有理数的乘法(2)
2.7.2有理数的乘法(2)

七年级第二章第七节有理数的乘法(2)课型:新授课教学目标:1.认识有理数乘法中运算律的作用;2.理解有理数的乘法中,运用运算律的方法;3.掌握用乘法法则进行有理数乘法运算,用运算律简化计算的方法.教法与学法指导:本课是有理数乘法的进一步拓展.因为学生已经学习了有理数的乘法,因此在知识内容和教学方法上,采用“自主学习—合作探究—当堂达标”的模式进行教学,引导学生探究有理数的乘法运算律,并能正确运用乘法运算律简化计算.重点:用运算律简化有理数乘法运算.难点:会运用乘法运算律进行有理数乘法的简便运算.课前准备:教师:多媒体课件,提前发放导学案.教学过程:一、创设情境,导入新课师:请同学们计算一4×8×125×25等于多少? (多媒体展示)(找两位学生黑板上板书)学生甲:4×8×125×25 学生乙:4×8×125×25=32×125×25 =(4×25)×(8×125)=4000×25 =100×1000=100000 =100000师:这两位同学做的都对吗?生:对.师:哪一种做法更简单?生:乙.师:你们能说出乙同学解题的依据吗?生:运用了乘法的交换律和结合律.师:好!乘法还有什么运算律?生:还有乘法分配律.师:在小学所学的运算中,乘法具有交换律、结合律和分配律,而现在同学们已经学习了有理数的乘法运算,在有理数的运算中,乘法的交换律、结合律和分配律还成立吗?这就是我们这节课探究的问题:(教师黑板板书) 有理数的乘法(2)设计意图:通过小学学习过的乘法运算律的复习,一方面让学生体会乘法运算律的简便性,另一方面为引入有理数乘法运算律做了铺垫,激发学生学习本节课的兴趣.二、目标展示师:看一下我们这节课的学习目标(多媒体展示)1.知道有理数乘法运算律;2.会用有理数乘法运算律简化乘法运算.三、自主学习,合作探究探究活动一:有理数乘法运算律师:为了解决这个问题,我们先来做一做以下题目.(多媒体展示,学生在导学案上解答)计算:(1)(-7)×8与8×(-7);(-35)×(-109)与(-35)×(-109). (2)[(-4) ×(-6)] ×5与(-4) ×[(-6) ×5]; [21×(-37)] ×(-4)与21×[(-37) ×(-4)]. (3)(-2)×[(-3)+(-23)]与(-2)×(-3)+(-2)×(-23) ; 5×[(-7)+(-54)]与5×(-7)+5 ×(-54). 学生做完后,教师选其中一个学生的进行投影,让其他学生进行点评、纠错。
2.7有理数的乘法(2)学案

2.7有理数的乘法(2)【预习目标】:理解和初步掌握有理数乘法的运算律,并进行简单的计算. 【预习导航】1.计算下列各题,并比较它们的结果:(1) (-7)×8 = 8×(-7)= (-35)×(-109)= (-109)×(-35)=乘法的交换律(用字母表示): (2) [ (-4)×(-6) ]×5= (-4)×[ (-6)×5 ]= [ (21)×(-37) ]×(-4)= (21)×[ (-37)×(-4) ]= 乘法的结合律(用字母表示):(3) (-2)×[ (-3) + (-23) ]= (-2)×(-3) + (-2)×(-23) = 5×[ (-7) + (-54) ]= 5×(-7) + 5×(-54) =乘法对加法的分配律(用字母表示): 【预习诊断】 (1)(-65 + 83)×(-24) (2)(-7)×(-34)×145【预习反思】通过预习,你认为本节课的重点知识是什么,你还有哪些困惑,赶紧写下来吧! 【学习目标】熟练并灵活运用乘法的运算律进行计算. 【学习过程】一、小组交流,合作解疑。
二、随堂练习 A 组:巩固练习 1、计算下列各题: (1)30×(21-31) (2)(0.25-32)×(-36) (3)(81+65-43)×(-24) (4)(41-21+81)×162、判断:(1) -5×(-4)×(-2)×(-2)=5×4×2×2=80 ( )(2) (-12)×(31-41-1)= -4+3+1=0 ( )(3) (-9)×5×(-4)×0=9×5×4=180 ( ) (4) -2×5+(-2)×1-(-2)×2= -2×(5+1-2)=-8 ( ) B 组:能力提升 1.计算(1)(-2)×(-8)×(-125) (2) 8×(-54)×161(3) (-32)×72×(-43) (4) 0.25×(-3.1)×(-8) 2.计算(1) 53×17 + 53×8 (2)37×7+37×(-3)+37×6(3) 60×73-60×71+60×75 (4) 74×(-245)-(-73)×(-245)C 组:拓展延伸1. 有6张不同数字的卡片:—3,+2,0, —8, 5, +1,如果从中任取3张,(1)使数字的积最小,应如何抽?最小积是多少? (2)使数字的积最大,应如何抽?最大积是多少?2.已知:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求:3x - [(a +b)+cd]x 的值3.定义一种运算符号△的意义:a △b=ab —1,。
有理数的乘法2

复习:
1.有理数乘法法则:
两数相乘,同号得正,异号得负, 并把绝对值相乘,任何数同0相乘, 都得0。
2.如何进行两个有理数的运算:
先确定积的符号,再把绝对值 相乘,当有一个因数为零时,积为 零。
填空:
-5 (1)1×(-5)= _ 1 × (-5)= -5 _ (2) 1×a a = _ 5 (-1)×(-5)= _ -5 1 × (-5) = _ (-1)× a -a = _
有理数乘法法则
两数相乘,同号得正,异号得负,并把 绝对值相乘. 任何数同0相乘,都得0.
几个不等于0的数相乘,积的符号由负因数 的个数决定.当负因数有奇数个时,积为负;当 负因数有偶数个时,积为正. 几个数相乘,有一个因数为0,积就为0.
; https:/// 连锁加盟网 ;
< (2)(+8.36) ×(+2.9) ×(-7.89)
(3)50 ×(-2) ×(-3) ×(-2) ×(-5> )
< (4)(-3) ×(-2) ×(-1)
0
0
(5)739 ×(-123) ×(-329) ×= 0
1.(1)如果2个数的乘积为负数,其中有个
(2)如果3个数的乘积为负数,其中有个
担心自己の安全.有逍遥阁在,大不了冒险躲进逍遥阁,只是…炽火大陆怎么办?死,他从不畏惧!但是炽火大陆百亿人可是等着他の解救,自己可以一辈子带着夜轻语她们窝在逍遥阁内安全度过浩劫.但是如果眼睁睁の看着炽火大陆被灭世,看着白家,五大世家,破仙府,看着所有人就这样死去, 自己能心安理得过着悠闲の生活吗?这样の生活,他宁愿不要. "烟花女主,说说俺们の任务,俺们要怎么才能离开这个鬼地方!" 片刻之后,白重炙洪亮の声音,压制住了众人の喧闹声,无数
有理数的乘法2

就坐在椅子上;伊去灶前生火,我就攀着菜橱一格一格看;伊去水井边与阿母一起洗衫,我隔着窗户喊伊:“阿--嬷!” 丽花听到了,把话传给她:“你阿敏嫃哪在叫你咧!” “做啥?”伊往我这里看了。 “莫什么代记啦!”我觉得话团太大了,说不出口。 “呷
饱碗筷也不收来洗,放在那里生蚂蚁。”阿母说。 把一副碗筷埋到井池里去的时候,伊三人都不说话,我速速说:“我去读册了。”便出门。 走到小石子路头,正打算抄田埂去追江岸路上的同学,才跨过河沟,竹林里传出话来: “阿--敏--嫃哪,回来啰,你阿嬷要
1.(1)如果2个数的乘积为负数,其中有个 1 (2)如果3个数的乘积为负数,其中有个 1或3
负因数。 负因数。
(3)如果4个数的乘积为负数,其中有个 1或3 负因数。
(4)如果5个数的乘积为负数,其中有个 1,3,5 负因数。
(5)如果101个数的乘积为负数,其中有个 1,3,…,101 负因数。
? 小时候,为着家里孩子多,零食分到每个人手上只有一点点,阿嬷总是偷偷惜我,把多的糖果、饼干、水果藏起来,趁弟妹不在时悄悄告诉我:
“米瓮内有一粒桠柑,拿去呷,莫给阿林、阿丽、阿云、阿东看到,剩一粒而已。”“斗柜内第二个抽屉毛巾盖住,用日记纸包着,有两粒金甘仔糖。”“灶前装粗糠的布袋里还有半包纽仔饼。”阿嬷的藏功是一流的,瘄边家嫁女儿送的爆米香,她藏到屋梁上去。我们的偷功
给你五角银买糖仔呷பைடு நூலகம்,快回来拿,慢一脚步就莫啰!” 可恶的丽花。我压着书包快快跑回去,把大大的五毛钱放进铅笔盒里,一天的重量都有了。 “阿嬷我要去了,阿母我要去了,‘--丽花我要去了!" 丽花咯咯笑,扬了一片水花过来. 背后,阿嬷的耳语飘来:"五角
银没给伊,伊的脚底像给店仔胶黏住,走不开脚啦!" 二十多年过了,老的愈老,年轻的也要老。每日早晨我一醒来,阿嬷便蹑手蹑脚进房劝: “你也好心,莫饮咖啡,呷点热粥才有元气!” 房里已经弥漫着咖啡的香,晨间阅读正要开始。我说:“不想呷咧,咖啡好饮。”
有理数的乘法2

注意 1、乘法的交换律、结合律只涉及一种运 算,而分配律要涉及两种运算。 2、分配律还可写成: a×b+a×c=a×(b+c), 利用它有时也可以简化计算。 3、字母a、b、c可以表示正数、负数,也 可以表示零,即a、b、c可以表示任意 有理数。
15 ( 8) 例3、计算: 71 16
1、已知a、b互为相反数,c、d互为倒数,e是绝
1 对值最小的数,计算:(a+b)+ cd - (a+b)e
2、已知|x|=2,|y|=3,且xy<0,则x-y=
3、下列运算错误的是_____ D A.(-2)×(-3)=6
.
B.(-3)×(-2)×(-4)=-24
C.(-5)×(-2)×(-4)=-40
计算:
(-85)×(-25)×(-4)
=(-85)×[(-25)×(-4)]
=(-85)×100=-8500
7 1 15 1 8 7 7 8 = 15 8 7
7 8 = 15 8 7
B. a<0,b<0 D. a>0,b>0或a<0,b<0 B ) B. a,b至少有一个为0 D. a,b最多有一个为0
7.若ab=0,则一定有(
1 1 1 1 (1).( 1) ( 1) ( 1) ... ( 1) 101 100 99 2 100 99 98 1 解:原式= (- ) (- ) (- ) ... (- ) 101 100 99 2 100 99 98 1 = ... 101 100 99 2 1 = 101
《有理数的乘法》两课时教案

教学内容:§1.5 有理数的乘法(1)教学目标:1、知识与技能使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。
2、过程与方法经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。
重点、难点: 1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
教学过程:一、创设情景,导入新课1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节课我们就来探究这个问题。
3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以每小时5千米的向西行走,那么经过3小时,她走了多远?二、合作交流,解读探究1、小学学过的乘法的意义是什么?乘法的分配律:a×(b+c)=a×b+a×c如果两个数的和为0,那么这两个数 互为相反数 。
2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)3、学生活动:计算3×(-5)+3×5,注意运用简便运算通过计算表明3×(-5)与3×5互为相反数,从而有3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0 由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?鼓励学生自己归纳,并与同伴交流。
六年级数学上册2.7有理数的乘法(第2课时) 优秀课件鲁教版五四制(1)

(第二课时)
知识回顾
1.有理数乘法法则: 两数相乘,同号得正,异号得负,并把 绝对值相乘.任何数同0相乘,都得0. 2.几个不是零的数相乘, 奇数时积为负数 负因数的个数为 偶数时积为正数
3.几个数相乘若有因数为零则积为零。
2.7有理数的乘法(2)
教学目标
1、通过计算、比较,探讨有理数乘法的运 算律在有理数范围内仍然适用。 2、会运用乘法运算律进行简化计算。
预习诊断
用字母表示乘法的运算律
乘法的交换律: ; a b ) c a ( b c ); 乘法的结合律: (
( b c ) a b a c; 乘法对加法的分配律: a
a b b a
精(1) ( 3 14
a ( b c ) a b a c
注意:字母a、b、c可以表示正数、负数,也可以表示零, 即a、b、c可以表示任意有理数。 一定号 做乘法前先确定积的符号 带分数化成假分数 或者小数化分数等
乘法运算 一般步骤
二化假
三先约 四再乘 五写积 约分
绝对值相乘 不要漏写符号
我们都希望自己能有一个知己,从相逢,相识,到相知,到无话不谈的知己,穷尽一生,朋友广而远,知己少而近,友情文章告诉我们,如果遇到这样一个互相懂得的人, 就要好好珍惜。自己是把剑,知己是剑鞘,利剑出鞘,锋芒毕露之时,剑鞘则系在腰间默默守候。一把剑经过一番打打杀杀,江湖缠扯过后,必会五骨通乏,六筋俱困,疲 惫充斥于脏腑之间,这个时候,就需要躺在剑鞘里好好休养了。剑鞘是一把剑最坚实的维修基地,提供最可靠地后勤保障,每当宝剑元气大伤之时,务必要返厂疗伤,作为 知己的剑鞘,定是倾其所有,哪怕是砸了老锅,卖了陈铁,也要肝胆相照,以最大功率输出自己的真气,只为保住这把剑。有人腰缠万贯,有人流落街头,有人名扬四海, 有人一生庸碌,人这一辈子,旅途虽短,路却难走。注定逃不过酸甜苦辣,悲欢离合的音速飞镖,注定要吃尽五颜六色的风霜。若能赐一知己,得之是命,惜之是福,可不 能随意糟蹋。知己就是半个自己,如果自己是左脑,那知己就是右脑,如果自己是左手,那知己就是右手,如果自己是左边的这瓣心,那知己就必须是右边的另一半。若缺 了另一半,就是个死人了,并且还死无全尸,若是挣扎着不死,无异于变异僵尸,理性失效,良心残废,吞噬人血,不带怜悯,岂不更可怕?人,是个对称的生命,什么都有 左右两半,若缺了知己,自己就只剩一半了,不就成了一头怪物了吗?那不就要天天被奥特曼追杀吗?跌倒了,很多人懂得扶你,摔伤了,很多人懂得止血,噎住了,很多人 懂得端杯水。可是,当你内心受伤了,即使是小到纳米级的伤痕,有人能看出来吗,你既没感冒,也没发烧,脸色红润,满面轻风,盖住了内心那瞬间的小小波动,可能不 会有任何震感,也许连自己都找不到震源。而这个时候,偏偏有人感觉到地震了,准确侦测出了震级和震源,只有知己才能扫描出你心房里的病毒,唯有知己才会专门为你 安装一台精密地动仪。知己能读出你心里最深处的悲伤,埋得再深,填得再厚实,也会被掘出来,而这种近乎奇迹的事只有知己才做得到。人生的轨迹既不是常数函数式的 一马平川,也不会是指数函数式的一路腾达,而是正弦曲线式的跌宕起伏,有升有降,有顶峰,有谷底,盛极必衰,摔倒了最低处,再开始爬升。而知己,就是在我们直线 飙升时给我们及时降温,以免过热烧坏了头脑,主机一旦报废了,整台机器随之瘫痪;在我们堕落腐朽时给我们添加柴火,用木棒在雪花缤纷的寒冬里,擦出希望的火花,给 我们解冻,帮我们去潮,重新启动。根据牛顿力学定律,力的作用是相互的,人也是这样,知己是自己的知己,那自己就是知己的知己,互为知己,才是真正的知己。若仅 有单方面的输出,另一方却浑然不知,只能说明,一方作践自己,另一方没心没肺。一个不会珍惜自己,另一个不会珍惜别人,作为知己的这两半,都没有得到精心照顾, 土壤干裂,缺水少肥,杂草丛生,怎么指望这两半茁壮成长呢,将来不是畸形就是异形,怎么能做知己呢?人心不在大小,而在于单人间和双人间的纠葛,纵使心再大,可就 住了你一个人,不觉得空虚寂寞冷吗,就算心再小,可也住下了两个人,那份互为知己的温暖,连上帝都会羡慕的。朋友大薇去北京出差,约了十几年没见的朋友吃饭,大 薇在城东,朋友在城西,两个人耽搁在路上的时间,比见面聊天的时间还长。匆匆吃饭,匆匆告别,大薇苦笑着说,曾经好得睡一个被窝,说要好一辈子的闺蜜,生生被时 间隔在了两岸,再也回不去。每个人都是这样的吧,一路走来,人生的每个阶段,总会有那么几个死党或闺蜜,和你一起疯,一起闹,一起哭,一起笑,在你孤单时给你温 暖,在你受伤时给你安慰,在你受欺负时,为你出头……走着走着,在某个人生的转角说了再见,然后就再也没见到;即使再见,也因为时过境迁,找不到来时的路,无法 再走近。就像席慕蓉说的:回顾所来径,只剩苍苍横着的翠微。只有少数人,会陪你一生。坦然面对友情的得到与失去,不必追,不必挽留,这才是人生常态。人生漫长, 总有一些人来来去去,总有一些人要离去; 也总有一些人,无论风风雨雨,会陪你一辈子。电影《七月与安生》里的七月与安生,是两个截然不同的少女。七月文静乖巧, 有个幸福温暖的家庭,是大家眼里的好孩子;安生叛逆桀骜,父亲去世母女相爱相杀,是个缺爱的女孩。偏偏两个人好得要命,彼此踩着对方的影子,恨不能一辈子在一起, 一起洗澡,一起翘课……15岁那年,她们都喜欢了一个男孩子家明。家明的出现,让七月和安生之间的情感发生了不可言喻的变化,而家明的摇摆不定,也让两个女孩面对 友情与爱情,备受煎熬。最终,安生在确认自己也爱上家明以后,选择把家明让给七月,自己离开小镇,去流浪。她说,在七月与家明之间,她选择七月。七月明白安生的 离开,是成全,但还是任由安生的列车徐徐驶离,爱情在某个时刻,会战胜友情。但是,分开的两个人,仍然彼此牵挂。七月羡慕安生的自由,安生羡慕七月的岁月静好。 再次见面,却又像刺猬一样彼此伤害,然后各自哭泣疗伤。电影结尾,七月难产去世,临终前,将孩子托付给安生。不管我们之间有多少误会和伤害,我还是选择最信任你, 把孩子托付给你。这也许就是最动人的友情。想起《乱世佳人》里梅兰妮和斯嘉丽。一个相貌平平,但是优雅得体、善解人意的贵族小姐,女人中的女人;一个妩媚动人, 任性倔强热情似火的庄园主女儿,女人中的男人。一开始,斯嘉丽便把梅兰妮当作情敌,认为是梅兰妮夺走了自己暗恋的阿希礼。 所以,她心怀嫉恨,处处刁难,把梅兰妮 当作眼中钉。然而,随着美国南北战争的爆发,家园被毁,两个性格截然不同的女性,不得不相依为命。郝思嘉勇敢强韧,为了养活一家人,复兴家业,忍受各种屈辱,冒 着各种危险,梅兰妮则在一边贴心陪伴,护着她,开导她,看着她一天天褪去浮华与虚荣,她们的友情也开始萌芽。哪怕自己的丈夫和郝思嘉的绯闻传得满城风雨,哪怕郝 思嘉的名声在上流社会差到了极点,她都挺身而出,帮她解围。所以,当梅兰妮难产需要照顾,连她的姑妈都抛下她逃跑的危急时刻,斯嘉丽不离不弃,克服内心的恐惧, 照顾她顺利产下儿子小博。如果说这个时候,斯嘉丽还有是为了阿希礼的托付,但是,当她带着一家人逃回被毁的家园,枪杀闯入家园的“北方佬”,胆小如兔的梅兰妮却 勇敢地帮着她处理尸体的那一刻,她们的友谊完成了升华。就像梅兰妮说的那样,她一直羡慕斯嘉丽旺盛的生命力和坚强勇敢的性格。但其实,斯嘉丽也羡慕梅兰妮那种成 熟,识大体,包容的胸怀吧。两个本来是情敌的人,在战争的灾难中,相互取暖,结成了深厚的友情。梅兰妮临死前,把儿子托付了斯嘉丽照顾,并嘱咐她珍惜巴特勒的爱。 梅兰妮比斯嘉丽自己还了解她,她了解她的缺点和不完美,更了解她的能力与骨子里善良,所以,她把儿子托付给她。最好的��
人教版初一数学 2.2.1 有理数的乘法 第2课时PPT课件

探究新知
根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数的位置,也可先
把其中的几个数相乘.
3.乘法分配律:
一个数同两个数的和相乘,等于把这个数分别同 这两个数相乘,再把积相加.
a(b+c) = ab+ac
探究新知
根据分配律可以推出: 一个数同几个数的和相乘,等于把这个数分别
2
C. 2×3–(–2)×(– 1 )
2
D.(–2)×3+2×(– 1 )
2
当堂训练
2.如果有三个数的积为正数,那么三个数中负数的个数是
( B)
A. 1
B. 0或2
C. 3
D. 1或3
3. 有理数a, b, c满足a+b+c>0,且abc<0,则在a, b, c中,正数
的个数( C )
A. 0
B. 1
3
解:原式= –8×(–0.125) ×(–12) ×(– 1 ) ×(–0.1)
3
=[–8×(–0.125)] ×[(–12) ×(– 1 )] ×(–0.1)
3
=1×4×(–0.1) = –0.4
探究新知
素养考点 2 利用乘法分配律进行简便运算
例2 用两种方法计算 (1 1 1)12
462
乘法交换律、乘法结合律、乘法分配律.
探究新知
知识点 有理数乘法的运算律 第一组:
1. 2×3= 6
3×2= 6
2×3 = 3×2
2. (3×4)×0.25= 3 3×(4×0.25)= 3
(3×4)×0.25 = 3×(4×0.25)
3. 2×(3+4)= 14 2×3+2×4= 14
2×(3+4) = 2×3+2×4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
思考
你能看出下式的结果吗?如果能,请 说明理由.
7.8×(-8.1)×0×(-19.6)
几个数相乘,如果其中有因数为0, 积等于__0___.
练习
(1) (-5)×8×(-7)×(-0.25) =-5×8×7×0.25 =-70
(2)
(3) =0
交换律
像前面那样规定有理数乘法法则后,就 可以使交换律、结合律与分配律在有理数乘 法中仍然成立.
乘法分配律: a(b+c)= _ab_+a_c_
例题
例4 用两种方法计算 解法1:
解法2:
比较上边两种解法, 它们在运算顺序上有什么 区别?解法2 用了什么运算律?哪种解法运算量小?
练习
课本33页练习
例如, 5×(-6)= - 30 (-6) × 5 = - 30
即
(-6) × 5 = 5×(-6)
一般地,有理数乘法中,两个数相乘, 交换因子的位置,积相等.
乘法交换律: ab= _ _ba_ _
结合律
[3×(-4)] ×(-5) = (- 12) ×(-5)=60 3×[ (-4) ×(-5) ]= 3 ×20=60 即 [3×(-4)] ×(-5) = 3×[ (-4) ×(-5) ]
几个不是0的数相乘,积的符号与负因 数的个数之间 (−4)×5×(−0.25); (2)
解:(1) (−4)×5 ×(−0.25) (2) = [−(4×5)]×(−0.25) =(−20)×(−0.25)
=+(20×0.25)
=5.
=−1 .
解题后的反思 教材对本例的求解,是连续两次使用乘法法
则。如果我们把乘法法则推广到三个有理数相乘,只“一次性地”先 定号再绝对值相乘.
归纳
几个不是0的数相乘,负因数的 个数是__偶__数____时,积是正数;负 因数的个数是__奇__数____时,积是负 数.
例题
例3 计算
(1) (2)
解:(1)
多个不是0 的数相乘, 先做哪一步 ,再做哪一
步?
先确定积的 符号,再把 各个乘数的 绝对值相乘 ,作为积的 绝对值.
有理数的乘法(2)
2020/9/15
思考
下列各式的积是正的还是负的?
2×3×4×(-5)= -120 2×3×4×(-4)×(-5)= 480 2×(-3)×(-4)×(-5)= -120 (-2)×(-3)×(-4)×(-5)= 120
只考虑积的符 号,第一、三 式的积是负的 ,第二、四式 的积是正的
三个数相乘,先把前两个数相乘,后者 先把后两个数相乘,积相等.
乘法结合律: (ab)c= _a_(b_c_)
分配律
5×[3+(-7)] = 5 ×(-4)= - 20 5×3 +5 ×(-7) ]= 15 - 35= - 20 即 5×[3+(-7)] =5×3 +5 ×(-7)]
一般地, 一个数同两个数的和相乘,等于把 这个数分别同这两个数相乘,再把积相加.