杆件的基本变形.

合集下载

第三章 杆件的承载能力分析

第三章 杆件的承载能力分析

F1 F2 FN2 0
二、轴扭转时的内力
第二节 截面法求内力
沿杆件长度作用的平衡力偶系(非共面力偶系)称为外加 转矩。
杆件产生转变形时其横截面的内力称为扭矩。
1.外力偶矩计算
作用于轴的外力偶矩通常是根据轴传递的功率和轴的转速算出。 功率、转速和外力偶矩之间的换算关系为:
Me
9550
P n
式中n为轴的转速,单位是r/min,P轴所传递的功率,单位是kW; Me为外力偶矩的大小,单位是N•m。
解 (1)求约束反力
取整个杆件为研究对象,画出如图 (b)所示受力图。设约束反力 为FA,列平衡方程
例题
Fx 0
F1 F2 F3 FA 0
得 FA F1 F2 F3 20 30 50 40 KN
(2)分段计算轴力,由于外力分别作用于B、 C、D三处,以三个作用点为分界线,将杆分 为AB、BC、CD段,分别计算轴力 ①AB段:在AB间任选一横截面1-1截开,取 其左段为研究对象,如图 (c)。由平衡方程得:
汽车机械基础
第三章 杆件的承载能力分析
化学工业出版社
第二章 构件受力分析
第一节 杆件的基本变形和内力 第二节 截面法求内力 第三节 杆件的应力及强度计算
汽车机械基础
第二章 构件受力分析
汽车机械基础
第一节 杆件的基本变形和内力
一、杆件的基本变形
第一节 杆件的基本变形
和内力
构件的基本形状:
杆件、板件、块件。
FN F 0 即 FN F
同理,如果以部分Ⅱ为示力 对象,求同一截面上的内力 时,可以得到相同的结果,
FN F
三、截面法
第一节 杆件的基本变形
和内力
截面法:

二建考试必备-建筑结构与设备(7) 杆件的基本变形与组合变形

二建考试必备-建筑结构与设备(7) 杆件的基本变形与组合变形

第二节杆件的基本变形与组合变形一、轴向拉伸与压缩1.轴力与轴向变形轴向拉(压)杆件横截面上的内力只有轴力,轴力可采用截面法求得。

轴力的正负号一般规定为:拉力为正,压力为负。

轴力沿杆轴方向的变化采用轴力图表示。

依据平面假设,轴向拉(压)杆件的变形沿整个横截面是均匀的,因而应力在横截面上也是均匀分布的(图3-8)。

横截面上应力的计算式为:式中N 一轴力;A ―横截面面积。

在弹性变形范围内,轴向拉(压)杆的伸长(缩短)量与杆所受轴力、杆的长度成正比,与杆的抗拉(压)刚度EA 成反比,即【例3-4】计算图3-9(a)时所示轴向受力杆件的内力,作出内力图,并判断整个杆件的变形是伸长还是缩短。

E A=常数。

在BC段内任一截面处截开,取右侧部分为隔离体(图3-9b ) ,由平衡条件可得:同理,在AB 段内任一截面处截开,取右侧部分为隔离体(图3 -9c),由平衡条件可得因整个杆件的EA=常数,AB 段的杆长虽为BC 段的一半,但其所受的拉力为BC 段的3 . 5 / 1 . 5 ≈2 . 3 倍,因此AB 段的伸长量大于BC 段的缩短量,整个杆件的变形是伸长的。

2.温度改变的影响自然界中的物体普遍存在热胀冷缩的现象,杆件结构也是一样。

例如图 3 -10 ( a )所示的杆件,若其温度升高Δt,因没有多余约束(即为静定),故杆件可以自由地伸缩,并不会产生内力或反力。

在温度改变作用下,杆件的伸长量△l 与杆长l及温度改变量△t 成正比,即:式中α——材料的线膨胀系数。

对于图3 一10 ( b )的杆件,若温度升高△t,由于杆件两端固定(即为超静定),阻止了杆件的自由伸缩,这样杆内将产生温度应力。

显然,如果该杆温度升高(△t>0 ) ,则杆内将产生压力;若温度降低(△t < 0 ),则杆内将产生拉力。

二、剪切当杆件的某一截面受一对相距很近,方向相反的横向力作用时,杆件在该截面处将发生剪切变形。

例如图3-11所示的螺栓连接件,当钢板受拉力P 作用时,螺栓将在截面m-m处承受剪力,并产生剪切变形。

杠杆变形的4种基本形式

杠杆变形的4种基本形式

杠杆变形的4种基本形式:
1拉伸或压缩:这类变形是由大小相等方向相反,力的作用线与杆件轴线重合的一对力引起的。

在变形上表现为杆件长度的伸长或缩短。

截面上的内力称为轴力。

横截面上的应力分布为沿着轴线反向的正应力。

整个截面应力近似相等。

2剪切:这类变形是由大小相等、方向相反、力的作用线相互平行的力引起的。

在变形上表现为受剪杆件的两部分沿外力作用方向发生相对错动。

截面上的内力称为剪力。

横截面上的应力分布为沿着杆件截面平面内的的切应力。

整个截面应力近似相等。

3扭转:这类变形是由大小相等、方向相反、作用面都垂直于杆轴的两个力偶引起的。

表现为杆件上的任意两个截面发生绕轴线的相对转动。

截面上的内力称为扭矩。

横截面上的应力分布为沿着杆件截面平面内的的切应力。

越靠近截面边缘,应力越大。

4弯曲:这类变形由垂直于杆件轴线的横向力,或由包含杆件轴线在内的纵向平面内的一对大小相等、方向相反的力偶引起,表现为杆件轴线由直线变成曲线。

截面上的内力称为弯矩和剪力。

在垂直于轴线的横截面上,弯矩产生垂直于截面的正应力,剪力产生平行于截面的切应力。

另外,受弯构件的内力有可能只有弯矩,没有剪力,这时称之为纯剪构件。

越靠近构件截面边缘,弯矩产生的正应力越大。

杆件的基本变形形式

杆件的基本变形形式

杆件的基本变形形式
杆件的基本变形形式有以下几种:
1. 拉伸和压缩:当杆件受到沿其轴向的力时,杆件会发生拉伸或压缩变形。

拉伸时杆件长度增加,压缩时杆件长度减小。

2. 剪切:当杆件受到垂直于其轴向的力时,杆件会发生剪切变形。

剪切变形表现为杆件的横截面发生相对错动。

3. 扭转:当杆件受到绕其轴线的力矩时,杆件会发生扭转变形。

扭转变形使得杆件的横截面绕轴线旋转。

4. 弯曲:当杆件受到垂直于其轴线的横向力时,杆件会发生弯曲变形。

弯曲变形导致杆件的轴线发生弯曲。

这些基本变形形式是杆件在不同加载条件下的主要响应方式。

在工程和力学领域中,了解杆件的基本变形形式对于设计和分析结构非常重要。

通过对这些变形形式的研究,可以确定杆件在负载下的应力、应变分布以及可能的破坏模式。

需要注意的是,实际工程结构中的杆件可能同时受到多种变形形式的组合作用。

例如,在一个梁的设计中,可能同时存在弯曲和剪切变形。

因此,在分析杆件的变形和应力时,需要综合考虑各种变形形式的影响。

希望这些信息对你有所帮助!如果你有其他问题,请随时提问。

直杆的基本变形

直杆的基本变形

直杆的基本变形
1、 轴向拉伸与压缩
拉伸: 在轴向力大作用下,杠杆产生伸长变形 压缩: 在轴向力大作用下,杠杆产生缩短变形
受力特点:沿杆件轴向作用一对等值、反向的拉力或
压力
变形特点:杆件沿轴向伸长或者缩短。

公式:
Fn 表示横截面轴力 A 表示横截面积
2、 剪切 剪切:杆件受到一定垂直于杆轴方向的大小相等、方
向相反、作用线相距很近大外力作用做引起大变形。

受力特点:截面两侧受一对等值、反向、作用线相近
的横向力
变形特点:截面沿着力的作用方向很对错动。

3、 扭转
扭转:直杆在两端受到作用于杆断面的大小相等方向
想法大力矩(扭矩)作用,则发生扭转。

受力特点:在很截面内作用一对等值、方向的力偶 N F A σ=
变形特点:轴表面的纵线变成螺旋线。

4、弯曲
弯曲:杆件在垂直于其轴线的载荷作用下,使原为直线大轴线变成曲线的变形
受力特点:受垂直于梁轴线的外力或在轴线平面内作用的力偶
变形特点:使梁的轴线由直变弯。

杆系结构的内力计算—杆件的基本变形及内力的概念

杆系结构的内力计算—杆件的基本变形及内力的概念

F
F
轴向压缩
变形特点概化图
a
轴线
d
l
a
横截面形状
轴向拉伸

F
F
lʹ > l


dʹ < d
aʹ < a
轴向伸长
横向收缩
a
轴线
d
a
横截面形状
l
轴向压缩

F
F
lʹ < l

dʹ > d

aʹ > a
轴向变形杆的内力分析


1添加标题
1.内力的基本概念
10
CD段
x
෍ =
2、绘制轴力图。
= =
讨论题
1.图示阶梯杆AD受三个集中力F作用,设AB、BC、
CD段的横截面面积分别为A、2A、3A,则三段杆的横
截面上轴力值分别是
,如果把三段杆换成等值
杆,则各横截面上轴力值分别是

D
C
B
A
F
F
C
B
A
F
F
F
F
D
杆件的基本变形


1
刚体与变形体
2
杆件的基本变形
添加标题
1.刚体与变形体
刚体
变形固体
忽略物体变形
回归实际情况
外力系的合成
与平衡问题
材料强度、刚度与
稳定性的问题

简支梁
1、变形固体的概念
通常将在外力作用下能产生一定变形的固体称为变形固体。
变形固体的变形按其性质可分为两种:
一是弹性变形,即外力解除后,变形也随之消失;

第 节 杆件变形的四种基本形式

第 节 杆件变形的四种基本形式
刚度:杆件抵抗变形的能力。
稳定性:杆件在外力作用下能保持平衡形式的能力。
研究对象
可 设
材料的各向同性假设 小变形条件
第四章 轴向拉伸和压缩
四种基本变形:轴向拉伸(压缩)、剪切、扭转与 弯曲。
(a)轴向拉压 (c)扭转
(b)剪切 (d)弯曲
第一节第一节杆件变形的四种基本形式杆件变形的四种基本形式一般情况下为了使机器和设备能安全可靠地进行正常工作必须保证其具有足够的强度刚度和稳定性
第四章 轴向拉伸和压缩
第一节 杆件变形的四种基本形式
一般情况下,为了使机器和设备能安全可靠地 进行正常工作,必须保证其具有足够的强度、刚度 和稳定性。 强度:杆件或材料抵抗破坏的能力。

3.1杆件四种基本变形及组合变形

3.1杆件四种基本变形及组合变形

《杆件的四种基本变形及组合变形、直杆轴向拉、压横截面上的内力》教学设计剪切变形的受力特点是作用在构件上的横向外力大小相等、方向相反、作用线平行且距离很近。

剪切变形的变形特点是介于两横向力之间的各2.剪切【工程实例】如图a所示为一个铆钉连接的简图。

钢板在拉力F的作用下使铆钉的左上侧和右下侧受力(图b),这时,铆钉的上、下两部分将发生水平方向的相互错动(图c)。

当拉力很大时,铆钉将沿水平截面被剪断,这种破坏形式称为剪切破坏。

3. 扭转用改锥拧螺钉时,在改锥柄上手指的作用力构成了一个力偶,螺钉的阻力在改锥的刀口上构成了一个方向相反的力偶,这两个力偶都作用在垂直于杆轴的平面内,就使改锥产生了扭转变形,如图a所示。

例如汽车的转向轴(图b)。

当驾驶员转动方向盘时,相当于在转向轴A端施加了一个力偶,与此同时,转向轴的B端受到了来自转向器的阻抗力偶。

于是在轴AB的两端受到了一对大小相等、转向相反的力偶作用,使转向轴发生了扭转变形。

弯曲【试一试】两手支撑一把长尺子,中间放一重物,尺子会发生怎样的变形呢?纵向对称面:梁的横截面多为矩形、工字形、等(图),它们都有一根竖向对称轴,这根对称轴与梁轴线所构成的平面称为纵向对称面。

平面弯曲:梁的弯曲平面与外力作用面相重合的3.2直杆轴向拉、压横截面上的内力 内力的概念 轴力的计算 1)轴力为了显示并计算杆件的内力,通常采用截面法。

假设用一个截面m-m (图a )将杆件“切”成左右两部分,取左边部分为研究对象(图b ),要保持这部分与原来杆件一样处于平衡状态,就必须在被切开处加上,这个内力F N 就是右部分对左部分的作用力。

在轴向拉(压)杆中横截面中的内力称为由于直杆整体是平衡的,左部分也是平衡的,对这部分建立平衡方程:=0 0=-N F F若取右部分为研究对象,则可得0='-N F F 可以看出,取任一部分为研究对象,都可以得到相同的结果,其实F N 与F ′N 是一对作用力与反作用力,其数值必然相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必须指出:用截面法之前 ⑴ 一般不允许用力的可传性原理。 ⑵ 不允许用合力来代替力系的作用。 ⑶ 不允许把力偶在物体上移动。
随外力产生或消失 随外力改变而改变 但有一定限度
截 面 法
根据空间任意力系的六个平衡方程
X 0 M
步骤: 1、切开 2、代替
x
Y 0
M
y
Z 0 M
z
0
0
0
求出内力分量
3、平衡
注意:
用截面法求内力和取分离体求约束反力的方法本质 相同。这里取出的研究对象不是一个物体系统或一个完 整的物体,而是物体的一部分。
拉 伸
压 缩
变形特点:杆轴沿外力方向伸长或缩短, 主要变形是长度的改变
屋 架 结 构 中 的 拉 压 杆
塔 式 结 构 中 的 拉 压 杆
桥 梁 结 构 中 的 拉 杆
剪 切 变形
受力特点:由垂直于杆轴方向的一对大小相等、 方向相反、作用线很近的横向外力引起的。
变形特点:二力之间的横截面产生相对错动变形 主要变形是横截面沿外力作用方向发生相对错动。
第四章 杆件的基本变形
杆件的外力与变形特点 内力及其截面杆件在外力作用下,形状和尺寸的变化。 二、杆件变形的形式 1、基本变形 轴向拉伸与压缩 剪切变形 扭转变形 弯曲变形 2、组合变形 同时发生两种或两种以上的变形形式
轴向拉伸或压缩变形
受力特点:作用线与杆轴重合的外力引起的。
螺 栓
连 接 键
销钉
螺 栓
扭 转 变 形
受力特点:由垂直于杆轴线平面内的力偶作用引起的
变形特点:相邻横截面绕杆轴产生相对旋转变形。
对称扳手拧紧镙帽
自 行 车 中 轴 受 扭
桥 体 发 生 扭 转 变 形
弯曲变形
受力特点:是由垂直于杆件轴线的横向力或作用 在杆件的纵向平面内的力偶引起的
变形特点:杆轴由直变弯,杆件的轴线变成曲线。
计算简图
计算简图
阳台梁是受弯构件 阳 台
内力及其截面法
一、内力的概念
1、外力:其它物体对构件作用的力。例如支座反力,荷载等。
2、内力:固有内力--分子内力,它是由构成物体的材料的
物理性质所决定的。 附加内力—由于外力作用而引起的受力构件内部各质 点间相互作用力的改变量。
材料力学研究----附加内力 (简称内力)
相关文档
最新文档