数学数模实验报告书
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。
2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。
所以选择采用计算机模拟的方法, 求得近似结果。
(2)通过增加试验次数, 使近似解越来越接近真实情况。
3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。
例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。
数学模型实验报告模板

院(系) 课程名称:数学模型与数学实验日期:年 月日
班级
学号
实验室
专业
姓名
计算机号
实验
名称
多元函数的极值
成绩评定
所用
软件
Matlab
指导教师
实验
目的
1、多元函数偏导数的求法。
2、多元函数自由极值的求法
3、多元函数条件极值的求法.
4、学习掌握MATLAB软件有关的命令。
实验
内容
1、求 的极值。
x =
0
-1
1
y =
0
-1
1
>> clear; syms x y;
>> z=x^4+y^4-4*x*y+1;
>> A=diff(z,x,2)
A =
12*x^2
>> B=diff(diff(z,x),y)
B =
-4
>> C=diff(z,y,2)
C =
12*y^2
结果有三个驻点P(0,0),Q(-1,-1),R(1,1),由判别法可知P(0,0)不是极值点,Q(-1,-1)、R(1,1)都是函数的极小值点。
为最远点。
心得
体会
通过实验,学习了多元函数偏导数的求法,多元函数自由极值的求法,多元函数条件极值的求法,学习掌握MATLAB软件有关的命令。基本上达到了实验的学习目的。
1/3*3^(1/2)
u =
-1/3*3^(1/2)
1/3*3^(1/2)
通过判断得点x= 1/2*3^(1/2),y=-1/3*3^(1/2),z=-1/3*3^(1/2),u=-1/3*3^(1/2)
数模实验报告

数模实验报告摘要:本实验通过数学建模方法,对某个具体问题进行了建模与求解。
实验内容主要包括问题描述、问题分析、模型建立、模型求解及结果分析等几个部分。
通过本次实验,我们可以对数学建模的过程有较为全面的了解,同时也能够掌握一定的模型建立与求解的方法和技巧。
一、问题描述本次实验的问题是关于某个具体问题的建模与求解。
具体而言,问题是关于某个物理系统的数学描述。
物理系统的状态可以通过一组物理量来描述,而这组物理量的变化又可以通过一组数学方程来描述。
因此,问题的基本任务是找到这组数学方程,并通过求解这组方程,得到问题的解答。
二、问题分析在进行问题分析之前,我们需要对问题进行深入的了解和分析。
首先,我们需要对物理系统进行全面的观察和实验,以获得充分的数据和信息。
通过观察与实验,我们可以发现其中的一些规律和关系,这些规律和关系有助于我们建立数学模型并求解问题。
其次,我们需要通过对问题的分析,找出问题的关键要素和影响因素。
通过对关键要素和影响因素的分析,我们可以确定问题的数学描述方法,从而进一步进行模型建立与求解。
三、模型建立在进行模型建立之前,我们需要根据问题的要求和实际情况选择适当的数学工具和方法。
常用的数学工具和方法包括微积分、线性代数、概率论与数理统计等。
根据问题的特点和需求,我们可以选择适当的数学建模方法,如数值求解、最优化、动态系统等。
在模型建立过程中,我们需要明确问题的假设和约束条件,并据此构建数学模型。
模型的构建涉及到数学方程的建立和模型参数的确定等几个方面。
通过对方程和参数的合理选择和调整,我们可以使得模型能够真实地反映物理系统的行为和特性。
四、模型求解。
数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数字应用建模实验报告(3篇)
第1篇一、实验背景随着信息技术的飞速发展,数字建模在各个领域中的应用越来越广泛。
数字应用建模是将现实世界的复杂问题转化为数学模型,通过计算机模拟和分析,为决策提供科学依据。
本实验旨在通过数字应用建模的方法,解决实际问题,提高学生对数学建模的理解和应用能力。
二、实验目的1. 理解数字应用建模的基本原理和方法;2. 掌握数学建模软件的使用;3. 提高解决实际问题的能力;4. 培养团队合作精神和沟通能力。
三、实验内容1. 实验题目:某城市交通流量优化研究2. 实验背景:随着城市人口的增加,交通拥堵问题日益严重。
为了缓解交通压力,提高城市交通效率,本研究旨在通过数字应用建模方法,优化该城市的交通流量。
3. 实验步骤:(1)数据收集:收集该城市主要道路的实时交通流量数据、道路长度、交叉口数量、道路等级等数据。
(2)建立数学模型:根据交通流量数据,建立交通流量的数学模型,如线性回归模型、多元回归模型等。
(3)模型求解:利用数学建模软件(如MATLAB、Python等)对建立的数学模型进行求解,得到最优交通流量分布。
(4)结果分析:对求解结果进行分析,评估优化后的交通流量分布对缓解交通拥堵的影响。
(5)模型改进:根据分析结果,对模型进行改进,以提高模型的准确性和实用性。
4. 实验结果:(1)通过建立数学模型,得到优化后的交通流量分布。
(2)优化后的交通流量分布较原始分布,道路拥堵程度明显降低,交通效率得到提高。
(3)通过模型改进,进一步优化交通流量分布,提高模型的准确性和实用性。
四、实验总结1. 本实验通过数字应用建模方法,成功解决了某城市交通流量优化问题,提高了交通效率,为城市交通管理提供了科学依据。
2. 在实验过程中,学生掌握了数学建模的基本原理和方法,熟悉了数学建模软件的使用,提高了解决实际问题的能力。
3. 实验过程中,学生学会了团队合作和沟通,提高了自己的综合素质。
五、实验心得1. 数字应用建模是一种解决实际问题的有效方法,通过建立数学模型,可以将复杂问题转化为可操作的解决方案。
数学建模实验报告范文
数学建模实验报告范文实验目的本次实验旨在运用数学建模的方法和技巧,对给定的问题进行分析和求解,以提高我们的问题解决能力和创新思维。
实验背景在现实生活中,我们经常面临各种各样的问题,但是如何从复杂的问题中提取关键信息,并通过数学建模的方法进行求解,是一个非常有挑战性的任务。
通过本次实验的学习和训练,我们可以更好地应对复杂问题,提高解决问题的能力和效率。
实验过程和方法本次实验我们选择了一个关于货车配送问题的案例进行研究。
具体过程如下:1. 问题理解:我们首先详细了解了货车配送问题的背景和要求,明确问题的目标和限制条件。
根据问题的描述,我们可以得到基本的数学模型:- 假设有N个配送点,每个配送点有固定的货物数量和配送时长。
- 有M辆货车,每辆货车的最大载重量和最大配送时长是已知的。
- 目标是使得总配送时间最短的同时,不超过货车的最大载重量。
2. 数据处理:我们将问题中给出的具体数据转化为计算机可处理的数据结构,并进行必要的预处理工作。
包括计算各个点之间的距离、货物数量等信息。
3. 建模与求解:我们根据问题的特点和要求,选用相应的数学模型和求解方法。
在本次实验中,我们选择了基于图论的算法,如最短路径算法和旅行商问题算法,来优化货车的配送路径和时间。
4. 结果分析:我们根据得到的结果,对货车的配送路径和时间进行分析和评估。
通过对比不同算法和参数设置的结果,找出最优解,并对结果进行可视化展示。
实验结果经过模型求解和分析,我们得到了一组满足条件的最优解。
在我们的实验中,总配送时间最短的方案是:...通过对比和分析不同算法和参数设置的结果,我们可以发现...实验总结本次实验通过对货车配送问题的研究和实践,我们学习了数学建模的基本方法和技巧。
通过模型建立、求解和分析的全过程,我们深入理解了数学建模的重要性和应用价值。
在实验过程中,我们遇到了一些困难和挑战,如如何选择合适的数学模型和求解算法等。
通过克服这些困难,我们不断提高了自己的问题解决能力和创新思维。
数学建模实验报告范文
一、实验目的通过本次数学建模实验,使学生掌握数学建模的基本步骤和方法,提高学生运用数学知识解决实际问题的能力,培养学生的创新意识和团队合作精神。
二、实验内容本次实验以某城市交通拥堵问题为背景,建立数学模型,并进行求解和分析。
三、问题分析近年来,随着城市化进程的加快,交通拥堵问题日益严重。
为了缓解交通拥堵,提高城市交通效率,需要建立数学模型对交通拥堵问题进行分析。
四、模型假设1. 交通流量的变化服从泊松分布;2. 交通信号灯周期固定,绿灯时间、红灯时间比例不变;3. 交通事故发生概率服从泊松分布;4. 交通拥堵程度用道路上的车辆数表示。
五、模型构建1. 建立交通流量模型:假设道路上车流量为λ,则道路上的车辆数N(t)满足泊松分布,即N(t)~Poisson(λt)。
2. 建立交通信号灯模型:假设绿灯时间为t_g,红灯时间为t_r,信号灯周期为T,则有t_g + t_r = T。
3. 建立交通事故模型:假设交通事故发生概率为p,则在时间t内发生交通事故的次数X(t)满足泊松分布,即X(t)~Poisson(pt)。
4. 建立交通拥堵模型:假设道路上的车辆数为N(t),则交通拥堵程度U(t)可以用N(t)表示。
六、模型求解1. 根据泊松分布的性质,求解N(t)的期望值和方差,即E(N(t))=λt,Var(N(t))=λt。
2. 根据信号灯模型,求解绿灯时间t_g和红灯时间t_r。
3. 根据交通事故模型,求解交通事故发生次数X(t)的期望值和方差,即E(X(t))=pt,Var(X(t))=pt。
4. 根据交通拥堵模型,求解交通拥堵程度U(t)的期望值和方差。
七、结果分析与解释1. 根据模型求解结果,分析不同时间段内的交通流量、交通事故和交通拥堵程度。
2. 结合实际情况,分析影响交通拥堵的关键因素,并提出相应的缓解措施。
3. 通过模型求解,为相关部门制定交通管理政策提供依据。
八、实验总结通过本次数学建模实验,学生掌握了数学建模的基本步骤和方法,提高了运用数学知识解决实际问题的能力。
数学建模全部实验报告
一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
2. 提高数学建模能力,培养创新思维和团队合作精神。
3. 熟练运用数学软件进行数据分析、建模和求解。
二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。
请为公司制定招聘计划。
3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。
请建立模型分析居民出行方式选择的影响因素。
三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。
2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。
3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。
4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。
5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。
四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。
(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。
(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。
(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。
(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。
2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建农林大学计算机与信息学院(数学类课程)实验报告课程名称:数学模型姓名:苏志东系:数学专业:数学与应用数学年级:2014级学号:指导教师:姜永职称:副教授2016年6月12日实验项目列表序号实验项目名称成绩指导教师1 数学规划模型建立及其软件求解姜永2 数据插值与数据拟合应用姜永3 统计回归模型及其软件求解姜永4567891011121314151617181920福建农林大学计算机与信息学院数学类实验报告(一)系: 数学 专业: 数学与应用数学 年级: 2014级 姓名: 学号: 3 实验课程: 数学模型 实验室号: 明南附203 实验设备号: 实验时间: 2016/6/6 指导教师签字: 成绩: 1.实验项目名称:数学规划模型建立及其软件求解 2.实验目的和要求:了解数学规划的的基本理论和方法,并用于建立实际问题的数学规划模型;会用LINGO 软件解数学规划问题并对结果加以分析应用。
3.实验使用的主要仪器设备和软件:联想启天M430E 电脑;LINGO12.0或以上版本。
4.实验的基本理论和方法:一般地,数学规划模型可表述成如下形式:)(in x f z M x=.,...,2,1,0)(s.t.m i x g i =≤其中)(x f 表示目标函数,),...,2,1(0)(m i x g i =≤为约束条件。
LINGO 用于解决二次规划、线性规划以及非线性规划问题,同时可以求解线性或非线性方程(组)。
LINGO 的最大特色在于通过高运行速度解决优化模型中的决策变量的整数取值问题。
线性优化求解程序通常使用单纯性算法,可以使用LINGO 的内点算法解决大规模规划问题。
非线性规划可通过迭代求解一系列线性规划求解。
5.实验内容与步骤:问题一:某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A ,B ),按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A ,B .已知原料甲,乙,丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/t ,16千元/ t ,10千元/t ,产品A ,B 的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t ,15千元/t ,根据市场信息,原料甲、乙、丙的供应量都不能超过500t ;产品A ,B 的最大市场需求量分别为100t ,200t .(1) 应如何安排生产?(2) 如果产品A 的最大市场需求量增长为600t ,应如何安排生产?(3) 如果乙的进货价格下降为12千元/t ,应如何安排生产?分别、对(1)、(2)两种情况进行讨论.解答: (1)问题分析根据题目要求,不难想到,这个问题的目标是使公司获利最大,要做的决策就是生产计划,即生产多少产品A 和产品B ,限制条件有:原料供应、市场需求、不同含硫量生产不同的产品。
根据这些条件,利用lingo 软件,求出最终决策。
基本模型决策变量:设用(i=甲,乙,丙;j=A,B )表示用第i 种原料用于生产产品j ,将i=甲,乙,丙转换为i=1,2,3,j=A,B 转换为j=1,2.目标函数:设公司获利为z 千元,则有:∑∑∑∑∑=====---+=21321221131231110166159j jj j j j i i i i x x x x x z约束条件原料供应:原料i(i=1,2,3)均不超过500t,则∑=≤21500j ijx(i=1,2,3)市场需求:产品A 、B 的需求量分别为100t 、200t⎪⎪⎩⎪⎪⎨⎧≤≤∑∑==312311200100i i i i x x含硫量:根据甲乙混合比例,有:22122111::x x x x = 由生产不同产品含硫量百分比,有:⎪⎪⎩⎪⎪⎨⎧≤++++<≤++++<%5.1x x x x %2x %13%x 1%%5.2x x x x %2x %13%x 1.5%322212322212312111312111终上所述,有:∑∑∑∑∑=====---+=21321221131231110166159max j j j j j j i i i i x x x x xz∑=≤21500j ijx(i=1,2,3)∑∑==≤≤312311200100i i i i xx%5.1x x x x %2x %13%x 1%%5.2x x x x %2x %13%x 1.5%322212322212312111312111≤++++<≤++++<对上述式子进行调整,并利用lingo 软件,可求解出最优解。
Lingo 程序为:max=9*(x11+x21+x31)+15*(x12+x22+x32)-6*(x11+x12)-16*(x21+x22)-10*(x31+x32); 0.5*x11-1.5*x21-0.5*x31<=0; 1.5*x11-0.5*x21+0.5*x31>0; 1.5*x12-0.5*x22+0.5*x32<=0; 2*x12+x32>0;x11*x22-x21*x12=0;x11+x12<=500;x21+x22<=500;x31+x32<=500;x11+x21+x31<=100;x12+x22+x32<=200;程序运行结果如下:Objective value: 400.0000Variable ValueX11 0.000000X21 0.000000X31 0.000000X12 0.000000X22 100.0000X32 100.0000结果分析:根据结果显示,最优解为用100t的乙原料和100t的丙原料混合,生成200t产品B,所以目标函数最优解为40万元(400千元)。
2)本小题的解法与(1)基本一致,只需要将约束条件改变为,相应的代码由x11+x21+x31<=100改为x11+x21+x31<=600,并代入程序计算,便可求解出结果。
Objective value: 600.0000Variable ValueX11 300.0000 X21 0.000000 X31 300.0000 X12 0.000000 X22 0.000000 X32 0.000000结果分析:根据结果显示,最优解为用300t 的甲原料和300t 的丙原料混合,生成600t 产品A 所以目标函数最优解为60万元(600千元)。
(3)将乙的进货价格下降为12千元/t ,只需修改一下目标函数值和约束条件即可。
针对问题(1)来说,只需将目标函数33222121231111191561610i i j j j i i j j j z xx x x x ======+---∑∑∑∑∑ 改为33222121231111191561210i i j j j i i j j j z x x x x x ======+---∑∑∑∑∑,对应的程序修改一下,即可得到新的求解结果。
程序运行结果如下:Objective value: 900.0000 Variable Value Reduced CostX11 0.000000 0.000000 X21 0.000000 0.000000 X31 0.000000 0.000000 X12 50.00000 0.000000 X22 150.0000 0.000000 X32 0.000000 1.000000结果分析:根据结果显示,最优解为用50t 的甲原料和150t 的乙原料混合,生成200t 产品B ,所以目标函数最优解为90万元(900千元)。
问题二:某造船厂需要决定下四个季度的帆船生产量。
下四个季度的帆船需求量分别是40条、60条、75条和25条,这些需求必须按时满足。
每个季度正常的生产能力是40条帆船,每条船的生产费用为40万元。
如果加班生产,每条船的生产费用为45万元。
每个季度末,每条船的库存为2万元。
假定生产提前期为0,初始库存为10条船。
如何安排生产可使总费用最小?(LINGO 程序要求利用集合语言编写)解答: 建立模型设四个季度轮船的需求量分别为4,3,2,1),(=I I DEM ;四个季度正常生产的产量分别为4,3,2,1),(=I I RP ;四个季度加班生产的产量分别为4,3,2,1),(=I I OP ;四个季度轮船的总量分别为4,3,2,1),(=I I ALL根据题意和约束条件可以建立以下模型: 目标函数:)))()((*2)(*45)(*40(41∑=-++I I DEM I ALL I OP I RP约束条件由题意依次为1、每季度正常生产能力是40条船,即4,3,2,1=I ,应有40)(<=I RP ;2、需求量限制:,应有)()(I DEM I ALL >=;模型求解利用题目所给数据,将所建立的目标函数以及限制条件输入LINGO:模型代码如下: sets:SIJI/1..4/:DEM,RP ,OP ,ALL; endsets data:DEM=40 60 75 25; enddataALL(1)=10+RP(1)+OP(1);ALL(2)=ALL(1)-DEM(1)+RP(2)+OP(2); ALL(3)=ALL(2)-DEM(2)+RP(3)+OP(3); ALL(4)=ALL(3)-DEM(3)+RP(4)+OP(4);min=@sum(SIJI(I):40*RP(I)+45*OP(I)+2*(ALL(I)-DEM(I))); @for(SIJI(I):RP(I)<=40); @for(SIJI(I): ALL(I)>=DEM(I)); end4,3,2,1=I点击运行按钮得试验结果如下: Global optimal solution found.Objective value: 7845.000Variable Value Reduced Cost DEM( 1) 40.00000 0.000000 DEM( 2) 60.00000 0.000000 DEM( 3) 75.00000 0.000000 DEM( 4) 25.00000 0.000000 RP( 1) 40.00000 0.000000 RP( 2) 40.00000 0.000000 RP( 3) 40.00000 0.000000 RP( 4) 25.00000 0.000000 OP( 1) 0.000000 2.000000 OP( 2) 10.00000 0.000000 OP( 3) 35.00000 0.000000 OP( 4) 0.000000 5.000000 ALL( 1) 50.00000 0.000000 ALL( 2) 60.00000 0.000000 ALL( 3) 75.00000 0.000000 ALL( 4) 25.00000 0.000000 结果分析:25)4(,40)3(,40)2(,40)1(====RP RP RP RP ;0)4(,35)3(,10)2(,0)1(====OP OP OP OP 。