阵列信号处理的基本知识
阵列信号处理技术

动通信的用户很多,一方面通过空间不同位置进行区分,另 一方面通过不同的编码等方法实现多用户和大容量。 现代超分辨技术,使系统能够分辨空间和时间上都很靠 近的信号。
概括起来说:
波束的控制和管理
时间和空间信号的高分辨 五、主要研究内容 1、阵列构形研究 均匀直线阵、平面阵、元阵、随机阵、共形阵。 2、波束形成和超分辨新方法的研究(不是热点)
军用雷达:
火炮雷动:炮位侦校雷达、炮瞄雷达
战场侦察雷达:(坦克、直升机等目标的检测与识别)
步兵侦察雷达:
空中警戒雷达:(对空监视雷达) 机载雷达气象雷达: 天气预报、人工降雨)
探地雷达: (探测地下管道,检查高速公路施工质量,
接收信号
X T = [ x1 , x 2 , L , x N ]
(2.1.1)
方向图形成网络: W = [ w1 , w 2 , L , w N ]
(2.1.2)
(形成最优权 和系统输出)
y(t ) = W T X = X T W
(2.1.3)
自适应处理器: ( 例如MVDR:Minimum Variance Distortionless Response) 求解约束性问题:
0 ≤ t ≤ T
(2.2.5)
所需信号和噪声的矢量可以表达为:
s1 (t ) S (t ) = 2 M s N (t )
n1 (t ) n (t ) = 2 M n N (t )
0 ≤ t ≤ T
所需信号分量可精确已知,粗略近视已知,或仅在统计意 义上已知。
3、理想的传播模型
3、应用性研究(热点)
在一个具体的领域或工程项目上,如何应用这些理论和
方法,实际系统的误差很大,比如阵列通道之间的性能差异, 频率特性,阵列传感器的位置误差等情况下的一些理论算法 和性能。
课件2:阵列信号处理数学基础

谱定理,也就是矩阵A的特征值分解定理,其中Λ diag( , , , ), E
1
2
n
[e ,e , ,e ]是由特征向量构成的酉矩阵。
1
2
n
•9
一、代数基础
Kronecker积
定义:p q矩阵A和m n矩阵B的Kronecker积记作A B,它是一个 pm qn矩阵,定义为
a B
11
x
(t)
s (t)e K
jwom ( i )
n
(t)
m
i1 i
m
s (t)为入射到阵列的第i个源信号 i
( )为第m个阵元相对参考点的时延
m
i
n (t)为第m个阵元的加性噪声 m
X (t) [x (t), x (t),, x (t)]T
1
2
M
矩阵表示接收信号 N (t) [n (t), n (t),, n (t)]T
f
f
Khatri Rao积具有如下一些性质:
A⊙(B⊙C) (A⊙B)⊙C
(A B)⊙C A⊙C B⊙C
A⊙B B⊙ A
•12
一、代数基础
Hadamard积
矩阵A 和B IJ IJ的Hadamard积定义为
向量化
a b 11 11
A B a b21 21
a bI1 I1
ab 12 12
1
2
t1 ,t2
E{n(t )nT (t )} 0
1
2
Outline
一、矩阵代数相关知识 二、信源和噪声模型 三、阵列天线统计模型 四、阵列响应矢量/矩阵 五、阵列协方差矩阵的特征值分解 六、信源数估计方法
•19
阵列信号处理(知识点)

信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈称()()()()12,,,P span a a a θθθ为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。
P N S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X ,其中θ为参数集合,使条件概率()12,,,N f X X X θ最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。
阵列信号处理全.ppt

▪平面阵
图1.5
▪立体阵
图1.6
b. 参数化数据模型
假设N元阵分布于二维平面上,阵 元位置为:
rl xl , yl ,l 1,2, , N
一平面波与阵面共面,传播方向矢
量为: 1 cos ,sin T
c
y
r
x 图1.7:二维阵列
几何结构
阵元
l 接收信号为:xl
t s rl,t
滤波:增强信噪比 获取信号特征:信号源数目 传输方向(定位)及波形 分辨多个信号源
定义:
➢传感器——能感应空间传播信号并且能以某 种形式传输的功能装置
➢传感器阵列(sensors array)——由一组传感 器分布于空间不同的位置构成
由于空间传播波携带信号是空间位置和时
间的四维函数,所以:
连续:面天线
波动方程的任意解可以分解为无穷多个“单频”
解的迭加(传播方向和频率分量均任意)。
波动方程的单频解可以写成单变量的函数:
sr,t Aexp[ j(t kT r) Aexp[ j t T r ]
式中 k ,其大小等于传播速度的倒数,其方向与 传播方向相同,常称为慢速矢量(slowness vector)。
2. G.Strang,"Linear Algerbra and Its Applications", Academic Press,New York ,1976.(有中译本, 侯自新译,南开大学出版社,1990)
§2.1线性空间和希尔伯特空间
一、符号及定义
1. 符号
以后我们常用字母加低杆表示矢量和矩阵,
实际阵列
空间采样方式 虚拟阵列(合成阵列如SAR)
空时采样示意图如下:
第四章 阵列信号处理

通常信号的频带B比载波 ω 小很多,即s(t)变化 相对 ω 缓慢,则延时
1 c
r α <<
T
1 B
则可以认为 s (t − r α ) ≈ s (t ) 即信号包络 在各阵元上差异可忽略——窄带信号。
4.2 等距线阵与均匀圆阵
一、等距线阵 M个阵元等距排成一直线,阵元间距为d,到达波 的方向角定义为与阵列法线的夹角 θ ,称为波 达方向(DOA)。 在三维空间中还可以 θ θ 确定信源方位角 ψ
d
5
4
y
ψ
2
1
x
等距线阵(ULA)的方向向量
aULA (θ ) = [1, e = [1, e
−j 2π − j k d sin θ −j
,L, e
2π
− j k ( M −1) d sin θ T
]
λ
d sin θ
,L, e
λ
( M −1) d sin θ
]T
若有多个信源(p个),波达方向分别为 θ i (i − 1, L, p) 方向矩阵为
A = [a(θ1 ), a(θ 2 ),L, a(θ p )] = 1 ⎡ ⎢ e − j 2λπ d sin θ1 =⎢ ⎢ L ⎢ − j 2λπ ( M −1) d sin θ1 ⎣e ⎤ π − j 2λ d sin θ p ⎥ L e ⎥ ⎥ L L π − j 2λ ( M −1) d sin θ p ⎥ L e ⎦ L 1
θ
d sin θ
Vandermonde矩阵
阵列结构不允许其方向向量和空间角之间模糊, 等距线阵阵元间距不能大于 λ ,则可以保证 2 方向矩阵中各个列向量线性独立。 二、等距线阵的阵列响应与方向图 在单个信源情况下,阵列输出为各阵元信号的加 权和(不考虑噪声),
阵列信号处理(知识点)

信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈L称()()()()12,,,P span a a a θθθL 为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。
P N S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X K ,其中θ为参数集合,使条件概率()12,,,N f X X X θK 最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。
阵列信号处理
阵列信号处理是信号处理的一个年青的分支,属于现代信号处理的重要研究内容之一,其应用范围很广,可用于雷达、声呐、通信、地震勘察、射电天文和医用成像等众多领域。
阵列信号处理是将一组传感器在空间的不同位置按一定规则布置形成的传感器阵列(尽管采用的传感器的类型可以不同,如天线、水听器、听地器、超声探头、X射线检测器,但是传感器的功能是相同的,它是连接信号处理器和感兴趣的空间纽带),用传感器阵列发射能量和(或)接收空间信号,获得信号源的观测数据并加以处理。
阵列信号处理的目的是从这些观测数据中提取信号的有用特征,获取信号源的属性等信息。
目前,阵列信号处理在雷达及移动通信等领域有着广泛而重要的应用。
在相控阵雷达体制中,自适应波束形成技术在抑制杂波干扰方面起着关键的作用。
在移动通信中,基于阵列信号处理的波达方向估计技术,使移动通信进入一个崭新的阶段。
本论文首先介绍阵列信号处理的基础知识。
在此基础上,着重讨论阵列波束形成技术,非理想线性阵列的雷达信号波达方向和多普勒频率估计,均匀圆形阵列的信号波达方向估计和复杂信号的波达方向及参数估计等四方面内容。
这些内容都是阵列信号处理领域的研究热点。
它们无论对阵列信号处理的理论发展还是实际应用,都有重要的意义。
目前,人们普遍关注在阵列响应矢量未知情况下,自适应波束形成问题,即盲自适应波束形成技术。
本文第一方面介绍了最基本的阵列波束形成方法,即最小均方误差波束形成器,线性约束最小方差波束形成器和基于特征空间的波束形成器(ESB)。
在此基础上,提出一个基于特征空间的盲自适应波束形成算法。
此算法首先根据高分辨波达方向估计方法,估计信号源的波达方向,然后以此方向形成约束导向矢量,进而计算出ESB波束形成算法的最优权矢量,最后,对期望目标形成笔状波束。
此算法能够有效地抑制信号的对消现象,并且能够应用于在波束中有多个期望信号的场合。
当阵列存在各种误差时,一般高分辨波达方向估计方法(如MUSIC)的估计性能严重下降。
阵列信号处理的基本知识分析
diag{g ej1 ,, g e } jM
1
M
阵元之间的互藕 有关因素:阵元之间的间距大小,系统工作 频段,采用的传感器类型等。 设所有阵元之间的藕合系数矩阵为C,则考 虑到阵元间互藕的阵列输出信号模型为:
x(t) CAs(t) n(t)
阵元位置 阵元测向的关键信息是空间信号入射到各阵 元的相对延迟相位,而这一相位依赖于阵元 之间的空间位置,阵元位置误差直接导致延 迟相位估计误差,从而影响信号参数估计。
信号参数估计(DOA,频率,极化参数,距离, 时延等): 谱估计方法(子空间方法,波束形成 方法),参数化方法(最大似然,基于子空间逼 近方法)。
Ref[1] H.krim and M.Viberg, Two decdees of array processing research: the parametric approach, IEEE signal processing Magazine, Vol.13, Vol.4, 1996. Ref.[2] D.H.Johnson, D.E.Dudgeon, Array signal processing, Prentice-Hall,1993. Ref.[3] IEE Proc. 1991. Ref.[4] Vaccaro, R.J, The past, present, and the future of underwater acoustic signal processing, IEEE Signal Processing Magazine, Vol.15 , No.4 , 1998.
-25
-30
-35
-40
-45
-50
-80 -60 -40 -20
0
20
声学阵列信号处理技术
声学阵列信号处理技术1.引言1.1 概述声学阵列信号处理技术是一种利用多个传感器将声音信号进行接收、处理和分析的技术。
声学阵列由多个微型麦克风组成,可以在不同位置同时接收远场声音信号,并通过信号处理算法来实现声音的定位、分离和增强等功能。
随着科技的不断发展,声学阵列信号处理技术在各个领域都得到了广泛的应用。
在语音识别领域,声学阵列可以提供清晰的语音输入,大大提高了语音识别的准确性和性能。
在通信领域,声学阵列可以提供更好的语音通话质量和降噪效果,改善了通信的可靠性和稳定性。
在音频处理领域,声学阵列可以实现音频信号的定位和分离,提供沉浸式音频体验。
此外,声学阵列还广泛应用于声纹识别、声波成像、无人驾驶等领域。
本文将对声学阵列信号处理技术进行详细的介绍和分析。
首先,我们将概述声学阵列信号处理技术的基本原理和工作流程。
接着,我们将详细讨论声学阵列的原理和应用。
最后,我们将对声学阵列信号处理技术进行总结,并展望其未来的发展方向。
通过本文的阅读,读者将能够了解声学阵列信号处理技术的基本概念和原理,以及其在不同领域中的应用和前景。
希望本文能够为相关领域的研究者和工程师提供一些有价值的参考和指导。
1.2 文章结构文章结构部分的内容可以包括以下内容:本文结构如下:第一部分为引言部分,主要对声学阵列信号处理技术进行基本介绍,包括概述、文章结构和目的。
第二部分是正文部分,分为两个小节。
2.1节主要概述了声学阵列信号处理技术的基本概念和原理,从信号采集、传输到处理的整个流程进行详细介绍,包括声学阵列的组成、工作原理以及信号处理算法等内容。
2.2节主要介绍了声学阵列技术的主要应用领域,包括音频信号处理、语音识别、声源定位等。
通过实际案例和应用场景的分析,展示了声学阵列信号处理技术在各个领域的重要性和应用前景。
第三部分为结论部分,总结了本文对声学阵列信号处理技术的概述和应用,强调了声学阵列技术在提高信号处理效果和拓展应用领域方面的优势,并展望了未来发展的方向和挑战。
阵列信号处理 psf 点扩散函数 反卷积
阵列信号处理中的点扩散函数(PSF)及反卷积一、引言在现代通信和雷达系统中,阵列信号处理扮演着举足轻重的角色。
阵列信号处理是指利用阵列几个接收器(天线或传感器)的信号,通过合理的处理方法,提高信号的接收性能。
其中,点扩散函数(PSF)和反卷积是阵列信号处理中的重要概念,对信号处理和系统性能的分析具有重要的意义。
二、点扩散函数(PSF)的定义和作用1. 点扩散函数(PSF)的定义点扩散函数(Point Spread Function)是指在给定系统下,点源信号经过系统传输后,其在接收端形成的响应函数。
它不仅包含了传输系统的影响,也反映了系统对信号的扩散程度和变形情况。
2. PSF在阵列信号处理中的作用在阵列信号处理中,PSF可以用来描述阵列接收器对来自空间不同方向的信号的响应和传输特性。
通过PSF分析,我们可以深入了解阵列接收器的特性,优化阵列的布局和参数设置,以提高目标信号的接收性能。
三、反卷积在阵列信号处理中的应用1. 反卷积的基本原理反卷积是指在接收端对接收到的信号进行处理,尝试去除或减弱信号经过传输过程中受到的扩散和变形影响,使得恢复的信号更加接近原始信号。
在阵列信号处理中,反卷积可以用来提高系统的分辨率和准确性,减小信号在传输过程中的误差和失真。
2. 反卷积在阵列信号处理中的应用通过反卷积的处理,我们可以在一定程度上弥补传输过程中的信号质量损失,并实现对目标信号的更加准确的采集和分析。
这对于通信系统的误码率控制、雷达目标识别和跟踪等方面具有重要的意义。
四、个人观点和总结在阵列信号处理中,点扩散函数(PSF)和反卷积是两个非常重要的概念,对于理解和优化阵列信号处理系统具有重要的意义。
通过对PSF和反卷积的深入研究和应用,我们可以更好地了解阵列接收器的特性,提高系统的性能和准确性。
我个人认为,未来随着通信技术和雷达技术的发展,PSF和反卷积的研究将会更加深入,为阵列信号处理领域带来更多的突破和创新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、应用领域的一些实例
仿真结果
方向图综合例子
0 -10 -20
Pattern (dB)
-30 -40 -50 -60 -70 -80
-80
-60
-40
-20 0 20 Angle of Arrival (deg.)
40
60
80
[-55 -35] [35 55]
5 0 -5 -10 -15
Pattern (dB)
阵元之间的互藕 有关因素:阵元之间的间距大小,系统工作 频段,采用的传感器类型等。 设所有阵元之间的藕合系数矩阵为C,则考 虑到阵元间互藕的阵列输出信号模型为:
x(t ) CAs (t ) n(t )
阵元位置 阵元测向的关键信息是空间信号入射到各阵 元的相对延迟相位,而这一相位依赖于阵元 之间的空间位置,阵元位置误差直接导致延 迟相位估计误差,从而影响信号参数估计。 阵列模糊 阵元间距大于 / 2 时,影响空间信号到达角 的可辨识性和确定性,需要解决阵列模糊问 题。
,, f ( )e
M
jk pM
]
T
阵元及通道幅相特性一致性 设第m个阵元对应信道的幅度和相位特性 为 g e ,则阵列响应系数将受此幅相特性加 权,即有:
jm m
x(t ) As (t ) n(t )
diag{g e ,, g e }
j1 jM 1 M
谢谢各位!
自适应波束形成(Beamforming,空域滤波) 实质是通过对各阵元(传感器)加权进行空域滤波 以到达对不同来向的信号进行增强或抑制的目的, 而且它可以根据信号环境的变化,来自适应的改 变各阵元的加权因子。 在理想的条件下,自适应波束形成可以有效的 抑制干扰而保留期望(有用)信号,从而使阵列的 输出信号干扰噪声比(SINR)达到最大。 三种准则:MVDR, MMSE, MSNR
]
T
s [s (t ),, s (t )] 为信号源矢量。
T
波传播的方向信息含于载波上,而不是复包络上, 即与波形无关(这与时域信号处理不同),空间信 息含于载波上,时域信息含于信号包络上。
对阵列及其通道的假设 阵元的方向性:
空间入射信号示意图
a( ) [ f ( )e
1
jk p1
时域滤波 频率响应 通带 阻带 频率选择
空域滤波 方向图 主瓣 旁瓣 方向选择
三、当前的一些研究热点和新技术
参数估计以及信号检测: 1. 非理想条件下稳健的参数估计方法和信号检测 (色噪声,非平稳信号环境,阵列存在系统误差 (包括互藕、幅相误差、位置误差))。 2. 快速算法(子空间跟踪与更新,权系数更新)。 3. 相干信号和宽带信号环境。 4. 低信噪必(弱信号)、短数据环境下的检测与估 计。 5. 新方法(MCMC,SMC(particle filter),SVB, Stochastic Resonance)。
阵列信号处理系统构成
接收形式: 多个传感器(阵元),声纳,天线。 常见的阵列几何结构:均匀线阵,非均匀 线阵,面阵中的均匀和非均匀圆阵,非均 匀L阵,十字阵等,共形阵(立体阵)。
多传感器阵列 多通道接收机 多通道同 步采集和模数转换 数据处理终端
阵列信号的应用领域 着重空间传输信号(电磁波、声波、地震冲 击波)的获取、处理与传输,应用于雷达、 声纳、导航、地震探测、 移动通信 (SDMA)、 生物医学等领域。阵列系统的 多信号处理能力、参数提取的高分辨、高 精度和抗干扰能力等优点,很大程度上都 依赖于适当的阵列信号处理算法。
波束形成:
1. Robust Beamforming(steering vector error, array error, coherent signals, Robust Capon beamforming) . 2. Array Pattern Synthesis. The problem of designing complex weights for individual array elements to achieve properties such as high directive gain or to spatially filter signals by their angle of arrival.
式中L为阵列最大口径,F和 为信号中心频率 和该频率对应的波长。 远场假设 即辐射源到阵列的距离远大于阵列的最大口 径,从而入射到阵列的信号波前可近似为平 面波前(d ).
L2
入射信号统计特性 空间入射信号平稳且各态历经,可以用时 间平均代替集合平均。一般还假定各入射 信号统计独立。 E{s(t ) s (t )} diag{ ,, } 噪声统计特性 空时白高斯噪声;色噪声环境下需要稳健 的算法。 E{n(t )n (t )} I
Circular array of 8 sensors, diameter d=1.29m, wavelength=0.77~ 1.5m, beam width=45, Fs=375k
一种基于高阶累积量的近场源距离、频率和方位联 合估计算法,电子学报,2005(to appear). Passive Near-Field Source Localization Method Using Higher Order ESPRIT, IEEE Trans. Antenna and Propagation, 2nd revision. Passive Near-Field Source Localization Method based on Spatial-Temporal Structure, IEE Proc. RSN, 1st revision.
阵列系统模型的假设
阵列信号数学模型 设P个空间信号入射到由M个阵元组成的阵 列,t时刻第m阵元的输出可以用矩阵表示 为: x (t ) a ( ) s (t ) n (t )
P m l 1 m l l m
s ( t ) 为第l个入射信号波前, a ( ) 为第m个 n (t ) 为阵元接收 阵元对该信号的响应系数,
-20 -25 -30 -35 -40 -45 -50 -80 -60 -40 -20 0 20 Angle of Arrival 40 60 80
波束形成例子
0 -10 -20
¼(dB) òÍ ½Ï ·
-30 -40 -50 -60 -70 -60
-40
-20
0 DOA(¶È)
20
40
60
实测数据的例子
阵列信号处理中的若干问 题与研究
主要内容
阵列信号处理的基本知识 阵列信号处理的主要内容 当前的一些研究热点和新技术 应用领域的一些实例
• 仿真结果 • 实测数据处理
一、阵列信号处理的基本知识
阵列信号处理系统构成 阵列系统模型假设
阵列信号数学模型 对阵列及其通道的假设 对信号和噪声的假设
H 2 2 s1 sP
H 2
信号数目 属于信号检测问题(AIC,MDL,etc),一般 假定先验已知。
二、阵列信号处理的主要内容
信号参数估计(DOA,频率,极化参数,距离, 时延等): 谱估计方法(子空间方法,波束形成 方法),参数化方法(最大似然,基于子空间逼 近方法)。
Ref[1] H.krim and M.Viberg, Two decdees of array processing research: the parametric approach, IEEE signal processing Magazine, Vol.13, Vol.4, 1996. Ref.[2] D.H.Johnson, D.E.Dudgeon, Array signal processing, Prentice-Hall,1993. Ref.[3] IEE Proc. 1991. Ref.[4] Vaccaro, R.J, The past, present, and the future of underwater acoustic signal processing, IEEE Signal Processing Magazine, Vol.15 , No.4 , 1998.
各通道同步采集假设 阵列接收信号需要进行采样和A/D变换 为数字信号后进入DSP处理器进行算法处 理。
Nyquist采样率
宽频段信号:采用欠采样率(空时欠采 样),需要解模糊算法。
对信号和噪声的假设
窄带假设 信号带宽远小于信号波前跨越阵列最大口径 所需要的时间的倒数,即有如下假设:
B L 1 F
l m m
加性噪声。
将整个阵列Leabharlann 输出信号写成矩阵形式为:x(t ) As(t ) n(t )
A [a( ),, a( )] 为阵列流行矩阵、空间信 号方向矢量、阵列响应矩阵。
1 P
a( ) [1 e
1 P
j 2 d sin /
,, e
j 2 ( M 1 ) d sin /