统计学PPT第七章:时间序列..
合集下载
统计学基础(第七章时间数列分析)

教学重点与难点:
※ 重点:时间数列平均发展水平指标的计算方法 ,
时间数列各类速度指标的计算与运用, 难点:根据不同类型的时间数列选择正确的公 式计算平均发展水平
第七章
时间数列分析
§7.1 时间数列分析概述
§7.2 时间数列的水平指标
§7.3
时间数列的速度指标
§7.1 时间数列分析概述 一、时间数列的概念和作用
12.6 10000 c 6300 元 人 四月份: 1 2000 2000 2 14.6 10000 c 6952 4元 人 . 五月份: 2 2000 2200 2 16.3 10000 c 7409 1元 人 . 六月份: 3 2200 2200 2
首末 折半法
例7.4,某企业2006年一季度各月的职工人数如下:
3月初 3月底 220 260
200 240 220 1月平均: a1 2 240 220 2月平均: a2 230 2
3月平均:
220 260 a3 240 2
一季度月平均:
220 230 240 a 230(人) 3
我国1996-2006年国内生产总值等时间序列
年 份 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
时间数列作用
见教材
二、时间数列的种类
时间数列
绝对数数列
相对数数列
平均数数列
时期数列
时点数列
1、绝对数时间数列(总量指标时间数列) 反映社会经济现象在各期达到的绝对水平及其变化 发展的状况。
12521 1255 2 1260 3 1 2 3
7542 1257人 6
第七章.时间序列(平均发展速度)

128.9 128.9 28.9 28.9
114.9 148.1 14.9 48.1
112.5 166.6 12.5 66.6
108.1 180.2
8.1 80.2
108.1 194.8
8.1 94.8
三、平均发展速度和平均增长速度
1.平均发展速度是现象环比发展速度的序时平 均数。
2.平均增长速度是现象环比增长速度的序时平 均数,可以根据以下公式计算:
解:已知a0 15, a1 a2 a3 60, n 3,
则X 3 X 2 X n ai a0 0,即 i 1
3
X
2
X
X
4 0,解得X
1.151
平均发展速度的计算
两种方法的比较:
几何平均法:
an
n
a0 X G
方程法:X n X n1 X 2 X n ai a0 i 1
繁荣 116
115ቤተ መጻሕፍቲ ባይዱ
拐点 114
113 112 111 110 109 108 107 106 105
104 103 102 101 100
衰退 拐点
萧条 拐点
繁荣 拐点
复苏 拐点
经济周期:循环性变动 年份
时间数列的组合模型
(1)加法模型:Y=T+S+C+I
计量单位相同 的总量指标
对长期趋势 产生的或正 或负的偏差
定基增长速度=定基发展速度-1 环比增长速度=环比发展速度-1 年距增长速度=年距发展速度-1
环比增长速度 定基增长速度 年距增长速度
ai ai1 ai 100﹪
ai 1
ai 1
ai a0 ai 100﹪
a0
第七章时间序列分解法和趋势外推法

的选取
(1)直观法—主观法 (2)模拟法---客观法
2019/11/30
27
7.2 样本序列具有非水平趋势的外推预测
最优 的求取
(1)穷举法 步长(0,1) (2)优选法---0. 618法
第一步:取第一个 的值记为 1 ,
1 (1 0) 0.618 0.618
2019/11/30
2019/11/30
40
趋势外推法的两个假定:
(1)假设事物发展过程没有跳跃式变化;
(2)假定事物的发展因素也决定事物未来的发展, 其条件是不变或变化不大。
2019/11/30
41
二 、趋势模型的种类
多项式曲线外推模型:
一次(线性)预测模型:
yˆt b0 b1t
二次(二次抛物线)预测模型: yˆt b0 b1t b2t 2
2019/11/30
实际销售量 3个月的滑动平均预测值 4个月的滑动平均预测值
20
21
23
24
21.3
25
22.7
27
24.0
26
25.3
25
26.0
26
26.0
28
25.7
27
26.3
29
27.0
22.0 23.3 24.8 25.5 25.8 26.0 26.3 26.5
19
7.2 样本序列具有非水平趋势的外推预测
2019/11/30
34
(2) 季节变动因素(S) 是经济现象受季节变动影响所形成的一种长 度和幅度固定的周期波动。
(3) 周期变动因素(C) 周期变动因素也称循环变动因素,它是受各 种经济因素影响形成的上下起伏不定的波动。
(1)直观法—主观法 (2)模拟法---客观法
2019/11/30
27
7.2 样本序列具有非水平趋势的外推预测
最优 的求取
(1)穷举法 步长(0,1) (2)优选法---0. 618法
第一步:取第一个 的值记为 1 ,
1 (1 0) 0.618 0.618
2019/11/30
2019/11/30
40
趋势外推法的两个假定:
(1)假设事物发展过程没有跳跃式变化;
(2)假定事物的发展因素也决定事物未来的发展, 其条件是不变或变化不大。
2019/11/30
41
二 、趋势模型的种类
多项式曲线外推模型:
一次(线性)预测模型:
yˆt b0 b1t
二次(二次抛物线)预测模型: yˆt b0 b1t b2t 2
2019/11/30
实际销售量 3个月的滑动平均预测值 4个月的滑动平均预测值
20
21
23
24
21.3
25
22.7
27
24.0
26
25.3
25
26.0
26
26.0
28
25.7
27
26.3
29
27.0
22.0 23.3 24.8 25.5 25.8 26.0 26.3 26.5
19
7.2 样本序列具有非水平趋势的外推预测
2019/11/30
34
(2) 季节变动因素(S) 是经济现象受季节变动影响所形成的一种长 度和幅度固定的周期波动。
(3) 周期变动因素(C) 周期变动因素也称循环变动因素,它是受各 种经济因素影响形成的上下起伏不定的波动。
指数平滑法PPT课件

误 差 平 方
预 测 值
需 求 量 的
误 差
绝 对 误 差
误 差 平 方
0 2000 - - - - - - - - - - - -
1 1350 2000 -650 650 422500 2000 -650 650 422500 2000 -650 650 422500
2 1950 1935 15 15 225 1675 275 275 75625 1415 535 535 286225
6 1550 2026 -476 476 226576 2123 -573 573 328329 1874 -324 324 104976
7 1300 1978 -678 678 459684 1837 -537 537 288369 1582 -282 282 79524
8 2200 1910 290 290 84100 1558 642 642 412164 1328 872 872 760384
Xˆ t1 Xt (1)Xˆ t 或 Xˆ t1 Xˆ t (Xt Xˆ t )
* 在原预测值的基础上利用误差进行调整。
第7页/共29页
指数平滑法的特点:
1.权重 算术平均:所有数据权重均为1/n; 一次移动平均:最近N期数据权重均为1/N,其他为0; 指数平滑值:与所有数据有关,权重衰减,厚今薄古。
(1 )2
Xt2
...+(1-
)t
S (1) 0
例:
S (1) 5
X5
(1 )X 4
(1 )2
X3
(1 )3
X
2
(1 )4
X1
(1
)5
S (1) 0
=0.1 =0.5 =0.9
时间序列的构成分析

【例8.17】
@
时间序列的构成分析
1.3 季节变动的测定与分析
1.季节变动分析方法 (1) 同期平均法 ❖ 根据原始资料数据,直接求出各年同月(季)的
平均数与全年各月(季)的总平均数,然后将二 者对比求出各月(季)的季节指数,以表明季节 变动的程度。
@
时间序列的构成分析
同期平均法的具体步骤如下: ❖ 第一步,将各年同月(季)的完整数据资料排列
统计学
时间序列的构成分析
1.1 时间序列的构成因素及组合模型
1.时间序列的构成要素
❖ 时间序列的构成要素通常可以归纳为长期趋势、 季节变动、循环变动和不规则变动四类。
(1)长期趋势也称趋势变动,是指时间序列在较长时 期中所表现出来的持续上升、下降或不变的总态 势。
(2) 季节变动指时间序列在一年内重复出现的周期性 波动。
,而所得新的时间序列的项数则越少。 ❖ 当时距项数为奇数时,一般只需一次移动平均,其
移动平均值作为移动平均项数的中间一期的趋势代 表值;当时距项数为偶数时,移动平均值代表的是 偶数项的中间位置,无法对正某一时期,所以需进 行一次相邻两项平均值的再次移动平均,以移正其 位置。 ❖ 时距项数的选择要根据时间序列和现象的实际情况 。
【例8.14】
@
时间序列的构成分析
2.序时平均法
❖ 对于时点序列而言,各期水平相加没有实际意义 ,因此不能直接用时距扩大法处理,而是需要利 用序时平均法消除偶然因素的影响,以反映现象 的变化趋势。
【例8.15】
@
时间序列的构成分析
3.移动平均法
❖ 移动平均法是采用逐期递推移动的办法将原时间 数列按一定时距扩大,得出一系列扩大时距的序 时平均数。
整齐,并列表于同一栏内; ❖ 第二步,计算各年同月(季)的平均数; ❖ 第三步,计算各年所有月份(或季度)的总平均数; ❖ 第四步,计算季节指数,其公式为:
@
时间序列的构成分析
1.3 季节变动的测定与分析
1.季节变动分析方法 (1) 同期平均法 ❖ 根据原始资料数据,直接求出各年同月(季)的
平均数与全年各月(季)的总平均数,然后将二 者对比求出各月(季)的季节指数,以表明季节 变动的程度。
@
时间序列的构成分析
同期平均法的具体步骤如下: ❖ 第一步,将各年同月(季)的完整数据资料排列
统计学
时间序列的构成分析
1.1 时间序列的构成因素及组合模型
1.时间序列的构成要素
❖ 时间序列的构成要素通常可以归纳为长期趋势、 季节变动、循环变动和不规则变动四类。
(1)长期趋势也称趋势变动,是指时间序列在较长时 期中所表现出来的持续上升、下降或不变的总态 势。
(2) 季节变动指时间序列在一年内重复出现的周期性 波动。
,而所得新的时间序列的项数则越少。 ❖ 当时距项数为奇数时,一般只需一次移动平均,其
移动平均值作为移动平均项数的中间一期的趋势代 表值;当时距项数为偶数时,移动平均值代表的是 偶数项的中间位置,无法对正某一时期,所以需进 行一次相邻两项平均值的再次移动平均,以移正其 位置。 ❖ 时距项数的选择要根据时间序列和现象的实际情况 。
【例8.14】
@
时间序列的构成分析
2.序时平均法
❖ 对于时点序列而言,各期水平相加没有实际意义 ,因此不能直接用时距扩大法处理,而是需要利 用序时平均法消除偶然因素的影响,以反映现象 的变化趋势。
【例8.15】
@
时间序列的构成分析
3.移动平均法
❖ 移动平均法是采用逐期递推移动的办法将原时间 数列按一定时距扩大,得出一系列扩大时距的序 时平均数。
整齐,并列表于同一栏内; ❖ 第二步,计算各年同月(季)的平均数; ❖ 第三步,计算各年所有月份(或季度)的总平均数; ❖ 第四步,计算季节指数,其公式为:
统计学期末复习重点 统计学第7章 时间序列分析

【例7-4】 福建省部分年份年末全社会从业人数资 料如下,计算福建省10年内的全社会平均从业人 数
年份 人数/万 人 1997 2000 2002 2005 2007
i 1
1612.41
1660.19
1711.32
1868.49
2015.33
2.由相对指标或平均指标时间序列计算序时平均数 相对数和平均数通常是由两个绝对数对比形成的, 计算序时平均数时,应先分别求出构成相对数或 平均数的分子和分母,然后再进行对比即得相对指标 或平均指标序列的序时平均数
逐期增长量
a1 a0 , a2 a1 ,, an an 1
累积增长量
a1 a0 , a2 a0 ,, an a0
二者的关系:
⒈ a1 a0 a2 a1 an an1 an a0 ⒉ ai a0 ai 1 a0 ai ai 1 i 1,2,, n
由于采用的基期不同,发展速度又可分为定 基发展速度和环比发展速度。 环比发展速度也称逐期发展速度,是报告期 水平与前一时期水平之比,说明报告期水 平相对于前一期的发展程度 定基发展速度则是报告期水平与某一固定时 期水平之比,说明报告期水平相对于固定 时期水平的发展程度,表明现象在较长时 期内总的发展速度,也称为总速度 年距发展速度说明报告期水平与上年同期水 平对比达到的相对程度
时间序列概述
时间序列的编制原则
(1) 指标数值涵盖的时间长短一致
(2) 指标内涵、外延要一致 (3) 计算方法和计算单位、价格一致
现行价格:指产品在各个时间,地点、环节实现的价格。
可比价格:是为专门消除货币量中价格变动因素而设计的价格。
第二节 时间序列水平指标
统计学课件动态相对数时间序列分析

不规则波动
时间序列中无法预测的随机波 动。
时间序列分析的方法与步骤
收集数据
收集具有时间顺序的数据,确保数据的准确 性和完整性。
数据预处理
对数据进行清洗、整理和转换,使其满足分析 要求。
描述性分析
对数据进行描述性统计,如均值、方差、中位数 等,以初步了解数据分布和变化规律。
趋势分析
通过图表或数学方法分析数据随时间变化的趋势, 如线性回归、指数平滑等。
优点
能够直观地反映现象在不同时间点上的变化情况,便于比较和评估。能够消除不同时间点上规模大小的影响,突 出变化趋势。计算方法简单易懂,易于操作。
缺点
容易受到数据波动的影响,导致结果不稳定。无法反映现象的绝对水平,只能反映相对变化情况。计算过程中可 能存在数据失真和误差问题。
02 时间序列分析基础
时间序列的定义与分类
根据预测结果和实际需求,制定相应的决策方案,如投资决策、市场预测、政策制定等,以提高决策 的科学性和准确性。
04 动态相对数时间序列分析案例
案例一
总结词
销售额的波动性
详细描述
通过分析某公司销售额的动态相对数时间序列,可以观 察到销售额随时间的变化趋势,了解其波动性。例如, 是否存在季节性波动、周期性变化等。
通过机器学习算法的应用,可以进一 步提高动态相对数时间序列分析的自 动化和智能化水平,减少人工干预和 误差。
可视化与交互性
通过可视化技术和交互性设计,可以 更加直观地展示动态相对数时间序列 分析的结果,便于用户理解和使用。
THANKS 感谢观看
通过时间序列分析,可以对市场情绪进行评估。例如, 当市场情绪高涨时,股价通常会上涨;当市场情绪低迷 时,股价则可能下跌。
时间序列中无法预测的随机波 动。
时间序列分析的方法与步骤
收集数据
收集具有时间顺序的数据,确保数据的准确 性和完整性。
数据预处理
对数据进行清洗、整理和转换,使其满足分析 要求。
描述性分析
对数据进行描述性统计,如均值、方差、中位数 等,以初步了解数据分布和变化规律。
趋势分析
通过图表或数学方法分析数据随时间变化的趋势, 如线性回归、指数平滑等。
优点
能够直观地反映现象在不同时间点上的变化情况,便于比较和评估。能够消除不同时间点上规模大小的影响,突 出变化趋势。计算方法简单易懂,易于操作。
缺点
容易受到数据波动的影响,导致结果不稳定。无法反映现象的绝对水平,只能反映相对变化情况。计算过程中可 能存在数据失真和误差问题。
02 时间序列分析基础
时间序列的定义与分类
根据预测结果和实际需求,制定相应的决策方案,如投资决策、市场预测、政策制定等,以提高决策 的科学性和准确性。
04 动态相对数时间序列分析案例
案例一
总结词
销售额的波动性
详细描述
通过分析某公司销售额的动态相对数时间序列,可以观 察到销售额随时间的变化趋势,了解其波动性。例如, 是否存在季节性波动、周期性变化等。
通过机器学习算法的应用,可以进一 步提高动态相对数时间序列分析的自 动化和智能化水平,减少人工干预和 误差。
可视化与交互性
通过可视化技术和交互性设计,可以 更加直观地展示动态相对数时间序列 分析的结果,便于用户理解和使用。
THANKS 感谢观看
通过时间序列分析,可以对市场情绪进行评估。例如, 当市场情绪高涨时,股价通常会上涨;当市场情绪低迷 时,股价则可能下跌。
统计学 时间序列分析

7
商品流转次数(c)
1.9 65 75 2.41 2.22 2.4 80.7
2 2.0 2.4
4 2.27
72
120 145+185+190+200+250
c
a(平均销售额) b(平均库存额)
60
6 65 75 78 80 100 105
2.27次
2
2
6
3. 增长量和平均增长量
增长量说明社会经济现象在一定时期内所增长的绝对数量, 它是报告期水平与基期水平之差。 由于采用的基期不同,增长量分为逐期增长量和累积增长量
某企业1996-2000年产量增长速度
年份
1996 1997 1998 1999 2000
环比增长速度(%) 20 (2) 25 15 (5)
定基增长速度(%) (1) 50 (3) (4) 132.5
解: 1996年定基增长速度=20%
1997年环比增长速度=
1+50% 1+20%
1
25%
1998年定基增长速度
535 552 562 676
a 2
2 573人
4 1
例.某地区2008年城乡居民储蓄余款额资料如下
日期
1月1日 3月1日 7月1日 8月1日 12月31日
储蓄余款额
38
42
54
56
60
(亿元)
38 42 2 42 54 4 54 56 1 56 60 5
a 2
2
2
2
53.29万元
定基发展速度: 环比发展ቤተ መጻሕፍቲ ባይዱ度:
x1 , x2 , , xn
x0 x0
x0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习
动态平均分析
表6-2 我国2005——2014年GDP
时间 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
GDP(亿) 183868 210871 246619 314045 340903 401513 473104 519322 568845 636463
0
2
平稳
平稳序列(stationary series):时间序 列的均值、自协方差不会随着时间的变化 而变化。即
例
增长速度
表6-1 某公司利润情况表
时间 2006 2007 2008 2009 2010 2011 2012
利润(亿) 10 12 13 16 15 18 20
增长速度(%)
环比 — 20.0 8.3 23.1 -6.3 20.0 11.1 定基 — 20.0 30.0 60.0 50.0 80.0 100.0
发展速度
发展速度:不同期之比
环比发展速度:指各期同上期之比。即
x2 x3 xn , , , x1 x 2 x n 1
定基发展速度 :指各期与第一期之比。即
x2 x3 xnБайду номын сангаас, , , x1 x1 x1
例
发展速度
表6-1 某公司利润情况表
时间 2006 2007 2008
利润(亿) 10 12 13
t : 1, 2, ,n
x : x1,x 2 , ,x n 也可简记为: xt
观测
时期:一个时间区间的累计
时点:一个特殊时点的水平
例
时间序列
表6-1 某公司利润、职工人数情况表
时间 2006 2007 2008 2009 2010 2011 2012 利润(亿) 10 12 13 16 15 18 20 利润率(%) 10.5 8.0 11.0 5.0 4.0 4.5 3.0 年末职工人数(人) 50 80 120 100 95 98 110
2007—2012年利润的年均发展速度
20 x6 112.2% 10
平均增长速度
平均增长速度等于平均发展速度减1
如上例,该公司2007年——2012年的利润的 年均增长速度为12.2%
练习
平均增长率
某地2010年到2014年的粮食产量分别比上年增 长了20%、18%、11%、10%、6%,请问该地 2010年到2014年粮食产量平均每年比上年增长了 百分之几?
时间 2006
利润(亿) 10
1%绝对量(亿)
环比 — 定基 —
2007
2008 2009
12
13 16
0.10
0.12 0.13
0.10
0.10 0.10
2010
2011 2012
15
18 20
0.16
0.15 0.18
0.10
0.10 0.10
练习
动态比较分析
表6-2 我国2005——2014年GDP
计算我国2006年至2014年 GDP的年均发展速度、年均增 长速度
第二节 平稳序列分析
平稳序列 自相关
自回归
自协方差
自协方差(autocovariance):时间序 列与其滞后K期的序列的协方差
k cov(xt ,xt k ),k 0, 1, 2,
显然,k=0即为时间序列的方差,即
平均发展速度
平均发展速度是时间数列环比速度的平均数,说 明现象在一段时期内发展速度的平均水平 但计算平均发展速度时不能用算术平均法 ,应 用几何平均法
x x x x 2 3 n v n 1 n 1 n x1 x 2 x n 1 x1
例
年均发展速度
表6-1 某公司利润情况表 时间 2006 2007 2008 2009 2010 2011 2012 利润(亿) 10 12 13 16 15 18 20
线图(line plot)
20 rev 10
2006
12
14
16
18
2007
2008
2009 Time
2010
2011
2012
基期和报告期
在时间数列的不同时期比较中,通常称要比较的 时期为报告期,被比较的时期为基期 如上例,若要研究该公司2012年的利润与2011年 的比较情况,则2012年报告期,2011年即为基期
本章重点
时间序列的含义
时间序列的比较分析
平稳时间序列 时间序列的趋势分析
第一节 时间序列基础
时间序列 比较分析 平均分析
时间序列
时间序列(time series)是指现象在不同时间上 的观测按时间先后顺序加以排列后形成的数列 (sequence) 时间数列的构成要素
现象所属的时间(日、周、月、季、年) 各时间上所对应的观测
xn x2 x3 xn x1 x1 x 2 x n 1
增长速度
增长速度:发展速度减1 根据基期确定方法的不同,也可分为环比增长 速度和定基增长速度,其数值等于相应的环比 发展速度和定基发展速度减1 发展速度说明的是报告期水平为基期水平的百分 之几,增长速度说明的是报告期水平比基期水平 增长了百分之几
时间 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
GDP(亿) 183868 210871 246619 314045 340903 401513 473104 519322 568845 636463
计算我国2006年至2014年GDP 的环比发展速度、环比增长速 度;并以2005年为基期计算定 基发展速度、定基增长速度 ; 最后再计算各速度的1%的绝对 量
发展速度(%)
环比 — 120.0 108.3 定基 — 120.0 130.0
2009
2010 2011 2012
16
15 18 20
123.1
93.8 120.0 111.1
160.0
150.0 180.0 200.0
两者关系
某期定基发展速度等于该期(包括该 期)以前的各期环比发展速度之积。 如
1%的绝对量
1%的绝对量 :基期发展水平除以100,用于说明 发展速度(增长速度)中1%的绝对含量 环比发展速度(增长速度)1%的绝对量
x1
100 100 ,
x2
, ,
x n 1
100
定基发展速度(增长速度)1%的绝对量
x1
100 100 ,
x1
, ,
x1
100
例
1%的绝对量
表6-1 某公司利润情况表