中职数学13集合的运算 2

合集下载

中职数学(基础模块)教案

中职数学(基础模块)教案

中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1。

2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系。

能力目标:通过集合语言的学习与运用,培养学生的数学思维能力。

教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1。

3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件"、“必要条件”及“充要条件"的理解.(2)符号“",“”,“”的正确使用.教学难ZYB重油煤焦油专用泵点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合高温导热油泵的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2。

最新中职教材数学1.3集合的运算(1)(公共基础类)数学

最新中职教材数学1.3集合的运算(1)(公共基础类)数学

【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】x xA与集合求两个集合交集的运算叫做过 程行为 行为 意图 间(4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅; (4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2A B =-.例3 设{}|12A x x =-<,{}|03B x x =<,求A B .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x xx x=-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;强调 引领讲解说明引领强调 含义 说明 启发 引导思考 主动 求解 观察 思考 求解 领会 思考 求解 了解集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25}y=,求23}4,求A.指导11名,那么该班有多少名}4,求A过 程行为 行为 意图 间*理论升华 整体建构 思考并回答下面的问题:1.集合的并集和交集有什么区别?(含义和符号) 2.在进行集合的并运算和交运算时各自的特点是什么? 3.集合用列举法和描述法表示时进行运算需要注意的问题是什么?(1)由集合A 和集合B 的公共元素组成的集合叫做集合A 与集合B 的交集{}B x A x x B A ∈∈=且 .由集合A 和集合B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. 质疑 归纳 强调 小组 讨论 回答 理解 强化 以学 生的 小组 讨论 教师 归纳 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A .解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .引导 提问 巡视回忆 反思 动手培养 学生 总结 反思 学习 过程 的能 力}{}x B x x=,求A 2,04活动探究教材章节1.3;学习与训练1.3;。

中职数学基础模块上册(人教版)全套教案

中职数学基础模块上册(人教版)全套教案
第四章 指数函数与对数函数.................................................................................... 95 4.1.1 有理指数(一) ............................................................................................ 95 4.1.1 有理指数(二) ............................................................................................ 99 4.1.2 幂函数举例............................................................................................. 104 4.1.3 指数函数.................................................................................................108 4.2.1 对数......................................................................................................... 113 4.2.2 积、商、幂的对数................................................................................. 116 4.2.3 换底公式与自然对数.............................................................................120 4.2.4 对数函数.................................................................................................123 4.3 指数、对数函数的应用............................................................................127

中职数学1.3 集合的运算课件

中职数学1.3 集合的运算课件

情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
1.3 集合的运算
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
1.书面作业:完成课后习题和学习与训练;
2.查漏补缺:根据个人情况对课题学习复习与回顾;
3.拓展作业:阅读教材扩展延伸内容.
再见
2.设集合A={(x,y)|x-2y=1}, 集合B={(x,y)|x+2y=3}, 求A∩B.
3.设集合A ={x |x>-1}, 集合A ={x |x≤-2}, 求A∩B.
1.3.2
并集
1.3.2 并集
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
前面的同学登记表中,设集合T={1,3,5,6,7,8}.
共青团员组成的集合为
N={1,3,5,7,8} .
那么, 集合M 与集合N 有
什么关系?
为研究方便,用序号代表学生.例如,“1”代表学生“李瑞凯”.
1.3.1 交集
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
一般地,对于给定的集合A与集合B,由既属于集合A又
属于集合B的所有元素组成的集合,称为集合A与集合B
1.3 集合的运算
1.3 集合的运算
实数之间可以进行运算,如5+2=7,
4-3=1, 3×7=21.
类比这些运算,集合之间是否也可以
进行运算呢?
1.3.1
交集
1.3.1 交集
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
某班第一小组8位学生的登记表:
女生组成的集合为
M={5,6,7,8} ,
情境导入 探索新知

集合的运算教学设计中职

集合的运算教学设计中职

标题:集合的运算教学设计方案(中职)引言:集合是数学中的基本概念之一,它不仅在数学中有着重要的应用,也在各个领域中具有广泛的应用。

教授集合的运算是中职数学教学中的重要内容之一。

本文将设计一套适用于中职学生的集合运算教学方案,旨在帮助学生理解集合的基本概念和运算规则,提高他们的数学思维能力与解决问题的能力。

一、教学目标1. 知识目标:- 了解集合的基本概念和符号表示法;- 掌握集合的运算法则,包括并集、交集和补集;- 熟练运用集合的运算法则解决实际问题。

2. 能力目标:- 发展学生的观察与归纳能力;- 培养学生的逻辑推理和问题解决能力;- 培养学生的团队合作和沟通能力。

3. 情感目标:- 培养学生对数学的兴趣和好奇心;- 提高学生对集合运算实用性的认识;- 培养学生的数学思维和抽象思维能力。

二、教学内容1. 集合的基本概念- 集合的定义和表示法;- 集合中的元素和空集的概念;- 集合的分类和常见的集合。

2. 集合的运算法则- 并集的定义和表示法;- 交集的定义和表示法;- 补集的定义和表示法。

3. 集合的运算例题与解析- 通过具体的例题,引导学生掌握集合的运算法则;- 解析例题中的思路和方法,帮助学生理解集合的运算原理; - 引导学生灵活运用集合的运算法则解决实际问题。

4. 集合的应用- 利用集合运算解决实际问题,如选课问题、调查问题等;- 引导学生将集合的运算与实际问题相联系,提高他们的应用能力。

三、教学方法1. 呈现法- 通过展示集合的概念和运算法则,引发学生的学习兴趣;- 利用课件或板书,在课堂上对概念和法则进行清晰明了的呈现。

2. 问题导入法- 准备一些与集合有关的问题,启发学生思考与实际情境相关的集合运算问题;- 引导学生通过思考和讨论,逐步推导出集合的运算法则。

3. 探究式教学法- 安排学生进行小组活动,采用探究式教学的方法,通过实践和发现,理解集合运算法则;- 引导学生在小组内进行集体讨论,交流归纳各自的探索结果。

中职教材数学(基础模块 高教版)上册电子教案:1.3 集合的运算(1)

中职教材数学(基础模块 高教版)上册电子教案:1.3 集合的运算(1)

【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.引导分析归纳总结自我分析了解引导式启发学生思考集合元素之间的关系5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题例1已知集合A,B,求A∩B.(1) A={1,2},B={2,3};(2) A={a,b},B={c,d , e , f };(3) A={1,3,5},B= ∅;说明观察通过例题进一步领会交过 程行为 行为 意图 间(4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅; (4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2A B =-.例3 设{}|12A x x =-<,{}|03B x x =<,求A B .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x xx x=-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;强调 引领讲解说明引领强调 含义 说明 启发 引导思考 主动 求解 观察 思考 求解 领会 思考 求解 了解集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25B.}23y=,求B.}4x,求A B.巡视指导11名,那么该班有多少名该班团员};={该班非团那么这三个集合之间有什么关系?介绍B.}2,}4B x,求A B.过 程行为 行为 意图 间*理论升华 整体建构 思考并回答下面的问题:1.集合的并集和交集有什么区别?(含义和符号) 2.在进行集合的并运算和交运算时各自的特点是什么? 3.集合用列举法和描述法表示时进行运算需要注意的问题是什么?(1)由集合A 和集合B 的公共元素组成的集合叫做集合A 与集合B 的交集{}B x A x x B A ∈∈=且 .由集合A 和集合B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. 质疑 归纳 强调 小组 讨论 回答 理解 强化 以学 生的 小组 讨论 教师 归纳 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A .解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1A B x x =<≤2},{0A B x x =<≤3}. 引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .引导 提问 巡视回忆 反思 动手培养 学生 总结 反思 学习 过程 的能 力}{}x B x x=,求A 2,04活动探究教材章节1.3;学习与训练1.3;举出交集和并集的生活实例.。

最新中职教材数学1.3集合的运算(2)(公共基础类)数学

最新中职教材数学1.3集合的运算(2)(公共基础类)数学

【课题】 1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】,求A B,A B.下面我们将学习另外一种集合的运算.介绍兴趣导入.如果从上下文看全集是明确的,特别是当全集时,可以省略补集符号中的U中的补集的图形表示,如下图所示:集合A 的补集是由属于全集组成的集合. U U 设U =R }12x<,求 作出集合在数轴上的表示,观察图形可以得到{. 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以2由补集定义和上面的例题,可以得到:引导分析U =U,U(U)=A.运用知识强化练习练习1.3.3思考并回答下面的问题:.什么是集合交运算?如何用符号表示?如何用图形表示?U U U U)() U U()UA B,()A BU.分析这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合.{ U{ U()(){}0,2,6,9 U UA;)(){U U 因为{}3,5AB =,所以(){0,1,2,4,6,7,8,9UB =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B = 设全集U =R ,集合U A B ,A 分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.U,所以U B={x | x -A B =R .分析 运用知识 强化练习{1,2,3,4,5,6,7,8U =设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)U B .巡视 指导归纳小结 强化思想本次课学了哪些内容?。

中职数学(基础模块)1.3.3-补集

中职数学(基础模块)1.3.3-补集
6
新知识学习 补集的定义
如果集合A是全集U的子集,那么U中不 属于A的所有元素组成的集合,叫做A在全 集U中的补集。
记作: CU A 读作:A在U中的补集
7
新知识学习 用venn图表示全集U、集合A、A在U中的 补集 CU A 三者的关系
8
知识训练与探究 例1:设U={0,1,2,3,4,5,6,7,8,9}, A={1,3,4,5},B={3,7,8}
( 1) .求CUA及CUB
( 2)请思考: ACUA___ A _CU ,A__C _U(_CU ,A)______
9
理论升华 补集的性质: 对于任意集合A,都有:
(1)A∪ CUA=U; (2)A∩ CUA=∅; (3)CU(CUA)=A.
10
反馈练习
设全集U={0,1,2,3,4,5}
A={0,2,4} B={0,1,2,3}
A={王明,曹勇,王亮,李冰,张军} 请回答:没有获得金奖的学生集合B怎样 表示?
5
新知识学习 全集的定义
在研究某些集合的时候,这些集合往 往是某个给定集合的子集,这个给定 的集合叫作全集,常用符号U表示.全 集含有我们所要研究的这些集合的全 部元素.(所研究的各个集合都是全 集U的子集) 在研究数集时,全集为实数R。
AB{xxA且 xB }
2.并集:集合A、B的所有元素
AB{xxA 或 x B }
14
课堂小结 3.补集:如果集合A是全集U的子集, 那么其中不属于A的所有元素组成的 集合,叫做A在全集U中的补集。
15
课本第14页练习1.3.3第1、2题
16
大家好
1
1.3 集合的运算
1.3.3 补集
商城县职业高级中学 徐奎银
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 集合交运算和并运算各自的特点是什么?
A∩B={ x | x ∈A 且 x ∈B} 3 交用运列算举A是.法∪要和B寻描=找{述两x法|个x表集∈示合A的相或集同合x元在∈素运;B算} 时需要注意什么?
并列运举算法是求将解两时个 要集不合重中不所漏含,的所有的元素进行合并. 描述法求解时要利用好数轴并注意端点的处理.
没有获得金奖的学生的集合为Q={赵云, 冯佳,薛香芹,钱忠良,何晓慧}
高教社
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳
薛香芹 钱忠良
王明 曹勇 王亮 李冰
P
何晓慧
张军
观察得出:集合 Q 是由属于集合 U,但不属于集合 P
高教社
的所有元素组成的.
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
第一章 集 合
1.3 集合的运算
高教社
创设情景 兴趣导入
问题1 某班有团员34名,非团员11名,那么该班有多少名同学? 问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇; 第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班 第一学年的三好学生有哪些同学? 问题3 集合A={锐角三角形};B={钝角三角形};C={斜三角形}. 那么这三个集合之间有什么关系?
AB{x1x≤ 2} AB{x0x≤ 3}
高教社
运用知识 强化练习
练习
1.A={-3,0,1,2}, B={0,1,4,6},求A∩B , A∪B. 2. A={x|-1<x<3},B ={x|-3<x≤2},求A∩B , A∪B.
.
高教社
某学习小组学生的集合为U={王明,曹勇,王亮,李冰, 张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在 学校应用文写作比赛与技能大赛中获得过金奖的学生集 合为P={王明,曹勇,王亮,李冰,张军},那么没有获 得金奖的学生有哪些?
思考:A∩B=
高教社 {x︱1<x<2}
运用知识 强化练习
教材练习1.3.2
1.设 A 1,0,1, 2 , B 0, 2, 4,6 ,求 A B . 2.设 A x | 2 x 2 , B x | 0 x 4 ,求 A B .
.
高教社
理论升华 整体建构
1 交集和并集有什么区别?(含义和符号 )
AB xx A 或 x B
.
高教社
演示说明
巩固知识 典型例题
例4 已知集合A,B,求A∪B. (1) A={1,2},B={2,3}; (2) A={a,b},B={c, d , e , f }; (3) A={1,3,5},B= ;
.
(4) A={2,4},B={1,2,3,4}.
1a1 A
什 么 是 交
交集:一般地,由所有属于集合A且 属于集合B的元素所组成的集合,叫 做A与B的交集,记作A∩B,即 A∩B={x︱x∈A,且x∈B}
A B
高教社
例题讲解
例1:设A={x︱x>-2},B={x︱x<3},求A∩B.
-2
3
解:A∩B= {x︱x>-2} ∩{x︱x<3}={x︱-2<x<3}
锐角三角形 钝角三角形
斜三角形
解: A∪B= {x︱x是锐角三角形} ∪{x︱x是钝角三角形} ={x︱x是斜三角形}
高教社
例5 设A={x︱-1<x<2},B={x︱1<x<3},求A∪B. B
A
A∪B
-1
0
12
3
解: A∪B= {x︱-1<x<2} ∪{x︱1<x<3}= {x︱-1<x<3}
b33
c 2
54
d ef
BB
A
A
高教社
集合A、B 的所有元素
创 新培养 自我归纳
对于任意的两个集合A与B,都有: (1) AB BA. (2)A ,A A . (3)A A B , B A B . (4)若 B A则 A B .
高教社
例4 设A={x︱x是锐角三角形},B={x︱x是钝角三角形}, 求A∪B.
补集:如果集合A是全集U的子集,那么,由U中不属于 A的所有元素组成的集合叫做A在全集U中的补集
读作 “ A 在U中的补集”.
高教社
补集
根据补集的定义和图示,填写补集的性质.
高教社
补集
高教社
集合的交
高教社
归纳小结 强化思想
交集并集
运算特点
概念记法
高教社
综合应用
作 业
高教社
阅读 教材章节1.3 书写 学习与训练1.3 实践 举出交集和并集的生活事例
高教社
巩固知识 典型例题
例5 已知集合A={2,3,5},B={-1,0,1,2} , 求A∪B ,A∩B.
集合A、B 的相同元素
.
集合A、B 的所有元素
高教社
巩固知识 典型例题
例6 设A={x|0<x ≤2 },B={x|1<x ≤3},求A∪B ,A∩B.
集合A、B 的相同元素
集合A、B 的所有元素
例2:设A={x︱x是等腰三角形},B={x︱x是直角三角形},求A∩B.
解: A∩B= {x︱x是等腰三角形} ∩{x︱x是直角三角形}={x︱x是等腰 直角三角形}
高教社
动脑思考 探索新知
集合的并集
一般地,对于两个给定的集合A、B,由集合A、B的所有 元素组成的集合叫做集合A与集合B的并集教社
创设情景 兴趣导入
观察集合:
A= { 1 , 3 , 5 , 7 } B={2,3,4 ,5} C={1,2,3 ,4,5,7}
各集合的元素之间有什么关系?
高教社
A={4,5,6,8}
A
B={3,5,7,8}
B
5,8
A∩B
A
B
4,6 5,8 3,7
高教社
A∪B
集 、 什同 么学 是们 并能 集归 吗纳 ?出
相关文档
最新文档