控制器,并观察系统的频率响应和奈奎斯特图的变化。

根据奈奎斯特准则,我们可以判断控制器的设计是否能够使得系统更加稳定。

通信原理课程PCM系统与仿真分析方案

通信原理课程PCM系统与仿真分析方案

引言数字通信系统己成为当今通信的发展方向,然而自然界的许多信息通过传感器转换后,绝大部分是模拟量,脉冲编码调制(PCM>是把模拟信号变换为数字信号的一种调制方式,主要用于语音传输,在光纤通信、数字微波通信、卫星通信中得到广泛的应用,借助于MATLAB软件,可以直观、方便地进行计算和仿真。

因此可以通过运行结果,分析系统特性。

MATLAB是美国Math Works公司开发的一套面向理论分析研究和工程设计处理的系统仿真软件,Simulink是MATLAB提供的实现动态系统建模和仿真的一个软件包,它让用户把精力从编程转向模型的构造,为用户省去了许多重复的代码编写工作;Simulink 的每个模块对用户而言都是透明的,用户只须知道模块的输入、输出以及模块的功能,而不必管模块内部是怎么实现的,于是留给用户的事情就是如何利用这些模块来建立模型以完成自己的仿真任务;至于Simulink 的各个模块在运行时是如何执行,时间是如何采样,事件是如何驱动等细节性问题,用户可以不去关心,正是由于 Simulink 具有这些特点,所以它被广泛的应用在通信仿真中,通过仿真展示了PCM编码实现的设计思路及具体过程,并加以进行分析。

基于MATLAB的SIMULINK仿真模型,能够反映模拟通信系统的动态工作过程,其可视化界面具有很好的演示效果,为通信系统的设计和研究提供强有力的工具,也为学习通信系统理论提供了一条非常好的途径。

当然理论与实际还会有很大的出入,在设计时还要考虑各种干扰和噪声等因素的影响。

系统介绍1、脉冲编码调制脉冲编码调制(pulse code modulation,PCM>是概念上最简单、理论上最完善的编码系统,是最早研制成功、使用最为广泛的编码系统,但也是数据量最大的编码系统。

PCM的编码原理比较直观和简单,下图为PCM系统的原理框图:图中,输入的模拟信号m(t>经抽样、量化、编码后变成了数字信号(PCM信号>,经信道传输到达接收端,由译码器恢复出抽样值序列,再由低通滤波器滤出模拟基带信号m(t>。

《自动控制原理》MATLAB用于频域分析实验

《自动控制原理》MATLAB用于频域分析实验
范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:
[mag,phase,w]=bode(num,den,w)
四、实验内容及步骤
1、曲线1
k = 500;
num = [1,10];
den = conv([1,0],conv([1,1],conv([1,20],[1,50])));
《自动控制原理》MATLAB用于频域分析实验
一、实验目的
1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、
Matlab2014b版
三、实验原理
1、奈奎斯特图(幅相频率特性图)
MATLAB为用户提供了专门用于绘制奈奎斯特图的函数nyquist
五、实验原始数据记录与数据处理
六、实验结果与分析讨论
通过使用Matlab2014b版,加深了解系统频率特性的概念以及典型环节的频率特性。
七、结论
本实验验证的典型环节的频率特性。
八、实验心得体会(可略)
常用格式:
nyquist (num,den)
或nyquist (num,den,w) 表示频率范围0~w。
或nyquist (num,den,w1:p:w2) 绘出在w1~w2频率范围内,且以频率间隔p均匀取样的波形。
举例:
2、对数频率特性图(波特图)
MATLAB为用户提供了专门用于绘制波特图的函数bode
常用格式:
bode (num,den)
或bode (num,den,w) 表示频率范围0~w。
或bode (num,den,w1:p:w2) 绘出在w1~w2频率范围内,且以频率间隔p均匀取样的波形。
举例:系统开环传函为 绘制波特图。

广义奈奎斯特传递函数开方在matlab里怎么写程序

广义奈奎斯特传递函数开方在matlab里怎么写程序

广义奈奎斯特传递函数开方在matlab里怎么写程序要在MATLAB中计算广义奈奎斯特传递函数的开方,可以使用以下步骤编写程序:步骤1:定义传递函数首先,需要定义广义奈奎斯特传递函数。

传递函数可以表示为一个分子多项式除以一个分母多项式。

例如,我们定义一个示例传递函数为:H(s) = (s + 1) / (s^2 + 2s + 3)这个传递函数的分子多项式为(s + 1),分母多项式为(s^2 + 2s + 3)。

步骤2:计算传递函数的特征值特征值是传递函数分母多项式的根。

我们可以使用MATLAB的根求解函数`roots` 来计算传递函数的特征值。

例如,在MATLAB中,可以使用以下代码计算特征值:num = [1, 1]; % 分子多项式的系数den = [1, 2, 3]; % 分母多项式的系数roots_den = roots(den);这将计算传递函数的特征值,并将结果存储在`roots_den` 变量中。

步骤3:计算传递函数的幅频响应幅频响应表示传递函数在频率域上的振幅变化。

要计算幅频响应,可以使用MATLAB的频率响应函数`freqresp`。

例如,在MATLAB中,可以使用以下代码计算传递函数的幅频响应:sys = tf(num, den); % 定义传递函数对象[freq, amp] = freqresp(sys); % 计算传递函数的幅频响应freq = squeeze(freq); % 将频率数据转换为向量amp = squeeze(amp); % 将幅值数据转换为向量这将计算传递函数的幅频响应,并将结果存储在`freq` 和`amp` 变量中。

步骤4:计算传递函数的相频响应相频响应表示传递函数在频率域上的相位变化。

要计算相频响应,可以使用MATLAB的频率响应函数`freqresp`。

例如,在MATLAB中,可以使用以下代码计算传递函数的相频响应:phase = angle(freq.resp(sys)); % 计算传递函数的相频响应phase = squeeze(phase); % 将相位数据转换为向量这将计算传递函数的相频响应,并将结果存储在`phase` 变量中。

用MATLAB设计低通带通高通和带阻FIR数字滤波器

用MATLAB设计低通带通高通和带阻FIR数字滤波器

抽样频率为f 为1KHZ的数字带通滤波器,性能要求为:通带范围从200HZ到250HZ,在此两频率处衰减不大于3dB,在100HZ和400HZ频率处频率衰减不得小于20dB,采用巴特沃斯滤波器4阶Butterworth滤波器源代码n = 2;Wn = [200 250]/500;[b,a] = butter(n,Wn);freqz(b,a,512,1000);这个滤波器100Hz、400Hz处衰减在-30db以上。

可以通过增大n增加衰减。

用MATLAB设计低通带通高通和带阻FIR数字滤波器(1)低通滤波器的技术指标:H(ejw)=1,0<w<0.3pi;H(ejw)=0,0.3pi<w<pi.(2)带通滤波器的技术指标:H(ejw=0,0<w<0.4pi;H(ejw)=1;0.4pi<w<0.6pi;H(ejw)=0,0.6<w<pi;(3)高通滤波器的技术指标:H(ejw)=0,0<w<0.7pi;H(ejw)=1,0.7pi<w<pi.(4)带阻滤波器的技术指标:H(ejw)=1,0<w<0.3pi;H(ejw)=0;0.3pi<w<0.7pi;H(ejw)=1,0.7<w<pi;低通采样定理实验1.1 实验目的1.了解数字信号处理系统的一般构成;2.掌握奈奎斯特抽样定理。

1.2 实验仪器1.YBLD智能综合信号源测试仪1台2.双踪示波器1台3.MCOM-TG305数字信号处理与现代通信技术实验箱1台4.PC机(装有MATLAB、MCOM-TG305配套实验软件)1台1.3 实验原理一个典型的DSP系统除了数字信号处理部分外,还包括A/D和D/A两部分。

这是因为自然界的信号,如声音、图像等大多是模拟信号,因此需要将其数字化后进行数字信号处理,模拟信号的数字化即称为A/D转换。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真抽样定理,也被称为Nyquist定理或香农定理,是一种关于信号采样的基本理论。

它的核心观点是:如果对信号进行合适的采样,并且采样频率大于信号中最高频率的两倍,那么原始信号可以从采样信号中完全或几乎完全地恢复。

在MATLAB中,我们可以实现抽样定理的探讨和仿真。

下面将详细介绍如何进行这样的实现。

首先,我们可以通过使用MATLAB内置的函数来生成一个连续时间的信号。

例如,我们可以使用sinc函数生成一个带宽有限的信号,其频率范围为[-F/2, F/2],其中F是信号的最大频率。

以下是一个示例代码:```MATLABFs=100;%采样率Ts=1/Fs;%采样周期t=-1:Ts:1;%连续时间序列f_max = 10; % 信号最大频率signal = sinc(2*f_max*t); % 生成带宽有限的信号```然后,我们可以使用MATLAB的plot函数来显示生成的信号。

以下是一个示例代码:```MATLABplot(t, signal);xlabel('时间');ylabel('信号幅度');title('连续时间信号');```生成的图形将显示带宽有限的信号在连续时间域中的波形。

接下来,我们需要对信号进行离散化采样。

根据抽样定理,理想情况下,采样频率应大于信号中最高频率的两倍。

我们可以使用MATLAB的resample函数来进行采样。

以下是一个示例代码:```MATLABFs_new = 2*f_max; % 新的采样率Ts_new = 1/Fs_new; % 新的采样周期t_new = -1:Ts_new:1; % 新的时间序列signal_sampled = resample(signal, Fs_new, Fs); % 信号采样```然后,我们可以使用MATLAB的stem函数来显示采样后的信号。

以下是一个示例代码:```MATLABstem(t_new, signal_sampled);xlabel('时间');ylabel('信号幅度');title('离散时间信号');```生成的图形将显示采样后的信号在离散时间域中的序列。

MATLAB抽样定理验证

MATLAB抽样定理验证
title('重建信号与原余弦信号的绝对误差')
end
本文来自CSDN博客,转载请标明出处:/zhaojianghan888/archive/2009/09/26/4596154.aspx
要求(画出6幅图):
当TS<TN时:
1、在一幅图中画原连续信号f(t)和抽样信号fS(t)。f(t)是包络线,fS(t)是离散信号。
2、画出重构的信号y(t)。
3、画出误差图,即error=abs(f(t)-y(t))的波形。
当TS>TN时同样可画出3幅图。
%a
wm=40*pi;
wc=1.2*wm; %理想低通截止频率
2、确定Nyquist抽样间隔TN。选定两个抽样时间:TS<TN,TS>TN。
3、MATLAB的理想抽样为
n=-200:200;nTs=n*Ts;或nTs=-0.04:Ts:0.04
4、抽样信号通过理想低通滤波器的响应
理想低通滤波器的冲激响应为
系统响应为
由于
所以
MATLAB计算为
ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));
Ts=[0.02 0.03];
N=length(Ts);
for k=1:N;
n=-100:100;
nTs=n*Ts(k);
fs=(cos(8*pi*nTs)+2*sin(40*pi*nTs)+cos(24*pi*nTs)).*(u(nTs+pi)-u(nTs-pi));
t=-0.25:0.001:0.25;
ft=fs*Ts(k)*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));

实验六 基于MATLAB控制系统的Nyquist图及其稳定性分析 实验七 基于MATLAB控制系统的伯德图及其频域分析

实验六   基于MATLAB控制系统的Nyquist图及其稳定性分析 实验七   基于MATLAB控制系统的伯德图及其频域分析

实验六 基于MATLAB 控制系统的Nyquist 图及其稳定性分析 一、实验目的1、熟练掌握使用MATLAB 命令绘制控制系统Nyquist 图的方法。

2、能够分析控制系统Nyquist 图的基本规律。

3、加深理解控制系统乃奎斯特稳定性判据的实际应用。

4、学会利用奈氏图设计控制系统。

二、实验原理奈奎斯特稳定性判据(又称奈氏判据)反馈控制系统稳定的充分必要条件是当从变到时,开环系统的奈氏曲线不穿过点且逆时针包围临界点点的圈数R 等于开环传递函数的正实部极点数。

奈奎斯特稳定性判据是利用系统开环频率特性来判断闭环系统稳定性的一个判据,便于研究当系统结构参数改变时对系统稳定性的影响。

1、对于开环稳定的系统,闭环系统稳定的充分必要条件是:开环系统的奈氏曲线不包围点。

反之,则闭环系统是不稳定的。

2、对于开环不稳定的系统,有个开环极点位于右半平面,则闭环系统稳定的充分必要条件是:当从变到时,开环系统的奈氏曲线逆时针包围点次。

三、实验内容1、绘制控制系统Nyquist 图例1、系统开环传递函数,绘制其Nyquist 图。

210()210G s s s =++M-fileclcclear all den=[10]; num=[1 2 10]; sys=tf(den,num) nyquist(sys);2、根据奈氏曲线判定系统的稳定性例2、已知绘制Nyquist 图,判定系统的稳定性。

M-fileclcclear320.5()()20.5G s H s s s s =+++den=[0.5];num=[1 2 1 0.5];sys=tf(den,num);nyquist(sys)roots(num)ans =-1.5652-0.2174 + 0.5217i-0.2174 - 0.5217i【分析】由于系统奈氏曲线没有包围且远离(-1,j 0)点,且p=0,因此系统闭环稳定。

四、实验能力要求1、熟练使用MATLAB绘制控制系统Nyquist曲线的方法,掌握函数nyquist ( )的三种调用格式,并灵活运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于matlab的时域奈奎斯特定理验证
课题名称利用matlab检验采样定理
学院计通学院
专业班级通信1402
2016年6月
设计目的
(1)掌握matlab的一些应用
(2)采样定理在通信工程中是十分重要的定理
(3)通过这次设计,掌握matlab在实际中应用
定理说明
在信号与系统中,采样过程所遵循的规律称之为,采样定理。

他是最初又美国电信工程师H.奈奎斯特首先提出的,因此又叫奈奎斯特定理。

奈奎斯特定理描述了在对一个时域信号进行采样时,采样的频率必须高于信号最大频率的二倍,这样在采样以后的信号可以比较完整的保留原始信号。

一般在实际应用过程中,采样频率保持在信号最高频率的~4倍;例如,一段标准的MP3文件采样频率是44100HZ,因为人声音的频率范围是20-20KHZ,这样的采样频率就可以很好的保留原始信号。

如果采样信号低于原始信号频率的2倍,就会发生混叠现象,即两段信号在某一个频率上叠加而发生混乱,这样还原出的信号是没有任何意义的。

下面说明采样过程以及奈奎斯特定理(卷积表示采样)
假设原始信号是x(t),这是一段时域上的模拟信号,如果对它进行间隔是T的等间隔理想采样,相当于将x(t)连入一个定时开关,它每隔T秒闭合一次,这样开关另一边输出的信号就是采样以后的信号。

设信号x(t)是带限信号(有最高频率),而h(t)是抽样脉冲序列,且有
x(t)→X(jw) h(t)→H(jw)
→表示傅里叶变化
上图所示的是在采样频率大于原始信号频率的二倍时的情况,显而易见的是,当采样频率小于原始信号频率的二倍,那么采样之后的信号将会发生混叠,类似以下:
如图,发生混叠之后的信号很难再复原出来
设计思路
(1) 给出一个模拟信号,。

(2) 对信号进行采样,得到采样序列,画出采样频率为。

(3) 对不同白羊频率下的采样序列进行分析,绘制幅频曲线,对比。

-ωs ωs H(jw)= ωs
-ωs Y(jw)=X(jw)*H(jw)/ωs -ωs 发生混叠的 Y(jw)
(4)对信号进行谱分析。

观察和3的结果的差别。

(5)从采样序列中恢复信号,画出时域波形于原波形对比
程序及结果分析
采用80hz对信号进行采样,即f<2*max(w)
80hz采样重建
120hz采样, f=2*max(w)
120hz采样重建
140hz采样, f>2*max(w)
原函数波形
140hz采样重建
总结
本实验给出了采样的三种情况,欠采样,临界采样和过采样,看到过采样是最成功的,他可以很好的恢复原信号,比其它频率采样重建后的信号都要更加的详细,频域中也没有出现混叠现象。

再一次说明了奈奎斯特定理的实用性。

验证了其正确性
程序清单
采样:
function fz = caiyang( fy,fs )
%fy Ô­Ðźź¯Êý fs ²ÉÑùƵÂÊ
fs0=10000;
t=:1/fs0:;
k1=0:999;k2=-999:-1;
l1=length(k1);l2=length(k2);
f=[fs0*k2/l2,fs0*k1/l1];
w=[-2*pi*k2/l2,2*pi*k1/l1];
fx1=eval(fy);
FX1=fx1*exp(-j*[1:length(fx1)]'*w);
figure %×÷ͼ
subplot(2,1,1),plot(t,fx1,'r-'),title('Ô­ÐźÅ'),xlabel('ʱ¼ät(s)')
axis([min(t),max(t),min(fx1),max(fx1)]);%ƵÆ×
subplot(2,1,2),plot(f,abs(FX1)),title('Ô­ÐźŷùƵ'),xlabel('ƵÂÊf(Hz)') %²ÉÑù¿ªÊ¼
axis([-100,100,0,max(abs(FX1))+100]);
Ts=1/fs;
t1=:Ts:;
f1=[fs*k2/l2,fs*k1/l1];
t=t1;
fz=eval(fy);
FZ=fz*exp(-j*[1:length(fz)]'*w);
figure %×÷ͼ
%²ÉÑùÐòÁв¨ÐÎ
subplot(2,1,1),stem(t,fz,'.'),title('²ÉÑù'),xlabel('ʱ¼ät(s)');
line([min(t),max(t)],[0,0])
%²ÉÑùÐźŷùƵ
subplot(2,1,2),plot(f1,abs(FZ),'m'),title('È¡Ñù·ùƵ'),xlabel('ƵÂÊf(Hz)') end
采样重建:
function fh = chongjian( fz,fs )
%fz ²ÉÑùÐòÁÐ fs ƵÂÊ
T=1/fs;dt=T/10;
t=:dt:;
n=T:T;
TMN=ones(length(n),1)*t-n'*T*ones(1,length(t));
fh=fz*sinc(fs*TMN);
k1=0:999;k2=-999:-1;
l1=length(k1);l2=length(k2);
w=[-2*pi*k2/l2,2*pi*k1/l1];
FH=fh*exp(-j*[1:length(fh)]'*w);
figure
subplot(2,1,1),plot(t,fh,'g'),title('ÖØ¹¹ÐźÅ'),xlabel('ʱ¼ät(s)')
axis([min(t),max(t),min(fh),max(fh)]);%ƵÆ×,
line([min(t),max(t)],[0,0])
f=[10*fs*k2/l2,10*fs*k1/l1];
subplot(2,1,2),plot(f,abs(FH),'g'),title('ÖØ½¨ºóƵÆ×'),xlabel('ƵÂÊf(Hz)') axis([-100,100,0,max(abs(FH))+2]);
实际运行:
>> x='sin(2*pi*50*t)+cos(2*pi*40*t)';
>> fs=caiyang(x,80);
>> fr=chongjian(fs,80);
>> fs=caiyang(x,120);
>> fr=chongjian(fs,120);
>> fs=caiyang(x,140);
>> fr=chongjian(fs,140);。

相关文档
最新文档