九年级数学下册 第一章 直角三角形的边角关系 1.1 锐角三角函数 第2课时 正弦与余弦教案1 北师

合集下载

锐角三角函数(第2课时)(课件)九年级数学下册(北师大版)

锐角三角函数(第2课时)(课件)九年级数学下册(北师大版)

c
sin
A
=
∠A的对边
斜边
斜边
a =c
b
A
c
cos
A
=
∠A的邻边
斜边
=
b c
斜边
b邻 A 边
谢谢~
B1 A1
B2 A1
B1 A1
B2 A1
B1
(3)如果改变B2在梯子A1B1上的位置呢?
由此你可得出什么结论?
B2
(4)如果改变梯子A1B1的倾斜角的大小呢?
由此你可得出什么结论?
C1 C2
A1
探究新知
(1)Rt△B1A1C1 ∽ Rt△B2A1C2.
(2)相等
∵ Rt△B1A1C1 ∽ Rt△B2A1C2,
=
a c
tan A a a c sin A b c b cos A
若∠A+∠B=90°;一个 锐角的正弦等于它余角的余 弦,sinA=cosB;一个锐角的 余弦等于它余角的正弦;
cosA=sinB.
探究新知
锐角三角函数之间的关系:
(1)同一个角:①商的关系:tanA= sin A ;②平方
关系:sin2A+cos2A=1.
A
B
斜边
∠A的对边
┌ ∠A的邻边 C
结论:在Rt△ABC中,如果锐角A确定,那么∠A的对边与 斜边的比, ∠A的邻边与斜边的比也随之确定.
探究新知
核心知识点一: 正弦、余弦的定义
想一想:如图.
(1)直角三角形A1B1C1和直角三角形A1B2C2有什么关系?
(2)A1C1 和 A1C2 有什么关系? B1C1 和 B2C2 呢?
探究新知
• 定义中应该注意的几个问题: 1.sinA,cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构 造直角三角形). 2.sinA,cosA是一个完整的符号,分别表示∠A的正弦,余弦 (习惯省去 “∠”号). 3.sinA,cosA 是一个比值,是直角边与斜边之比.注意比的顺序

1.1 锐角三角函数 第2课时(教案)-北师大版数学九下

1.1 锐角三角函数 第2课时(教案)-北师大版数学九下

第2课时正弦、余弦1.经历探索直角三角形中边角关系的过程.理解正弦、余弦及三角函数的意义和与现实生活的联系.2.能够用sin A,cos A表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.1.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.2.体会数学来源于生活又服务于生活的理念.1.在探究新知的过程中,培养与他人合作的意识.2.激发学生探究新知的兴趣,让他们体会学习数学的快乐,培养应用数学的意识.【重点】1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sin A,cos A表示直角三角形两边的比.3.能根据直角三角形的边角关系进行简单的计算.【难点】类比正切,用函数思想理解正弦和余弦.【教师准备】多媒体课件.【学生准备】复习tan A的定义以及利用tan A表示直角三角形两边比的方法.导入一:如图所示,AC是旗杆AB的一根拉线,测得AB=6m,∠ACB=α,同学们,你能用α表示出拉线AC的长度吗?【问题】边AB和AC分别是∠ACB的什么边?和我们上节课学习的正切一样吗?[设计意图]通过与正切的对比,引出本节课要探究的问题,让学生体会类比思想的重要性.导入二:课件出示:如图所示,我们在上一节课学习了直角三角形中的一种边与角之间的关系——正切.由正切定义我们知道正切是一个比值,并且得出了当Rt△ABC中的一个锐角A确定时,其对边与邻边的比值便随之确定.【问题】此时,其他边之间的比值也确定吗?[设计意图]引导学生回忆上节课学的正切后,开门见山,直入正题,让学生的思维很快进入今天的学习内容.[过渡语]在直角三角形ABC中,除了两条直角边的比之外,还有没有利用其他边的比值来表示梯子AB的倾斜程度的情况呢?问题1课件出示:如图所示,在直角三角形中,除了两直角边的比值外还有其他边之间的比值吗?生观察后思考得出:还可以用直角边比斜边或斜边比直角边.(这里学生可能会提到多种情况,只要学生回答的有道理就予以肯定和表扬)教师引导:如果以∠A为例,总结一下共有几种情况.【学生活动】同伴交流,总结归纳出两种类型:对边与斜边的比、邻边与斜边的比.【教师点评】在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比和邻边与斜边的比也随之确定.【师生活动】共同总结:∠A的对边与斜边的比叫做∠A的正弦(sine),记作sin A,即sin A=.∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即cos A =.锐角A 的正弦、余弦和正切都是∠A 的三角函数.提示:当锐角A 变化时,相应的正弦、余弦和正切值也随之变化.[设计意图]通过探究,引导学生类比正切的概念总结出正弦、余弦及三角函数的概念,为下面的学习打下良好的基础.【想一想】在教材图1-3中,梯子的倾斜程度与sin A 和cos A 有关系吗?【教师活动】要求小组合作交流,统一答案.【学生活动】小组同学认真思考,热烈讨论,积极总结.思路一教师引导学生分析:如图所示,AB =A 1B 1,在Rt△ABC 中,sin A =,在Rt△A 1B 1C 1中,sin A 1=.∵AB =A 1B 1,∴<,即sin A <sin A 1,∴梯子A 1B 1比梯子AB 陡.∴梯子的倾斜程度与sin A 有关系.sin A 的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度.思路二学生互相交流,类比分析过程:cos A =,cos A 1=.∵AB =A 1B 1,∴>,即cos A >cos A 1,∴梯子的倾斜程度与cos A 也有关系.cos A 的值越小,梯子越陡.【师生总结】梯子的倾斜程度与sin A ,cos A 的关系:sin A 的值越大,梯子越陡;cos A 的值越小,梯子越陡.[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过学生的参与、动手操作让学生学会“由特殊到一般”“数形结合”的思想方法,提高分析问题和解决问题的能力.(教材例2)如图所示,在Rt△ABC中,∠B=90°,AC=200,sin A=0.6,求BC的长.【师生活动】生独立解答,师巡视观察学生解题的情况,随时进行指导.解:在Rt△ABC中,∵sin A=,即=0.6,∴BC=200×0.6=120.想一想:你还能求出cos A,sin C和cos C的值吗?生认真思考,独立写解题过程.代表展示:cos A=0.8,sin C=0.8,cos C=0.6.[设计意图]例题的安排既对学生学习的内容加以巩固,也让学生体会严谨的做题思路,并通过拓展得出直角三角形的三角函数之间的关系.[知识拓展]1.若∠A+∠B=90°,一个锐角的正弦等于它余角的余弦,sin A=cos B;一个锐角的余弦等于它余角的正弦,cos A=sin B.2.锐角三角函数之间的关系:(1)同一个角:①商的关系:tan A=;②平方关系:sin2A+cos2A=1.(2)互余两角:若∠A+∠B=90°,则sin A=cos B,cos A=sin B.【做一做】如图所示,在Rt△ABC中,∠C=90°,cos A=,AC=10,AB等于多少?sin B呢?【学生活动】要求学生独立完成,代表展示解题过程.代表展示:解:在Rt△ABC中,∵cos A===,∴AB==.∴sin B===.[设计意图]在学习前边知识的基础上,巩固运用正弦、余弦及正切表示直角三角形中两边的比,体验数形之间的联系,学习利用数形结合思想分析问题和解决问题,提高解决实际问题的能力.(1)三角函数的概念:正弦:sin A=.余弦:cos A=.锐角A的正弦、余弦和正切都是∠A的三角函数.(2)梯子的倾斜度与三角函数之间的关系:sin A的值越大,梯子越陡;cos A的值越小,梯子越陡.(3)锐角三角函数之间的关系:(1)同一个角:①商的关系:tan A=;②平方关系:sin2A+cos2A=1.(2)互余两角:若∠A+∠B=90°,则sin A=cos B,cos A=sin B.1.如图所示,在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.4B.2C.D.解析:∵cos B=,∴=.∵AB=6,∴CB=×6=4.故选A.2.在Rt△ABC中,∠C=90°,若cos A=,则tan B的值是()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,∴cos A=,tan B=,AC2+BC2=AB2.∵cos A=,∴设AC=2x(x>0),则AB=3x,BC=x,∴tan B==.故选A.3.如图所示,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sin B的值是.解析:∵在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=4,∴sin B==.故填.4.如图所示,△ABC的顶点都在方格纸的格点上,则sin A=.解析:过C作CD⊥AB交AB的延长线于点D,如图所示,设小方格的边长为1,在Rt△ACD中,AC==2,∴sin A==.故填.5.如图所示,∠ACB=90°,DE⊥AB,垂足为点E,AB=10,BC=6,求∠BDE的三个三角函数值.解:∵∠C=∠BED=90°,∠B=∠B,∴△ACB∽△DEB,∴∠BDE=∠A,∴sin∠BDE=sin A=,cos∠BDE=cos A=,tan∠BDE=tan A=.第2课时1.三角函数的概念:(1)∠A的对边与斜边的比叫做∠A的正弦,即sin A=.∠A的邻边与斜边的比叫做∠A的余弦,即cos A=.锐角A的正弦、余弦和正切都是∠A的三角函数.2.梯子的倾斜度与三角函数之间的关系:sin A的值越大,梯子越陡;cos A的值越小,梯子越陡.一、教材作业【必做题】1.教材第6页随堂练习第1,2题.2.教材第6页习题1.2第1,2,3,4题.【选做题】教材第7页习题1.2第5题.二、课后作业【基础巩固】1.(2015·温州中考)如图所示,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A. B. C. D.2.(2015·广西中考)如图所示,在Rt△ABC中,∠C=90°,AB=13,BC=12,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=3.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sin A=.4.如图所示,在直角坐标系中,P是第一象限内的点,其坐标是(3,m),且OP与x轴正半轴的夹角α的正切值是,则sinα的值为.【能力提升】5.(2015·乐山中考)如图所示,已知△ABC的三个顶点均在格点上,则cos A的值为()A. B. C. D.6.在△ABC中,∠C=90°,BC=6,sin A=,则AB边的长是.7.如图所示,在Rt△ABC中,∠C=90°,AB=10,sin A=,求BC的长和tan B的值.8.如图所示,在正方形ABCD中,M是AD的中点,BE=3AE.求sin∠ECM的值.【拓展探究】9.(2014·贺州中考)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A=.【答案与解析】1.D(解析:∵AB=5,BC=3,∴AC=4,∴cos A==.故选D.)2.A(解析:∵∠ACB=90°,AB=13,BC=12,∴AC===5.A,sin A==,故本选项正确;B,cos A==,故本选项错误;C,tan A==,故本选项错误;D,tan B==,故本选项错误.故选A.)3.(解析:首先由勾股定理求得斜边AC=5,然后由锐角三角函数的定义知sin A=,最后将相关线段的长度代入计算即可.)4.(解析:如图所示,过点P作PE⊥x轴于点E,则可得OE=3,PE=m,在Rt△POE中,tanα==,解得m=4,则OP==5,故sinα=.)5.D(解析:过B点作BD⊥AC,如图所示,由勾股定理,得AB==,AD==2,∴cos A===.故选D.)6.9(解析:∵BC=6,sin A=,∴=,解得AB=9.故填9.)7.解:在Rt△ABC中,∠C=90°,AB=10,sin A==,∴BC=4,根据勾股定理,得AC==2,则tan B===.8.解:设AE=x(x>0),则BE=3x,BC=4x,AM=2x,CD=4x,∴CE==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∠EMC=90°,∴sin∠ECM===.9.(解析:如图所示,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,易知△ABC是等腰三角形,由面积相等可得BC·AD=AB·CE,∴CE==,∴sin∠CAE===.故填.)上节课已经学习了三角函数中的正切,所以这节课根据初中学生身心发展的特点,运用了类比教学法,想唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,运用直观教学,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.用函数的观点理解正弦、余弦和正切,是本节课的一个难点.为了更好地突破难点,在教学时发动学生及时进行讨论,产生的效果较好.在探讨梯子的倾斜程度与sin A和cos A的关系时,鼓励学生利用类比tan A的方法进行探究,可以比较直观地得出结论,学生比较容易接受.课堂练习题及检测题题量适中且有针对性,课后作业有分层,适合不同程度的同学.在整个教学过程中,学生探究活动始终处于主导地位,培养了学生独立思考、合作探究及分析问题、解决问题的能力.在处理梯子的倾斜度与三角函数的关系的问题时,时间安排的不是很科学,导致后面的例题以及做一做的处理稍显仓促.在以后的教学中注意科学合理地安排课堂时间,并且大部分的知识让学生利用类比tan A的方法进行自主探究.随堂练习(教材第6页)1.解:过A点作AD⊥BC,垂足为D,BD=BC=3,AD===4,∴sin B==,cos B==,tan B==.2.解:∵sin A=,∴AB===25,则AC===15,∴△ABC的周长=AB+BC+AC=25+20+15=60,△ABC的面积=AC·BC=×15×20=150.习题1.2(教材第6页)1.解:∵x==9=,∴sinα=cosβ==,cosα=sinβ==,tanα==,tanβ==.2.提示:倾斜角的正弦值、正切值越大,梯子越陡;倾斜角的余弦值越小,梯子越陡.3.解:如图所示,∵sin A=,cos B=,∴sin A=cos B.4.解:如图所示,∵CD是AB边上的中线,且CD=5,∴AB=2CD=10.∵BC=8,∴AC==6,∴sin A===.过点D作DE⊥AC于E,∵sin A=,∴DE=5sin A=4,∴AE==3,∴CE=6-3=3,∴sin∠ACD==,cos∠ACD==,tan∠ACD==.5.解:当∠BAC>90°时,CD=10,sin C=.当∠BAC<90°时,CD=16,sin C=.本节课的学习,学生可以类比上节课所学的正切的探究方法对正弦、余弦的知识进行探究.在探究的过程中要及时进行总结,得出直角三角形中的三个三角函数之间的关系,这也是本节课的难点,其突破方法就是在自主探究和合作交流的过程中寻求它们之间的联系,而熟练运用三角函数进行相关的计算是对所学知识的巩固提高.当然和上节课一样,在探究的过程中数形结合思想和转化思想的运用可以使问题得以简化.容易混淆sin和cos的概念.在Rt△ABC中,∠C=90°,AB=3,BC=2,则cos A的值是.【错解】【错解分析】容易把sin A和cos A的概念颠倒而得出相反的结论.【正解】【正解分析】在Rt△ABC中,∠C=90°,AB=3,BC=2,∴AC==,∴cos A==.。

九年级数学下册第一章直角三角形的边角关系230°,45°,60°角的三角函数值教学课件(新版)北师大版

九年级数学下册第一章直角三角形的边角关系230°,45°,60°角的三角函数值教学课件(新版)北师大版

【解析】如图所示,BC=7m,
B
∠A=30°
BC 7 1, sinA=
AB AB 2
C
A
∴AB=14 m.
即扶梯的长度为14 m.
3.如图,在Rt△ABC中,∠C=90°, ∠A,∠B ,∠C的对边分别是a,b,c. c
求证:sin2A+cos2A=1.
A
b
【证明】在Rt△ABC中,a2 b2 c2,
∵E,F分别是AB,DC的中点,
∴EF= 1 ( AD BC ) 1 (8 16)=12.
2
2
【规律方法】 1.记住30°,45 °,60 °角的三角函数值及推导方 式,可以提高计算速度. 2.会构造直角三角形,充分利用勾股定理的有关知识结 合三角函数灵活运用.
c 直角三角形三边的关系.
A
D
B
C
【解析】(1)∵∠B=60°,
∴∠BCD=60°,又∵AB=AD=DC, ∴∠DAC=∠DCA, ∵AD∥BC,
∴∠DAC=∠BCA, ∴∠DCA=∠BCA.
∴∠ACB=30°. cos∠ACB=cos 30°= 3. 2
(2)∵AB=AD=DC=8,∠ACB=30°,∴BCA
b
直角三角形边与角之间的关系.
特殊角30°,45°,60°角的三角函数值.
互余两角之间的三角函数关系.
同角之间的三角函数关系
45°
B
a ┌
C
30°
45° ┌ 60° ┌
真理的大海,让未发现的一切事物躺卧在 我的眼前,任我去探寻。
——牛顿
C.1 2
D. 2 2
【解析】选B.
3.(眉山·中考)如图,已知在梯形ABCD中,AD∥BC,

九年级数学下册 直角三角形边角关系(同步+复习)精品串讲课件

九年级数学下册 直角三角形边角关系(同步+复习)精品串讲课件
1. 求tanA的值。 2. 求AB的长。
C
A
D
B
【典例2】△ABC中,AB=AC,2AB=3BC, 求∠B的三个三角函数值。 A
A的对边 A的邻边
B
斜边 ∠A的对边 A ┌ ∠A的邻边 C
一.正切的概念
1. 2. 复习:直角三角形边边关系;角角关系—— 正切的概念
① 直角三角形中,一个锐角的大小一旦确定,它所 对的边与邻边的比值是一个确定的值。 ② 文 直角三角形中,一个锐角的对边与邻边的比值叫 做这个角的正切(值)。——是一个比值。 ③ 符 Rt△ABC中,锐角A确定,其对边与邻边的比值 也确定,这个比值叫做∠A的正切,记作: c B a a ∠A的对边 tanA= ———— =— b C b A ∠A的邻边 ④ 正切是对锐角定义的,是一个确定的比值,没有 单位,且与所在的直角三角形大小无关; tanA 是一个完整的符号,如果角用一个字母表示,角 的符号可以省略不写,如果角用三个字母表示, 角的符号不可省略; tanA>0;变式使用: a=b a tanA或者:b= —— tanA

α的对边 α的邻边 α的对边 α的斜边 α的邻边 α的斜边
角定值定 角变值变 角死值死
确定一个角的三个比值:一定角二定比三定值。 三值与角与比是对应的。 ② 都与三角形大小无关,只与角的大小对应的比值。 ③ 每个定义都是三个公式:一求比(角)二求两边。 ④ 0< sin α <1; 0< cos α <1; tan α任意大 ⑤ 平方: sin2 α= (sin α)2 ,而sin α2 则无意义。

C
四.三角函数的概念及锐角三角函数的关系
1. 用函数的观点看: tan α 、sin α、 cos α 都是角α的函数。即:y= tan α、 y= sin α、 y= cos α 分别是锐角α的正切、正弦、余弦 函数。自变量取值范围:0< α<90° 对于任意锐角α,各三角函数之间的关系

九年级(下册)直角三角形的边角关系 复习课件

九年级(下册)直角三角形的边角关系 复习课件
数学·新课标(BS)
第1章复习 ┃ 知识归类
┃知识归纳┃
1.锐角三角函数 ∠A 的对边与邻边的比叫做∠A 的正切,记作 tanA,即 tanA= ∠A的对边 ; ∠A的邻边 ∠A 的对边与斜边的比叫做∠A 的正弦,记作 sinA,即 sinA= ∠A的对边 ; 斜边 ∠A 的邻边与斜边的比叫做∠A 的余弦,记作 cosA,即 cosA= ∠A的邻边 . 斜边
数学·新课标(BS)
第1章复习 ┃ 考点攻略
方法技巧 在生活实际中,特别在勘探、测量工作中,常需了解或确定某 种大型建筑物的高度或不能用尺直接量出的两地之间的距离等, 而 这些问题一般都要通过严密的计算才可能得到答案, 并且需要先想 方设法利用一些简单的测量工具,如:皮尺,测角仪,木尺等测量 出一些重要的数据, 方可计算得到. 有关设计的原理就是来源于太 阳光或灯光与影子的关系和解直角三角形的有关知识.
数学·新课标(BS)
第1章复习 ┃ 考点攻略
数学·新课标(BS)
第1章复习 ┃ 考点攻略
[解析] 过点 A 作 AD⊥BC 于点 D, 根据∠CAD=45° ,可得 BD=BC-CD=200-AD. AD 在 Rt△ABD 中 , 根 据 tan∠ABD = , 可 得 AD = BD BD· tan∠ABD=(200-AD)· tan60° 3(200-AD),列方程 AD+ = 3AD=200 3,解出 AD 即可.
数学·新课标(BS)
第1章复习 ┃ 知识归类 2.30°,45°,60°角的三角函数值
三角函数
角α
30°
sinα
cosα
tanα
45° 60°
1 2 2 2 3 2
3 2 2 2 1 2
3 3

新版北师大版数学九年级下册教案(全)

新版北师大版数学九年级下册教案(全)

第一章 直角三角形的边角关系第1课时§1.1.1 锐角三角函数教学目标1、 经历探索直角三角形中边角关系的过程2、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、 能够运用三角函数表示直角三角形中两边的比4、 能够根据直角三角形中的边角关系,进行简单的计算 教学重点和难点重点:理解正切函数的定义 难点:理解正切函数的定义 教学过程设计➢ 从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

➢ 师生共同研究形成概念1、 梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1) (重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡; 2) 如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡; 3) 如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、 想一想(比值不变)☆ 想一想 书本P 2 想一想 通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、 正切函数 (1) 明确各边的名称 (2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB ABCAB C∠A 的对边∠A 的邻边斜边ABC= ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; b 、 如图,在△ACB 中,tanA = 。

九年级数学下册《锐角三角函数》第2课时教学设计

九年级数学下册《锐角三角函数》第2课时教学设计

九年级数学下册《锐角三角函数》第2课时教学设计一、教材分析本节课是北师大版九年级下册第一章《直角三角形的边角关系》的第一节的内容, 共两课时。

本设计是第二课时。

本节课是在学生理解了正切的基础上, 进一步通过探究发现直角三角形中直角边与斜边之间存在的关系。

从教材中可以看到, 其中渗透着数学核心素养如数学抽象、数学建模等数学思想, 是本节课的数学本质。

二、学情分析学生的知识技能基础:通过前一节课学习的有关正切的知识, 学生已获得一定的探究方法, 积累了一定的经验, 这为本节课的开展提供了必要的铺垫。

本节课将在此基础上进行类比学习, 进一步探究直角三角形中的边角关系。

学生的活动经验基础:学生在上一节课的学习过程中已经历过从实际生活中抽象出数学概念, 形成数学知识, 并建立起数学建模解决实际生活问题的模式, 而且获得了探究数学问题过程中采用合适的数学方法解决问题的经验, 同时具有了一定的合作学习的能力, 交流的能力, 这些都为本节课的学习提供了必要的铺垫。

三、教学任务本节共分2个课时, 这是第2课时, 主要内容是进一步通过探究发现直角三角形中直角边与斜边之间存在的关系, 并利用这种关系解决一些简单问题。

本节课的具体教学目标为:知识与技能:1、探索并掌握锐角三角函数的概念——正弦、余弦, 理解锐角的正弦与余弦和梯子倾斜程度的关系。

2、能够用正弦、余弦进行简单的计算, 解决一些简单的实际问题。

过程与方法:1、经历类比、猜想等过程.发展合情推理能力, 能有条理地、清晰地阐述自己的观点。

2、在课堂上落实数学核心素养数学抽象、数学建模的思想, 体会解决问题的策略的多样性, 发展实践能力和创新精神。

情感态度价值观:积极参与数学活动, 提高学生对数学学科的好奇心和求知欲, 学有用的数学, 同时体会数学学科的一些核心素养, 如数学抽象、数学建模对研究问题时的引领作用。

教学重点:掌握正弦、余弦的定义, 感受数学与生活的联系。

北师大版初三下册数学 1.1 锐角三角函数 教案(教学设计)

北师大版初三下册数学 1.1  锐角三角函数 教案(教学设计)

1.1 锐角三角函数第1课时锐角的正切函数教学目标1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.重点从现实情境中探索直角三角形的边角关系;理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.难点难点理解正切的意义,并用它来表示两边的比.教学过程一、创设情境,导入新课用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现:问题1:在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?问题2:随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?通过本章的学习,相信大家一定能够解决.二、合作交流,探究新知用多媒体演示如下内容:[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示).(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?[生]梯子AB 比梯子EF 更陡.[师]你是如何判断的?[生]从图中很容易发现∠ABC >∠EFD ,所以梯子AB 比梯子EF 陡.[生]我觉得是因为AC =ED ,所以只要比较BC ,FD 的长度即可知哪个梯子陡.BC <FD ,所以梯子AB 比梯子EF 陡.[师]我们再来看一个问题(用多媒体演示)(2)在下图中,梯子AB 和EF 哪个更陡?你是怎样判断的?[师]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?[生]在第(1)问的图形中梯子的垂直高度即AC 和ED 是相等的,而水平宽度BC 和FD 不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.[师]这位同学的想法很好,的确如此,在第(2)问的图中,哪个梯子更陡,应该从梯子AB 和EF 的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB 和EF 哪一个更陡呢?[生]AC BC =41.5=83,ED FD =3.51.3=3513.∵83<3513, ∴梯子EF 比梯子AB 更陡.想一想:如图,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2)B 1C 1AC 1和B 2C 2AC 2有什么关系? (3)如果改变B 2在梯子上的位置呢?由此你能得出什么结论?[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.[生]在上图中,我们可以知道Rt△AB 1C 1,和Rt△AB 2C 2是相似的.因为∠B 2C 2A =∠B 1C 1A =90°,∠B 2AC 2=∠B 1AC 1,根据相似的条件,得Rt△AB 1C 1∽Rt△AB 2C 2.[生]由图还可知:B 2C 2⊥AC 2,B 1C 1⊥AC 1,得 B 2C 2∥B 1C 1,Rt△AB 1C 1∽Rt△AB 2C 2.[生]相似三角形的对应边成比例,得B 1C 1B 2C 2=AC 1AC 2,即B 1C 1AC 1=B 2C 2AC 2. 如果改变B 2在梯子上的位置,总可以得到Rt△B 2C 2A ∽Rt△B 1C 1A ,仍能得到B 1C 1AC 1=B 2C 2AC 2.因此,无论B 2在梯子的什么位置(除A 外), B 1C 1AC 1=B 2C 2AC 2总成立. [师]也就是说无论B 2在梯子的什么位置(A 除外),∠A 的对边与邻边的比值是不会改变的.现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?[生]∠A 的大小改变,∠A 的对边与邻边的比值会改变.[师]你又能得出什么结论呢?[生]∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.[师]这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?[生]小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A 是确定的,因此它的对边与邻边的比值也是唯一确定的,与B 1,B 2在梯子上的位置无关,即与直角三角形的大小无关.[生]但我觉得小亮的做法更实际,因为要测量B 1C 1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.由于直角三角形中的锐角A 确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)如图,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent),记作tan A ,即tan A =∠A 的对边∠A 的邻边. 注意:(1)tan A 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”.(2)tan A 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比.(3)tan A 不表示“tan”乘以“A ”.(4)初中阶段,我们只学习直角三角形中锐角的正切.思考:(1)∠B 的正切如何表示?它的数学意义是什么?(2)前面我们讨论了梯子的倾斜程度,课本图1—3,梯子的倾斜程度与tan A 有关系吗?[生](1)∠B 的正切记作tan B ,表示∠B 的对边与邻边的比值,即tan B =∠B 的对边∠B 的邻边. (2)我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在教材图1—3中,梯子越陡,tan A 的值越大;反过来,tan A 的值越大,梯子越陡.三、运用新知,深化理解例1(教材示例) 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tan α、tan β的值,比较大小,越大,扶梯就越陡.解:甲梯中, tan α= ∠α的对边∠α的邻边=48=12. 乙梯中,tan β=∠β的对边∠β的邻边=5132-52=512. 因为tan α>tan β,所以甲梯更陡.[师]正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山坡、堤坝的坡度.如图,有一山坡在水平方向上每前进100 m ,就升高60 m ,那么山坡的坡度(即坡角α的正切tan α)就是tan α=60100=35. 这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡.例2 已知:如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D ,E 都在小正方形的顶点上,求tan∠ADC 的值.分析:先证明△ACD ≌△BCE ,再根据tan∠ADC =tan∠BEC 即可求解.解:根据题意可得AC =BC =12+22=5,CD =CE =12+32=10,AD =BE =5,∴△ACD ≌△BCE (SSS).∴∠ADC =∠BEC .∴tan∠ADC =tan∠BEC =13. 例3 已知一水坝的横断面是梯形ABCD ,下底BC 长14 m ,斜坡AB 的坡度为3∶3,另一腰CD 与下底的夹角为45°,且长为4 6 m ,求它的上底的长(精确到0.1 m ,参考数据:2≈1.414,3≈1.732).分析:过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F ,根据已知条件求出AE =DF 的值,再根据坡度求出BE ,最后根据EF =BC -BE -FC 求出AD .解:过点A 作AE ⊥BC ,过点D 作DF ⊥BC ,垂足分别为E ,F .∵CD 与BC 的夹角为45°,∴∠DCF =45°,∴∠CDF =45°.∵CD =4 6 m ,∴DF =CF =4 62=4 3(m),∴AE =DF =4 3 m .∵斜坡AB 的坡度为3∶3,∴tan∠ABE =AE BE =33=3,∴BE =4 m .∵BC =14 m ,∴EF =BC -BE -CF =14-4-43=10-4 3(m).∵AD =EF ,∴AD =10-4 3≈3.1(m).所以,它的上底的长约为3.1 m.四、课堂练习,巩固提高1.教材P4“随堂练习”.2.《探究在线·高效课堂》相关作业.五、反思小结,梳理新知本节课经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在“直角三角形”中定义了tan A =∠A 的对边∠A 的邻边.接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了解了正切在现实生活中是一个具有实际意义的很重要的概念.第2课时正弦、余弦1. 认识锐角三角函数——正弦、余弦.2. 用sinA,cosA表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算.二、教学目标知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2、体会解决问题的策略的多样性,发展实践能力和创新精神.情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学.2、形成实事求是的态度以及交流分享的习惯.三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系.难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望.五、探究新知探究活动1(出示幻灯片4):如图,请思考:(1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________. 它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的对边BC 与斜边AB 的比叫做∠A 的正弦,记作sinA ,即sinA =________.2、余弦的定义:如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的邻边AC 与斜边AB 的比叫做∠A 的余弦,记作cosA ,即cosA=_ _____.3、锐角A 的正弦,余弦,正切和余切都叫做∠A 的三角函数.温馨提示B 1B 2AC 1 C 2(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,sinA=0.6,求BC和cosB.B通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的.设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA=0.6 ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.精品文档用心整理3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻.八、课堂小结1.sinA,cosA,tanA, 是在直角三角形中定义的, ∠A是锐角(注意数形结合,构造直角三角形).2.sinA,cosA,tanA, 是一个完整的符号,表示∠A的正切,习惯省去“∠”号;3.sinA,cosA,tanA, 是一个比值.注意比的顺序,且sinA,cosA,tanA, 均﹥0,无单位.4.sinA,cosA,tanA, 的大小只与∠A的大小有关,而与直角三角形的边长无关.5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.资料来源于网络仅供免费交流使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 锐角三角函数
第2课时 正弦与余弦
1.理解正弦与余弦的概念;(重点)
2.能用正弦、余弦的知识,根据三角形中已知的边和角求出未知的边和角.(难点)
一、情境导入
如图,小明沿着某斜坡向上行走了13m ,他的相对位置升高了5m.
如果他沿着该斜坡行走了20m ,那么他的相对位置升高了多少?行走了a m 呢? 在上述情形中,小明的位置沿水平方向又分别移动了多少? 根据相似三角形的性质可知,当直角三角形的一个锐角的大小确定时,它的对边与斜边的比值、邻边与斜边的比值也就确定了.
二、合作探究
探究点:正弦和余弦
【类型一】 直接利用定义求正弦和余弦值
在Rt △ABC 中,∠C =90°,AB =13,BC =5,求sin A ,cos A . 解析:利用勾股定理求出AC ,然后根据正弦和余弦的定义计算即可.
解:由勾股定理得AC =AB 2-BC 2=132-52
=12,sin A =BC AB =513,cos A =AC AB =1213
.
方法总结:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对
边比邻边,熟记三角函数的定义是解决问题的关键.
变式训练:见《学练优》本课时练习“课堂达标训练” 第1题 【类型二】 已知一个三角函数值求另一个三角函数值
如图,在△ABC 中,∠C =90°,点D 在BC 上,AD =BC =5,cos ∠ADC =3
5
,求sin B
的值.
解析:先由AD =BC =5,cos ∠ADC =3
5及勾股定理求出AC 及AB 的长,再由锐角三角函
数的定义解答.
解:∵AD =BC =5,cos ∠ADC =3
5
,∴CD =3.在Rt △ACD 中,∵AD =5,CD =3,∴AC =
AD 2-CD 2=52-32=4.在Rt △ACB 中,∵AC =4,BC =5,∴AB =AC 2+BC 2=42+52
=41,
∴sin B =AC
AB

4
41
=44141 .
方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结
合勾股定理是解答此类问题的关键.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题 【类型三】 比较三角函数的大小
sin70°,cos70°,tan70°的大小关系是( ) A .tan70°<cos70°<sin70° B .cos70°<tan70°<sin70° C .sin70°<cos70°<tan70° D .cos70°<sin70°<tan70° 解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=co s70°.故选D.
方法总结:当角度在0°<∠A <90°间变化时,0<sin A <1,1>cos A >0.当角度在45°<∠A <90°间变化时,tan A >1.
变式训练:见《学练优》本课时练习“课堂达标训练”第10题 【类型四】 与三角函数有关的探究性问题
在Rt △ABC 中,∠C =90°,D 为BC 边(除端点外)上的一点,设∠ADC =α,∠B
=β.
(1)猜想sin α与sin β的大小关系; (2)试证明你的结论.
解析:(1)因为在△ABD 中,∠ADC 为△ABD 的外角,可知∠ADC >∠B ,可猜想sin α>sin β;(2)利用三角函数的定义可求出sin α,sin β的关系式即可得出结论.
解:(1)猜想:sin α>sin β;
(2)∵∠C =90°,∴sin α=
AC AD ,sin β=AC AB .∵AD <AB ,∴AC AD >AC
AB
,即sin α>sin β. 方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题
的关键.
【类型五】 三角函数的综合应用
如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC . (1)求证:AC =BD ;
(2)若sin C =12
13
,BC =36,求AD 的长.
解析:(1)根据高的定义得到∠ADB =∠ADC =90°,再分别利用正切和余弦的定义得到
tan B =AD BD ,cos ∠DAC =AD AC ,再利用tan B =cos ∠DAC 得到
AD BD =AD
AC
,所以AC =BD ;(2)在Rt △ACD 中,根据正弦的定义得sin C =AD AC =12
13
,可设AD =12k ,AC =13k ,再根据勾股定理
计算出CD =5k ,由于BD =AC =13k ,于是利用BC =BD +CD 得到13k +5k =36,解得k =2,所以AD =24.
(1)证明:∵AD 是BC 上的高,∴∠ADB =∠ADC =90°.在Rt △ABD 中,tan B =AD BD
,在Rt △ACD 中,cos ∠DAC =AD AC .∵tan B =cos ∠DAC ,∴AD BD =AD AC
,∴AC =BD ;
(2)解:在Rt △ACD 中,sin C =AD AC =1213
.设AD =12k ,AC =13k ,∴CD =AC 2-AD 2
=5k .∵BD
=AC =13k ,∴BC =BD +CD =13k +5k =36,解得k =2,∴AD =12×2=24.
变式训练:见《学练优》本课时练习“课后巩固提升”第10题 三、板书设计
正弦与余弦
1.正弦的定义 2.余弦的定义
3.利用正、余弦解决问题
本节课的教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用.
欢迎您的下载,资料仅供参考!。

相关文档
最新文档