与三角形有关的线段教案
《与三角形有关的线段》优质教案教学设计

本节课是本单元中,对知识的理解和贯彻最重要的一堂课。
在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。
但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。
对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。
而教案作为这一行为的载体,巨大作用是不言而喻的。
本节课的准备环节,就充分地说明了这个道理。
2.1.2 与三角形有关的线段预设目标1、掌握三角形的角平分线、中线、高线的概念,2、会画出任意三角形的角平分线、中线、高线,特别注意钝角三角形高的画法。
让学生从实践中得到三角形的三条中线、角平分线、高分别交于一点,直角三角形三条高的交点就是直角顶点,钝角三角形有两条高位于三角形的外部。
教学重难点 1.重点:三角形角平分线、中线、高的概念及其画法。
2.难点:钝角三角形高的画法。
教具准备三角尺、纸片教法学法讲授、讨论、练习教学过程一、复习提问1.什么叫角平分线?如何画一个角的平分线?2.已知A、B分别是直线l上和直线l外一点,分别过点A、点B 画直线l的垂线。
·B·lA二、新授今天我们要学习三角形中的三种重要线段——中线、角平分线和高。
1.三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线。
如图,点D是BC边的中点,即AD是△ABC的中线。
AB D C问:三角形有几条中线?若已知AD是三角形的中线,你可得到什么结论?2.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线。
如图,∠1=∠2,那么CE是△ABC的角平分线。
AE ∠2B C∠1问:三角形有几条角平分线?三角形的角平分线和角平分线有什么不同?3.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫三角形的高。
人教版初中数学八年级上册11.1与三角形有关的线段(教案)

4.增强学生的合作意识,通过小组讨论、交流,培养学生的团队协作能力,共同解决问题;
5.培养学生的创新意识,鼓励学生运用所学知识,探索三角形相关的新问题,激发学生的求知欲和创造力。
本节课将紧密围绕核心素养目标,注重培养学生的综合能力,使学生在掌握知识的同时,提高学科素养。
6.三角形相似的条件:SS、SAS、AA;
7.三角形中位线定理及其应用。
本节课将围绕以上内容,结合实际例题,帮助学生掌握与三角形有关的线段的基本性质和应用。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探索三角形的基本性质和定理,使学生能够运用逻辑思维分析、解决问题;
2.提升学生的空间想象力,通过观察、操作三角形模型,让学生在脑海中形成清晰的三角形形象,为后续几何学习打下基础;
三、教学难点与重点
1.教学重点
-三角形的定义及其内角和定理:使学生明确三角形的定义,掌握三角形的三个内角和为180°的定理,并能应用于实际问题。
-三角形全等的条件:重点讲解SSS、SAS、ASA、AAS全等条件,让学生熟练运用这些条件判断三角形全等。
-三角形相似的条件:强调SS、SAS、AA相似条件,培养学生运用这些条件解决实际问题的能力。
3.课堂上关注每个学生的学习情况,及时发现问题并给予指导;
4.课后及时进行教学反思,不断调整教学策略,以提高教学效果。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形有关的实际问题。
2.实验操位线定理的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
与三角形有关的线段

思路分析:
题意分析:此题考查三角形稳定性的应用.
解题思路:这是一个五边形,要把它的各边都分割到三角形中才能将其固定,这样的木条至少需要2根.
解答过程:至少需要加钉2根木条.
解题后的思考:由于三角形具有稳定性,而其他图形不具有稳定性.因此要确定至少需要几根木条才能固定多边形木架,只需确定该多边形至少能分割成几个互不重叠的三角形.
A.6个B.5个C.4个D.3个
思路分析:
题意分析:本题考查三角形的三边关系.
解题思路:x的取值不能太大,因为有3+8>x,即x<11.x的取值也不能太小,因为有3+x>8,即x>5,在这个范围内的偶数有6、8、10,共3个.
解答过程:D
解题后的思考:解答这个问题要注意两点:①对于x的取值要保证3、8、x能组成三角形,也就是要满足任意两边之和大于第三边.②x的值为偶数.学了不等式的知识后解答本题会更容易一些.
难点:三角形两边的和大于第三边.
三、考点分析:
本讲内容在中考中非常重要,但难度不大,要求理解三角形、三角形的高、中线和角平分线的概念,掌握三边关系及按边分类,认识三角形的稳定性并能灵活应用于实际,主要以填空题、选择题、计算题的形式出现.
1.三角形的边
(1)三角形的概念和表示方法
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边的公共端点叫做三角形的顶点,相邻两边所组成的图形叫做三角形的内角,简称三角形的角.
解题后的思考:三角形的中线把一边平分,并且把这个三角形的面积平分.我们常用这个结论来说明两个三角形面积相等.
小结:在三角形的有关概念中,应重点掌握三角形的角平分线、中线和高的定义与性质.如:三角形的中线把三角形分成面积相等的两部分,三角形的边与该边上的高的积相等.
人教版八年级上册11.1《与三角形有关的线段》说课稿

3.技术工具:网络资源、在线学习平台等,提供丰富的学习资料,拓展学生的学习视野。
它们在教学中的作用主要有:
1.直观展示几何图形和性质,降低学生的理解难度。
2.提供丰富的学习资源,满足学生的个性化学习需求。
3.创设生动、有趣的学习情境,激发学生的学习兴趣。
人教版八年级上册11.1《与三角形有关的线段》说课稿
一、教材分析
(一)内容概述
本节课选自人教版八年级上册11.1《与三角形有关的线段》,它是整个课程体系中几何部分的重要内容,主要介绍了三角形的中线、高线、角平分线等基本概念及其性质。这部分内容是对三角形知识的深入探究,旨在帮助学生巩固对三角形基本概念的理解,并为后续学习相似三角形、解直角三角形等知识打下基础。
(二)新知讲授
在新知讲授阶段,我将采用以下步骤逐步呈现知识点,引导学生深入理解:
1.通过动态PPT或几何画板展示三角形的中线、高线、角平分线的定义和性质,让学生直观地理解这些概念。
2.结合实际例题,讲解中线、高线、角平分线的判定方法和应用,让学生在具体情境中掌握知识。
3.分步骤演示如何准确地画出三角形的中线、高线、角平分线,并指导学生进行动手操作,加深对知识点的理解。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.基础练习:布置一些基本的画图题目,如画出给定三角形的中线、高线、角平分线,让学生独立完成。
2.提高练习:设计一些综合性的题目,让学生运用所学知识解决实际问题,如求三角形的面积、判断三角形的类型等。
3.小组合作活动:组织小组讨论,让学生共同探究与三角形有关的线段在生活中的应用,培养学生的团队合作能力和创新思维。
最新人教版初中八年级上册数学第十一章《与三角形有关的线段》精品教案

随堂练习 1
1、图中有几个三角形,用符号表示这些三角形. 解:共有6个三角形,分别是: △ABD,△ABE,△ABC, △ADE,△ADC,△AEC.
2、一个等腰三角形的一边长为6cm,周长为20cm,求其他两边的长. 解:第一种情况:当腰长为6cm的时候,底边长为20-6-6=8(cm), 则该等腰三角形的另外两边分别为6cm,8cm. 第二种情况:当底边长为6cm的时候,腰长为(20-6)÷2=7(cm), 则该等腰三角形的另外两边分别为7cm,7cm.
课堂小结
三角形的边
边、顶点、角 三角形的分类 三角形的三边关系
按角分类
按边分类 三角形两边之和 大于第三边
三角形两边之差 小于第三边
拓展提升 1
1、已知三条线段的比例分别为1:3:4,3:3:6,3:4:5,其中可以 构成三角形的有几个? 解:1个,序号为.
假设中边长为1,3,4,因为1+3=4,所以不能构成三角形. 假设中边长为3,3,6,因为3+3=6,所以不能构成三角形. 假设中边长为3,4,5,因为3+4>5,所以能构成三角形.
归纳:判断三条线段是否可以构成三角形,只需判断“两 条较短的线段之和大于第三条”即可.
新新知知探探究 究
例2:用一条长18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么?
解:(1)设底边长为xcm,则腰长为2xcm. 由题可得: x+2x+2x=18, 解得x=3.6.
三角形的三边关系: 1、三角形两边之和大于第三边; 2、三角形两边之差小于第三边.
A C
பைடு நூலகம்
11.1与三角形有关的线段(重难点同步特训)教案

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形特殊线段的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在实践活动和小组讨论环节,学生们表现出了很高的积极性。他们能够围绕三角形在实际生活中的应用展开讨论,并提出自己的观点和想法。但在讨论过程中,我也发现部分学生表达不够清晰,逻辑思维能力有待提高。因此,在今后的教学中,我将更加注重培养学生的表达能力和逻辑思维。
另外,今天的课堂氛围较为活跃,学生们积极参与,教学效果较好。但我也注意到,在课堂纪律方面还需加强管理,确保教学活动有序进行。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的基本概念、三边关系、内角和定理以及特殊线段的性质和应用。同时,我们也通过实践活动和小组讨论加深了对三角形知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:给出具体的三边长度,让学生判断是否可以构成一个三角形。
八年级数学《与三角形有关的线段》教案

数学备课组第 1 周供2 周用主备课稿____________,______________,________________;按角分成三类:________________,__________________,_________________。
7、一位同学用三根木棒拼成下图中的图形,其中符合三角形概念的是( ):找出图中所有的三角形,并把它们表示出来。
已知一个等腰三角形的两边长分别为8厘米和4厘米,求这个等腰三角形的周长。
∆ABC的三边长分别为a,b,c,试化简:(1)|c-a-b|-|b-a-c| (2)|a+b-c|-|b-a-c|一、课堂练习:1、教材P65练习第1、2题2、一个三角形的两边长分别是3厘米,、4厘米,则第三边a的取值范围是____________。
3、已知三角形的两边长分别是6厘米和7厘米,第三边长是偶数,则第三边长可能是___________________。
4、如图,找出图中所有的三角形。
二、作业布置教材P69第1、2、6题;教材P70第7题,三、自我检测(一)选择题1、∆ABC的三边长为a,b,c,且a>b>c,若b=6,c=2,则a的取值范围是( )A、42、如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是( )A、20米B、15米C、10米D、5米3、已知三角形的两边长分别为3厘米和8厘米,则此三角形的第三边的长可能是( )A、4厘米B、5厘米C、6厘米D、13厘米4、已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x,则x的取值范围是( )A、05、如果线段a、b、c能组成三角形,那么它们的长度比可能是( )A、1:2:4B、1:3:4C、3:4:7D、2:3:4(二)填空题6、一个木工师傅现有两根木条,它们的长分别为50厘米和70厘米,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条的长为x厘米,则x的取值范围是________7、如图,在∆ABC中,AB的=所对的角是__________,∠BAC所对的边是_______,AC在∆ABC中是_________的对边。
与三角形有关的线段教案(教学设计)

与三角形有关的线段【教学目标】1.亲历认识与三角形有关的线段的探索过程,体验分析归纳得出三角形的定义与分类,三角形三边之间的大小关系,三角形的高、中线与角平分线的定义,以及三角形的稳定性,进一步发展学生的探究、交流能力。
2.掌握三角形三边之间的大小关系。
3.熟练运用三角形三边之间的大小关系,三角形的高、中线与角平分线。
【教学重难点】重点:掌握三角形边的性质。
难点:熟练运用三角形三边之间的大小关系,三角形的高、中线与角平分线。
【教学过程】一、直接引入师:今天这节课我们主要学习与三角形有关的线段,这节课的主要内容有:三角形的的定义与分类,三角形三边之间的大小关系,三角形的高、中线与角平分线的定义,以及三角形的稳定性,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课(1)教师引导学生在预习的基础上了解三角形的定义,形成初步感知。
(2)首先,我们先来学习三角形三边之间的大小关系,它的具体内容是三角形两边的和大于第三边,三角形的两边的差小于第三边。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
例1.用一条长为的细绳围成一个等腰三角形。
(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长是的等腰三角形吗?为什么?解:(1)设底边长为,则腰长为。
解得所以,三边长分别为。
(2)因为长为的边可能是腰,也可能是底边,所以需要分情况讨论。
18cm 4cm xcm 2xcm 2218x x x ++=3.6x = 3.67.27.2cm cm cm ,,4cm如果长的边为底边,设腰长为,则解得如果长的边为腰,设底边长为,则解得因为,不符合三角形两边的和大于第三边,所以不能围成腰长是的等腰三角形。
由上讨论可知,可以围成底边边长是的等腰三角形。
(3)接着,我们再来看下三角形的高、中线与角平分线的定义内容,它的具体内容是从的顶点向它所对的边所在的直线画垂线,垂足为,所得线段叫做的边上的高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与三角形有关的线段教案
以下是查字典数学网为您推荐的与三角形有关的线段教案,希望本篇文章对您学习有所帮助。
与三角形有关的线段
7.1 与三角形有关的线段
第一课时 7.1-1 三角形的边
重点:三角形的三边关系
难点:三角形的三边关系
一、阅读教材P63-P65的内容
二、独立思考:
1、_________________________________________叫三角形.
2、如图的三角形记作___________,它的三条边是
_____________________,三个顶点分别是
_______________,三个内角是______________________。
3、如图,共有_________个三角形,其中以AC为边的三角形是____________________;以B为其中一个内角的三角形有_____________________________________________。
4、下列长度的三条线段能组成三角形的是( )
A、2,2,4
B、3,4,1
C、5,6,12
D、5,5,8
5、已知一个三角形的两边的边长分别是6和4,第三边的长
可能是( )
A、2
B、1
C、4或2
D、4或6
6、三角形按边分为三类:
____________,______________,________________;按角分成三类:
________________,__________________,_______________ __。
7、一位同学用三根木棒拼成下图中的图形,其中符合三角形概念的是( )
:找出图中所有的三角形,并把它们表示出来。
已知一个等腰三角形的两边长分别为8厘米和4厘米,求这个等腰三角形的周长。
ABC的三边长分别为a,b,c,试化简:
(1)|c-a-b|-|b-a-c| (2)|a+b-c|-|b-a-c|
一、课堂练习:
1、教材P65练习第1、2题
2、一个三角形的两边长分别是3厘米,、4厘米,则第三边a的取值范围是____________。
3、已知三角形的两边长分别是6厘米和7厘米,第三边长是偶数,则第三边长可能是___________________。
4、如图,找出图中所有的三角形。
二、作业布置
教材P69第1、2、6题;
教材P70第7题,
三、自我检测
(一)选择题
1、ABC的三边长为a,b,c,且ac,若b=6,c=2,则a的取值范围是( )
A、4
2、如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是( )
A、20米
B、15米
C、10米
D、5米
3、已知三角形的两边长分别为3厘米和8厘米,则此三角形的第三边的长可能是( )
A、4厘米
B、5厘米
C、6厘米
D、13厘米
4、已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x,则x的取值范围是( )
A、0
5、如果线段a、b、c能组成三角形,那么它们的长度比可能是( )
A、1:2:4
B、1:3:4
C、3:4:7
D、2:3:4
(二)填空题
6、一个木工师傅现有两根木条,它们的长分别为50厘米和70厘米,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条的长为x厘米,则x的取值范围是________
7、如图,在ABC中,AB的=所对的角是__________,BAC所对的边是_______,AC在ABC中是_________的对边。
8、两边长分别为3和10与另一边组成的边长都是整数的三角形共有__________个。
(三)解答题
9、如果一个三角形的三边长度之比为2:3:4,周长为36厘米,求三边的长。
10、等腰三角形的周长为20厘米。
(1)若已知腰长是底长的2倍,求各边的长;
(2)若已知一边长为6厘米,求其它两边的长。
11、已知一个等腰三角形的三边长分别是a,3a-1,4a-2,试求其周长。
(提示:要分三种情况讨论)
12、如图,P为ABC内任意一点,试说明PA+PB+PC (AB+AC+BC)
13、某木材市场上木棒规格和价格如下表:
规格 1米 2米 3米 4米 5米 6米
价格(元/根) 10 15 20 25 30 35
小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3米和5米的木棒,还需要到该木材市场上购买一根。
(1)有几种规格木棒可供小明的爷爷选择?
(2)选择哪一种规格的木棒最省钱?
第二、三课时 7.1-2 三角形高、中线和角平分线
7.1-3 三角形的稳定性
1、掌握三角形的三条重要线段(角平分线、中线、高)的有关概念、表示、画法及应用。
2、了解三角形的稳定性
重点:三角形的高、中线、角平分线
难点:三角形的高、中线、角平分线
一、阅读教材P65-P68的内容
二、独立思考:
1、如图,AD是ABC的中线,AE是BAC的平分线,则
BD=_________= ______,BAE=________= __________。
2、三角形具有___________性,而四边形没有_________性,要使一个六边形木架(如图)不变形,至少要钉上__________根木条。
3、关于三角形的高线、中线、角平分线,下列说法中正确的是( )
A、都是射线
B、都是直线
C、都是线段
D、只有高线是射线
4、如图,BD是ABC的角平分线,DE//BC,DBC=20,则
AED=__________。
5、如图所示,AM是ABC的中线,若ABM的面积是20平方厘
米,求ACM的面积。
画出下列三角形中每个内角的角平分线,与同学讨论一下,你发现了什么规律?
规律:
___________________________________________________ _________________。
画出下列三角形中每条边上的中线,看看你发现什么规律? 规律:
___________________________________________________ __________________。
画出下列三角形中每条边上的高,与同学们讨论一下,发现了什么规律?
规律:
___________________________________________________ _________________.
一、课堂练习:
1、教材P66练习第1、2题。
2、教材P68练习题
3、在RtABC中,CDAB于D,若AD=4,CD=6,BD=9,求:
(1)ABC的面积。
(2)SADC :SBDC以及AD:BD,你发现了什么?
二、作业布置
教材P69第3、4、5题
教材P70第8题
三、自我检测
(一)选择题
1、下列图形中,具有稳定性的是( )
2、如果三角形本条高的交点是三角形的一个顶点,那么这个三角形是( )
A、锐角三角形
B、钝角三角形
C、直角三角形
D、以上都不正确
3、如图,若2,4,下列结论错误的是( )
A、AD是ABC的角平分线
B、CE是AC的角平分线
C、3= ACB
D、CE是ABC的角平分线
4、如图,ADBC,垂足为D,则图中以A灰高的三角形共有( )
A、4个
B、5个
C、3个
D、10个
5、如图,在ABC中,D、E分别是BC、AD的中点,SABC=4
平方厘米,则SABE等于( )平方厘米
A、2
B、1
C、0.5
D、0.25
(二)解答题
6、如图,写出以AE为高的三角形。
7、ABC中,AB=AC,AC边上的中线BD把三角形的周长分成24cm和30cm的两部分,求三角形三边之长。
8、农户张大爷家要把一块三角形的土地平均分成4份,种
植不同的蔬菜,并比较他们的产量,应如何分?试画出三种不同的分法。
9、在ABC中,AD是A的平分线,DE//AC交AB于E,EF//AD 交BC于F,试问,EF是BDE的角平分线吗?说说你的理由。
10、如图,在ABC中有一点P,当P、A、B、C没有任何三点在同一直线上时,在三角形内可构成三个不重叠的三角形;当ABC内的点的个数增加为2个时,在三角形内可构成五个不重叠的三角形;当ABC内的点的个数增加为3个时,在三角形内可构成七个不重叠的三角形。
(1)若其它条件不变,当ABC内的点的个数增加为88个时,在三角形内可构成多少个不重叠的小三角形?
(2)若其它条件不变,当ABC内的点的个数增加为n个时,在三角形内可构成301个不重叠的三角形,试求n的值。