二次根式复习学案
二次根式教案(优秀8篇)

本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
初中数学_二次根式(复习)教学设计学情分析教材分析课后反思

第九章二次根式单元复习教学设计备课人:第九章二次根式(复习)学情分析:根据八年级学生的性格特点维活跃,乐于表现,善于思考,具有了一定的动手能力。
学生在数学学习活动中的参与程度和思维水平能反应出他们的年龄特点,他们能积极主动参与各项活动,能在学习活动中进行主动思考,向老师表达自己的想法,听取老师的意见和建议,能正确地运用所学解决相关问题。
虽然学生已经对二次根式有了全面的认识,本章的学习也有了良好的基础,但是当被开方数是分数和小数时,学生的理解能力不是很好,加上部分同学的计算能力相对薄弱,更增加了对最简二次根式化简的难度,因此在教学过程中,先从知识网络入手,整体复习二次根式的相关知识点,采取由易到难,由简到繁层层推进的办法,既巩固了基础,又提升了能力。
使得学生在理解二次根式概念上有更深刻的认识,也就为后续运算的内容奠定了基础。
通过对整章内容的复习,使绝大多数学生对于化简最简二次根式以及二次根式的运算,做到有方法、有技巧、有策略!二次根式(复习)效果分析本节课教学效果分析从教学过程中学生掌握的成绩和当堂测评练习两个方面进行分析。
在教学过程中,学生复习回顾,巩固练习表现很好,正确答案在90%以上,对能力提升部分学生掌握也不错。
从当堂测评练习的分析得出:测评练习设置四块内容:其中包括跟踪练,拓展延伸,走进中考,课后思维延伸。
在教学效果分析中学生对本章知识掌握的较好。
绝大多数学生的测评成绩能达到掌握准确程度。
二次根式(复习)教材分析《二次根式》是八年级下册第九章内容,本章共分3节,概念及性质,加减法,乘除法。
不仅与实数及二次根式的概念、性质有关,而且与学生已经学过的整式、分式的基本运算有着紧密的联系。
二次根式在初中数学学科体系中的地位作用:二次根式在初中数学中具有特殊的地位.它不仅是实数运算的重要依据,而且还是学习二次方程和二次函数的基础.二次根式是在学生学习了平方根、立方根等内容的基础上进行的,是对“实数、整式”等内容的延伸和补充,对数与式的认识更加完善。
二次根式教案(通用8篇)

二次根式教案(通用8篇)二次根式教案(通用8篇)作为一位兢兢业业的人民教师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。
那么什么样的教案才是好的呢?以下是小编整理的二次根式教案8篇,希望能够帮助到大家。
二次根式教案篇1教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点最简二次根式的定义。
教学难点一个二次根式化成最简二次根式的方法。
教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。
第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1 把下列各式化成最简二次根式:例2 把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
第二十一章 二次根式 复习学案

第二十一章 二次根式 复习学案一、复习目标:1、理解二次根式的意义及性质。
2、了解最简二次根式和同类二次根式的意义。
3、了解代数式的意义。
4、掌握二次根式的加、减、乘、除运算法则,并能灵活地运用它们进行运算。
二、本章知识框图三、知识点与方法(一)定义:形如 的式子叫二次根式,“”称为 。
温馨提示:定义中包含两个条件,分别是① ② 。
例1:下列式子是二次根式的是 (填序号)① 2--x ② x ③ 22+x ④22-x ⑤ 7- ⑥ 37 ⑦ 2a ⑧ 16 【练习】 1、下列式子中,是二次根式的是( )A 33 B 3- C 1+x D 2x2、当x 时,x -3是二次根式。
3、要画一个,面积为182cm 的矩形,使它的长宽之比为2:3,则长为 ,宽为 。
4、若ba是二次根式,则a 、b 应满足条件为( ) A a 、b 均为非负数 B a 、b 同号 C a 、b 异号 D 0≥ba (二)有(无)意义的条件:当 时,a 有意义;当 时,a 无意义。
例2:若13-m 有意义,则m 能取的最小整数值是( )A m=0B m=1C m=2D m=3 例3:当x 时,x -5没有意义。
例4:当x 时,2)2(---x 有意义。
例5:把aa 1-根号外的因式移入根号内的结果是 。
【练习】5、要使式子32+x 有意义,则x 的取值必须满足 。
6、不改变根式的值,把x x --根号外的因式移到根号内得 。
7、下列各组式子中,x 取值范围相同的是( ) A 1+x 和1-x B ()2x 和2x C 12+x 和2+x Dx1和x 8、当x 取什么值时,下列各式有意义。
(1)x 43- (2)2x - (3)1+-x (4)x x -+-42 (5)321+-x x9、已知,522+-+-=x x y ,求yx 的值。
(三)性质:① ② ③ ④ ⑤ 。
例6:若1<x <2,则2)1(3-+-x x 的值为( ) A 2x-4 B -2 C 4-2x D 2 例7:已知实数a 在数轴上的位置如图所示,则化简|1-a|+的结果为 。
二次根式教案三篇
二次根式教案三篇二次根式教案三篇二次根式教案篇1 一、内容解析本节教材是在学生学习二次根式概念的根底上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和考虑得到二次根式的两个根本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个详细问题,让学生学生根据算术平方根的意义,就详细数字进展分析^p 得出结果,再分析^p 这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析^p ,确定本节课的教学重点为:理解二次根式的性质.二、目的和目的解析1.教学目的〔1〕经历探究二次根式的性质的过程,并理解其意义;〔2〕会运用二次根式的性质进展二次根式的化简;〔3〕理解代数式的概念.2.目的解析〔1〕学生能根据详细数字分析^p 和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;〔2〕学生能灵敏运用二次根式的性质进展二次根式的化简;〔3〕学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析^p二次根式的性质是二次根式化简和运算的重要根底.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵敏运用二次根式的性质进展二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的.灵敏运用存在一定的困难,打破这一难点需要老师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵敏运用的才能.本节课的教学难点为:二次根式性质的灵敏运用.四、教学过程设计1.探究性质1问题1 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕.【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的才能.例2 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质1,学会灵敏运用.2.探究性质2问题4 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的才能.例3 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质2,学会灵敏运用.3.归纳代数式的概念问题7 回忆我们学过的式子,如 ___________〔≥0〕,这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括才能.4.综合运用〔1〕算一算:【设计意图】设计有一定综合性的题目,考察学生的灵敏运用的才能,第〔2〕、〔3〕、〔4〕小题要特别注意结果的符号.〔2〕想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.〔3〕谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思〔1〕你知道了二次根式的哪些性质?〔2〕运用二次根式性质进展化简需要注意什么?〔3〕请谈谈发现二次根式性质的考虑过程?〔4〕想一想,到如今为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇2 活动1、提出问题一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。
二次根式综合复习学案
二次根式综合复习学案执笔:万伟平一、概念(一)二次根式:a≥0)叫做二次根式.1xx>0)1 x y +x≥0,y•≥0).(二)最简二次根式:同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.1(y>0)化为最简二次根式结果是().A(y>0)By>0)Cy>0)D.以上都不对2.(x≥0)3._________.4. 已知xy>0,化简二次根式_________.(三)同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.1).A.①和②B.②和③C.①和④D.③和④2、______3.若最简根式3aa、b的值.4.n m、n的值.(四)“分母有理化”与“有理化因式”:把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,•若它们的积不含二次根式,则称这两个代数式互为有理化因式.________;x_________._______.2.把下列各式的分母有理化(1= (2= (3(4= 二、二次根式有意义的条件:1.(1)当x在实数范围内有意义?(2)当x是多少时,11x+在实数范围内有意义?②(3)当xx2在实数范围内有意义?(4)当__________2. x有()个.A.0 B.1 C.2 D.无数3.已知y,求xy的值.4.5.11m+有意义,则m的取值范围是。
6.求使下列式子有意义的x的取值范围(1(2)(3)x(4)(6)三、二次根式的性质①2=a(a≥0);a│=(0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩;a≥0,b≥0);=b≥0,a>0).(a≥0)练习:1,求a2010+b2010的值.2,求x y的3.2440y y-+=,求xy的值。
4.a≥0).ABCD.5.先化简再求值:当a=9时,求a甲的解答为:原式=a=a+(1-a)=1;乙的解答为:原式=a=a +(a -1)=2a -1=17.两种解答中,_______的解答是错误的,错误的原因是__________. 6.若│1995-aa ,求a -19952的值.7. 若-3≤x ≤2时,试化简│x -8.化简). ABC .D .9.把(a -1a -1)移入根号内得( ). ABC .D .四、二次根式的运算1= )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-1 2). A .2 B .3 C .4 D .1 3.已知111-的整数部分为a ,小数部分为b ,试求()()111++b a 的值4.当xy=求x 2-xy +y 2的值5.已知ab=3-2a 2b -ab 2=_________. 6.已知a求a 3+2a 2-a 的值7.已知4x 2+y 2-4x -6y +10=0,求(23+y-(x)的值.8.先化简,再求值.(6-(4,其中x =32,y =27.9.当x的值.(结果用最简二次根式表示)10. 已知2310x x -+=11.计算:1. ·m >0,n >0) 2.-3)a >0)3. 22-4.6. -12如图所示的Rt △ABC 中,∠B =90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)ACQP。
人教八下数学《二次根式》复习教案
人教八下数学《二次根式》复习教案【教学目标】1. 复习二次根式的概念和性质;2. 复习二次根式的计算方法;3. 引导学生理解二次根式的实际意义和应用;4. 提高学生解决实际问题的能力。
【教学重难点】1. 二次根式的计算方法;2. 二次根式的意义和应用。
【教学准备】教材、课件、笔记、习题、工具书等。
【教学过程】一、复习导入(10分钟)1. 让学生回顾二次根式的定义;2. 复习二次根式的性质:乘法性质、开方性质等。
二、概念解释与示例演练(20分钟)1. 解释二次根式的概念:如果a>0,那么形如√a的式子就叫做二次根式;2. 给出一些简单的例子,让学生计算并写成简化形式;3. 引导学生观察和总结计算二次根式的方法。
三、题目讲解与练习(30分钟)1. 分析教材中的例题,引导学生理解二次根式的实际意义和应用;2. 讲解解答题的思路和方法,包括合并同类项、化简等;3. 给学生一些练习题,让学生独立解答,并讲解答案。
四、拓展与应用(10分钟)1. 引导学生思考二次根式的实际应用,如计算面积、体积和边长等;2. 提供相关的应用题,让学生思考如何应用二次根式解决问题。
五、总结归纳(5分钟)1. 让学生总结本节课所学的内容及知识点;2. 强调重点和难点,提醒学生进行复习。
【板书设计】二次根式的复习概念:形如√a的式子二次根式计算方法:合并同类项、化简等性质:乘法性质、开方性质等实际应用:计算面积、体积、边长等【课后作业】1. 完成教材习题;2. 思考并解答一道具体的二次根式应用题;3. 复习并总结本节课所学的知识点和解题方法。
【九年级】二次根式复习导学案
【九年级】二次根式复习导学案一.学习目标:1.能熟练运用二次根式的性质进行简化;2.能够比较熟练进行二次根式的运算;3.能够利用二次根的性质和运算来解决简单的实际问题二.学习重点:二次根式的性质应用及运算.学习困难:二次根式的应用三.过程知识网络图知识点梳理一.该公式一般称为二次根式,尤其是平方数不小于二.二次根式的性质:⑴a、(a)⑵(a) 2=a⑶a2=。
3.二次根式乘法法则:⑴ab=a≥0,b≥0);⑵ab=a≥0,b≥0).4.二次根式除法法则:⑴ab=a≥0,b>0)⑵ab=a≥0,b>0)。
5.化简二次根式实际上就是使二次根式满足:⑴;⑵;⑶.6.经过化简后,的二次根式,称为同类二次根式.7.一般来说,二次根式加减法,首先简化每个二次根式,然后8.实数中的运算律、乘法公式同样适用于二次根式的混合运算边说边练ⅰ.二次根式有意义求取值范围1.为了使X-2有意义,X的值范围为变式:若分别使1x-2,1x-2,3-xx-2有意义,那么x的取值范围又该如何?2.为了使13-x有意义,x的值范围为3.使x+1,1x,(x-3)0三个式子都有意义的x的取值范围是.4.使x+1x-1=x2-1为真的子句;1-xx-2=1-xx-2为真5.若y=2x-5+5-2x-3.则2xy=.ⅱ. 二次根的非负评价1.已知a+2+b-1=0,那么(a+b)2021=.2.假设X和y是实数,3x+4+y2-6y+9=0,那么xy=3.若4x-8+x-y-m=0,当y>0时,则m的取值范围.4.如果A-3和2-B是彼此相反的数,则代数公式-1A+6b的值为5.已知△abc的三边a、b、c满足a2+b+c-1-2=10a+2b-4-22,则△abc为.ⅲ. 简化为公式A2=a1.(-7)2=;(2)(3-π)2=;(3)62=2.如果已知x<1,则简化x2-2x+1=的结果;如果<0,则简化a-3-a2=3.当a=2时,代数式a+1-2a+a2=;化简(a-1)11-a=.5.(A-3)2=3-A为真,则A的值范围为__6.若x3+4x2=-xx+4,则x的取值范围是.7.如果X-1=12,则代数公式1x-x2-2+1x2的值为8.已知实数a、b、c在数轴上的位置如图所示,试化简(a+c)2-b-c.9.如果-3≤ 十、≤ 2.尽量简化│ X-2│ + (x+3)2+x2-10x+25ⅳ.最简与同类二次根式1.在下列表达式中,不能简化的二次根式是()a.3a2b.23c.24d.302.在下列表达式中,最简单的二次根是()a.8b.70c.99d.1x3.下面是一组相同类型的二次根()a.12,-32,18b.5,75,1245c.4x3,22xd.a1a,a3b2c4.如果二次根式2a-4和6是类似的二次根式,则a的值为5.化简后,根式b-a3b和2b-a+2是同类根式,那么a=_____,b=______.ⅴ. 二次根的运算1.化简:⑴312=;⑵15+16=;⑶18a=.2.计算:212-613+8=3.计算12(2-3)=.4.计算(1)(2+3)(2-3)=;⑵(5-2)2022(5+2)2022=.5.下列各式①33+3=63;②177=1;③2+6=8=22;④243=22,其中错误的有()a、 3 B.2 C.1 d.06.下列各式计算正确的是()a、 2+3=5b.2+2=22c.33-2=22d.12-102=6-57.计算:⑴32-212-13-62⑵239x+6x4-2x1x⑶(48-413)-(313-40.5)⑷(218-18)-(12+2-213)⑸23x18x+12xx8-x22x3⑹(32-45)2⑺(3-22)(22-3)⑻(1-23)(1+23)-(1+3)2⑼(3+2-5)(3?2?5)8.如果x=5+32,y=5-32,求代数公式的值⑴x2-xy+y2⑵xy+yx9.遵循以下公式:32-1=2×4,42-1=3×5,52-1=4×6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下)数学期末复习学案 二次根式
一、知识梳理
1.当x___________时,式子
【知识点:二次根式概念 】 2.()=232- ; ()23π-= .
【知识点:二次根式的性质 】
3. = ,
= . 【知识点:最简二次根式】
4.a =________.
【知识点:同类二次根式】
5.计算:._____1882=++ ;
; 2)=_________. 【知识点:二次根式运算】 6.对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b =
b a b a -+,如
3※=8※12= . 【知识点:二次根式的简单运用】
二、错误辨析
1.(1)2(4= (2) 123
(32 (4)若0a <,则1=a
a (5)333n m n m -=-
2.有一道练习题是:对于式子2a a
解法如下:2a 2a =2(2)a a --=2a +2.
三、方法归纳
【例1】计算
(1)32 -3
21+2 (2)12+8×6
(3)
(4) (5)
【例2】计算
(1)22)2332()2332(--+ ()(()20,0a b -≥≥
(3) )>,>00(b a
【例3】如图,实数a 、b 在数轴上的位置,化简
【例4】阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:
设a +b =(m +n )2(其中a 、b 、m 、n 均为整数),则有a +b =m 2+2n 2+2mn .
∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:
(1) 当a 、b 、m 、n 均为正整数时,若a +b =,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;
(2)利用所探索的结论,找一组正整数a 、b 、m 、n
填空: + =( + )2;
(3)若a +4=,且a 、m 、n 均为正整数,求a 的值?
四、课后作业
1. 要使式子
a 有意义,则a 的取值范围为__________________.
2.计算:______832=y x ,=______,12×3=________,()()=+-2525 .
3.观察并分析下列数据,寻找规律: 0,3,6,3,23,15,32,…… 那么第10个数据应是 .
4.化简:77
7-= ;若3x =-,则1= .
5.已知x 、y 为实数,且1y ,求x y += .
6.已知x =3+2,y =3-2,则x 2 -2xy +y 2 = .
7. 若3的整数部分是a ,小数部分是b ,则=+b a )(3 。
8. 下列式子为最简二次根式的是( ). A. 5 B. 12 C. a 2 D. 1a
9.下列算式中正确的是( )
A .333n m n m -=-
B .ab b a 835=+
C .1037=+x x
D .
5252
3521=+ 10.若3)3(2-=-b b ,则( ) A .b>3 B .b<3 C .b≥3 D .b≤3
11.计算
(1)
⎭
()451221273+-
12.阅读理解:
1
=;
=;
2
==. 试求:(1
(2
n 为正整数)的值.
(3
.。