高一数学幂函数例题

合集下载

3.3幂函数(7大题型)高一数学(人教A版必修第一册)课件

3.3幂函数(7大题型)高一数学(人教A版必修第一册)课件



D . p 为 偶 数 , q为奇 数且 < 0

典型例题
题型四:幂函数的图象、定点问题
【对点训练8】(2023·全国·高一假期作业)已知 ( ) = (2 − 1) + 1,则函数 = ( )的图象恒过的定点
的坐标为

【答案】 (1,2)
【解析】令 2 − 1 = 1 ,得 = 1, = 2 ,
故选:C.
2 ;⑤
= ,其中幂函
典型例题
题型二:求函数解析式
【例2】若 = 2 − 4 + 5 − + + 1 是幂函数,则 2 =
【答案】
1
4
2

− 4 + 5 = 1 ,解得 ቊ = 2 ,
【解析】由题意得 ቊ
= −1
+1=0
故 = −2 ,所以 2 = 2 −2 =
典型例题
题型二:求函数解析式
1
2
【对点训练3】已知 ∈ −2, −1, − , 2 ,若幂函数 = 为偶函数,且在(0,+∞)上单调递减,则
=

【答案】 -2
【解析】因为函数在 0, +∞ 上单调递减,所以 < 0 ,
当 = −2 时, = −2 是偶函数,成立
当 = −1 时, = −1 是奇函数,不成立,
1
1
当 = − 时, = − 2 的定义域是 0, +∞ ,不是偶
2
函数,故不成立,
综上, = −2.
故答案为:−2
典型例题
题型三:定义域、值域问题
4
【例3】(1)函数 = 5 的定义域是

人教版高一数学指对幂函数典型例题

人教版高一数学指对幂函数典型例题

(每日一练)人教版高一数学指对幂函数典型例题单选题1、若√4a 2−4a +1=√(1−2a)33,则实数a 的取值范围是( )A .[12,+∞)B .(−∞,12]C .[−12,12]D .R 答案:B解析:根据根式与指数幂的运算性质,化简得到√(2a −1)2=√(1−2a)33,即可求解.根据根式和指数幂的运算性质,因为√4a 2−4a +1=√(1−2a)33,可化为√4a 2−4a +1=√(1−2a)33,即√(2a −1)2=√(1−2a)33,可得|2a −1|=1−2a ,所以1−2a ≥0,即a ≤12. 故选:B.2、已知a =log πe ,b =ln πe ,c =ln e 2π,则( )A .a <b <cB .b <c <aC .b <a <cD .c <b <a答案:B解析:利用换底公式化简,利用对数函数的单调性、作差法即可得出答案.∵1<πe <√e,∴0<b <12,∵b+c=ln πe+lne2π=ln e=1.∴c>ba−c=1lnπ−(2−lnπ)=1lnπ+lnπ−2>2−2=0∴a>c,∴b<c<a故选:B.小提示:本题考查对数函数的应用,考查换底公式,考查学生的计算能力,属于基础题.3、已知f(x)={2x−2,x≥0−x2+3,x<0,若f(a)=2,则实数a的值为()A.-1B.-1或-2C.-1或2D.-1或1或2答案:C解析:根据f(x)={2x−2,x≥0−x2+3,x<0,分a≥0,a<0讨论求解.因为f(x)={2x−2,x≥0−x2+3,x<0,当a≥0时,2a−2=2,即2a=4=22,解得a=2,当a<0时,−a2+3=2,则a2=1,解得a=−1或a=1(舍去)综上:实数a的值为-1或2,故选:C.填空题4、函数y=log0.4(−x2+3x+4)的值域是________.答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4),则−x 2+3x +4>0,解得:−1<x <4,所以函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4), 则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254, 而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数,由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞).所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.5、若幂函数y =f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2解析:根据已知求出幂函数的解析式f(x)=x −13,再求出f(−18)的值得解. 设幂函数的解析式为f(x)=x a ,由题得2=(18)a=2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13. 所以f(−18)=(−18)−13=(−12)3×(−13)=−2. 所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平.。

高一数学指对幂函数典型例题

高一数学指对幂函数典型例题

(每日一练)高一数学指对幂函数典型例题单选题1、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b答案:A解析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ; 由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45;由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45. 综上所述,a <b <c .故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.2、函数y =log a (3x −1)(a >0,a ≠1)的图象过定点( )A .(23,1)B .(−1,0)C .(23,0)D .(0,−1) 答案:C解析:利用真数为1可求得定点的坐标.对于函数y =log a (3x −1)(a >0,a ≠1),令3x −1=1,可得x =23,则y =log a 1=0, 因此,函数y =log a (3x −1)(a >0,a ≠1)的图象过定点(23,0). 故选:C.3、函数f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0),满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[13,1)C .a ∈(0,13]D .a ∈[13,2) 答案:C解析:根据条件可知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ⩽1,解出a 的范围即可.解:∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,因为f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0)∴ {0<a <1a −2<0(a −2)×0+3a ⩽a 0,解得0<a ⩽13, ∴a 的取值范围是(0,13].故选:C .4、设2a =5b =m ,且1a +1b =2,则m =( )A .√10B .10C .20D .100答案:A解析:根据指数式与对数的互化和对数的换底公式,求得1a =log m 2,1b =log m 5,进而结合对数的运算公式,即可求解.由2a =5b =m ,可得a =log 2m ,b =log 5m ,由换底公式得1a =log m 2,1b =log m 5,所以1a +1b =log m 2+log m 5=log m 10=2,又因为m >0,可得m =√10.故选:A.5、函数y =ln (3−4x )+1x的定义域是( ) A .(−∞,34)B .(0,34) C .(−∞,0)∪(0,34)D .(34,+∞)答案:C解析:根据具体函数定义域的求解办法列不等式组求解.由题意,{3−4x >0x ≠0 ⇒x <34且x ≠0,所以函数的定义域为(−∞,0)∪(0,34). 故选:C。

高一数学复习考点题型专题讲解16 幂函数

高一数学复习考点题型专题讲解16 幂函数

高一数学复习考点题型专题讲解 第16讲 幂函数(难点)一、单选题1.已知函数()53352f x x x x =+++,若()()214f a f a +->,则实数a 的取值范围是( )A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .(),3-∞D .()3,+∞【答案】A【分析】构造函数()()2g x f x =-,容易判断()g x 为奇函数,且在R 上单调递增,进而将原不等式转化为()()12g a g a >-,最后根据单调性求得答案.【解析】设()()2g x f x =-,R x ∈,则()()()()()()53533535g x x x x x x x g x -=-+-+-=-++=-,即()g x 为奇函数,容易判断()g x 在R 上单调递增(增+增),又()()214f a f a +->可化为,()()()()()22122112f a f a g a g a g a ->---⇒>--=-⎡⎤⎣⎦,所以a >1-2a ,∴ a >13. 故选:A.2.已知R α∈,则函数2()1x f x x a=+的图像不可能是( )A .B .C .D .【答案】A【分析】根据含参函数的解析式和函数特殊值判断函数可能的图像.【解析】根据2()1x f x x a=+可知210x +>,所以当0x >时,0x α>,即()0f x >,故选项A 错误,而当α为其他值时,B,C,D 均有可能出现. 故选:A3.已知命题p :幂函数2y x -=在(),0∞-上单调递增;命题q :若函数()1f x +为偶函数,则()f x 的图象关于直线1x =对称.则下列命题为假命题的是( ) A .p q ∧B .p q ⌝∨C .()()p q ⌝∧⌝D .()p q ∨⌝ 【答案】C【分析】首先分别判断命题p 和命题q 的真假,然后再根据逻辑连接词“且”、“或”、“非”进行判断即可. 【解析】()2210y x x x-==?∴2y x -=是偶函数, 幂函数2y x -=在()0+∞,上单调递减, ∴2y x -=在(),0∞-上单调递增, ∴命题p 为真命题;则p ⌝为假命题;函数()1f x +为偶函数,()()11f x f x ∴+=-+()f x ∴的图象关于直线1x =对称∴命题q 为真命题;则q ⌝为假命题;又逻辑连接词“且”为“一假必假”,“或”为“一真必真”, 则对于A ,p q ∧为真命题; 对于B ,p q ⌝∨为真命题; 对于C ,()()p q ⌝∧⌝为假命题; 对于D ,()p q ∨⌝为真命题; 故选:C.4.①函数值域为[0,)+∞;②函数为偶函数;③函数在[0,)+∞上()()12120f x f x x x ->-恒成立;④若任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭.已知函数:①121x y =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =.其中同时满足以上四个条件的函数有( )个 A .0B .1C .2D .3 【答案】C【分析】分别作出①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =四个函数的图象,再根据图象逐一判断四个函数是否满足①②③④四个条件即可求解.【解析】分别作出①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =四个函数的图象:由图知,四个函数的值域都是[)0,∞+都满足①;由图知:①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =图象关于y 轴对称,都是偶函数,④124y x =的定义域为[)0,∞+不关于原点对称,既不是奇函数也不是偶函数,故④124y x =不满足条件②;排除函数④124y x =; 条件③:函数在[)0,∞+上()()12120f x f x x x ->-恒成立;由函数单调性的定义可知:函数在[)0,∞+上单调递增,由四个函数图象可知,①121x y =-,③23y x =,④124y x =满足条件③,函数②212x y ⎛⎫= ⎪⎝⎭不满足条件③,排除函数②212xy ⎛⎫= ⎪⎝⎭;对于条件④:函数①121xy =-:如图任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,故函数①121xy =-满足条件④,函数③23y x =:如图任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,故函数③23y x =满足条件④,所以同时满足以上四个条件的函数有函数①121xy =-、函数③23y x =,共有2个,故选:C5.已知点(n ,8)在幂函数()(2)m f x m x =-的图象上,则函数()g x =域为( )A .[0,1]B .[2,0]-C .[1,2]-D .[2,1]- 【答案】D【分析】由()(2)m f x m x =-为幂函数可求m ,由点(n ,8)在幂函数()(2)m f x m x =-的图象上可求n ,再根据函数的单调性求函数()g x .【解析】由题可得m -2=1,解得m =3,所以3()f x x =,则3()8,2f n n n ===,因此()g x ==[2,3],因为函数=yy =-[2,3]上单调递减,所以函数g (x )在[2,3]上单调递减,而g (2)=1,g (3)=-2,所以g (x )的值域为[-2,1]. 故选:D.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()2221()232f x x a x a a =-+--,若x R ∀∈,(1)()f x f x -≤,则实数a 的取值范围为( )A .11,66⎡⎤-⎢⎥⎣⎦B.⎡⎢⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D.⎡⎢⎣⎦ 【答案】B【分析】根据函数的解析式,分20x a ≤≤、222a x a <<和22x a ≥三种情况分类讨论,得出函数的解析式,结合函数的图象,即可求解. 【解析】由题意,当0x ≥时,()2221()232f x x a x a a =-+--, 所以当20x a ≤≤时,()2221()232f x a x a x a x =-+--=-; 当222a x a <<时,()22221()232f x x a a x a a =-+--=-; 当22x a ≥时,()22221()2332f x x a x a a x a =-+--=-. 综上,函数()2221()232f x x a x a a =-+--, 在0x ≥时的解析式等价于222222,0(),23,2x x a f x a a x a x a x a ⎧-≤≤⎪=-<<⎨⎪-≥⎩. 根据奇函数的图像关于原点对称作出函数()f x 在R 上的大致图像如图所示,观察图像可知,要使x R ∀∈,(1)()f x f x -≤,则需满足()22241a a --≤,解得a ≤≤故选:B.7.定义新运算“⊕”如下:2,,a a b a b b a b⎧⊕=⎨<⎩…,已知函数()(1)2(2)([2,2])f x x x x x =⊕-⊕∈-,则满足(2)(2)f m f m -…的实数m 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .122⎡⎤⋅⎢⎥⎣⎦C .[0.1]D .[ 1.4]-【答案】C【解析】根据新定义,得到()f x 的表达式,判断函数()f x 在定义域的单调性,可得结果. 【解析】当21x -≤≤时,()f x =1?224x x -⨯=-;当12x <≤时,23()224f x x x x =⋅-⨯=-; 所以34,21()4,12x x f x x x --⎧=⎨-<⎩剟…,易知,()4f x x =-在[ 2.1]-单调递增,3()4f x x =-在(1,2]单调递增,且当12x -≤≤时,max ()3f x =-, 当12x <…时,max ()3f x =-,则()f x 在[ 2.2]-上单调递增, 所以(2)(2)f m f m -…得22222222m m m m -≤-≤⎧⎪-≤≤⎨⎪-≤⎩,解得01m 剟. 故选:C【点睛】本题考查对新定义的理解,以及分段函数的单调性,重点在于写出函数()f x 以及判断单调性,难点在于m 满足的不等式,属中档题.8.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决.【解析】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、多选题9.黄同学在研究幂函数时,发现有的具有以下三个性质:①是奇函数;②值域是{y y R ∈且0}y ≠;③在(,0)-∞上是减函数则以下幂函数符合这三个性质的有( ) A .2()f x x =B .()f x x = C .1()f x x -=D .13()f x x -= 【答案】CD【分析】通过已知三个条件,分别奇偶性、值域和单调性即可排除选项.【解析】由已知可得,此函数为奇函数,而A 选项2()f x x =为偶函数,不满足题意,排除选项;选项B ,()f x x =的值域为}{y y R ∈,且该函数在R 上单调递增,不满足题意条件,排除选项;选项C 、D 同时满足三个条件. 故选:CD.10.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()321f x g x x x -=++,则下列选项中正确的是( ) A .()f x 和()g x 在()0,∞+上的单调性相同 B .()f x 和()g x 在()0,∞+上的单调性相反 C .()f x 和()g x 在(),0-∞上的单调性相同 D .()f x 和()g x 在(),0-∞上的单调性相反 【答案】BC【分析】通过解方程组求出23()1,(),f x x g x x =+=-再判断单调性即得解.【解析】解:由题得()()32321,()()1f x g x x x f x g x x x ---=-++∴+=-++(1),又()()321f x g x x x -=++ (2),解(1)(2)得23()1,(),f x x g x x =+=-3()g x x =-在(,)-∞+∞上单调递减(因为幂函数3y x =是R 上的增函数),因为23()1,(),f x x g x x =+=-在()0,∞+上的单调性相反(()f x 单调递增()g x 单调递减),23()1,(),f x x g x x =+=-在(),0-∞上都是单调递减,故选:BC11.若函数()f x 在定义域内的某区间M 是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”,则下列说法正确的是( ) A .若()2f x x =,则不存在区间M 使()f x 为“弱增函数”B .若()1f x x x =+,则存在区间M 使()f x 为“弱增函数”C .若()3f x x x =+,则()f x 为R 上的“弱增函数”D .若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则4a =【分析】根据“弱增函数”的定义,结合基本初等函数的性质,对四个选项一一判断,即可得到正确答案.【解析】对于A :()2f x x =在[)0,∞+上为增函数,()==f x y x x在定义域内的任何区间上都是增函数,故不存在区间M 使()2f x x =为“弱增函数”,A 正确; 对于B :由对勾函数的性质可知:()1f x x x =+在[)1,+∞上为增函数,()21f x y x x-==+,由幂函数的性质可知,()21f x y x x-==+在[)1,+∞上为减函数,故存在区间[)1,M =+∞使()1f x x x=+为“弱增函数”,B 正确;对于C :()3f x x x =+为奇函数,且0x ≥时,()3f x x x =+为增函数,由奇函数的对称性可知()3f x x x =+为R 上的增函数,()21f x y x x==+为偶函数,其在0x ≥时为增函数,在0x <时为减函数,故()3f x x x =+不是R 上的“弱增函数”,C 错误;对于D :若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则()()24f x x a x a =+-+在(]0,2上为增函数,所以402a --≤,解得4a ≤,又()()4f x a y x a xx==+-+在(]0,2上为减函2,则4a ≥,综上4a =.故D 正确. 故选:ABD .12.记使得函数()269f x x x =-+在[]1,x n ∈上的值域为[]0,4的实数n 的取值范围为集合A ,过点()4,2的幂函数()g x 在区间[]1,13m m -+上的值域为集合B ,若A 是B 的必要不充分条件,则整数m 的取值可以为( ) A .10B .11C .12D .13【分析】根据二次函数的性质可得集合A ;根据幂函数的性质可得集合B ,由集合A 是集合B 的必要不充分条件,则B 是A 的真子集,即可得出答案.【解析】函数()269f x x x =-+的对称轴为3x =,在3x =时取最小值0,故3n ≥,又1x =与5x =时函数值均为4,故5n ≤, 故n 的取值范围为[]3,5,即集合[]3,5A =; 设幂函数()ag x x =,()g x 过点()4,2,即42a =,得12a =,故()g x =[]1,13m m -+上的值域为()1m ≥,即()1B m =≥,若集合A 是集合B 的必要不充分条件,则是[]3,5的真子集,即5(3等号不能同时成立), 解得1012m ≤≤.则整数m 的取值可以为10,11,12. 故选:ABC三、填空题13.已知函数()33x x f x -=-,则关于 的下列结论:①(0)0f =②()f x 是奇函数③()f x 在(,)-∞+∞上是单调递增函数④对任意实数a ,方程()0f x a -=都有解,其中正确的有(填写序号即可)__________.【解析】∵()33x x f x -=-,()33(33)x x x x f x ---=-=--,∴()()f x f x =--所以函数()33x x f x -=-是奇函数,由奇函数的性质,①②均正确;又1()3333xxxx f x -⎛⎫=-=- ⎪⎝⎭,13xy ⎛⎫= ⎪⎝⎭是R 上的单调递减函数,3x y =-是R 上的单调递减函数,由函数单调性的性质,所以()33x x f x -=-在R 上单调递减,③不正确;因为()f x 函数值域为R ,所以对任意实数a ,方程()0f x a -=都有解,④正确,故答案为①②④.14.已知函数()()2231m m f x m m x +-=--是幂函数,对任意的1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,R b ∈,且()()0f a f b +<,则a b +______0(填“>”“=”或“<”).【答案】<【分析】由函数()f x 为幂函数,可得m =-1或m =2,又由题意函数()f x 在()0,∞+上单调递增,可得()3f x x =,从而根据函数()f x 的奇偶性和单调性即可求解.【解析】解:因为函数()f x 为幂函数,所以211m m --=,即220m m --=,解得m =-1或m =2.当m =-1时,()31f x x=;当m =2时,()3f x x =. 因为函数()f x 对任意的1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,所以函数()f x 在()0,∞+上单调递增, 所以()3f x x =,又()()33f x x x -=-=-,所以函数()3f x x =是奇函数,且为增函数,因为()()0f a f b +<,所以()()()f a f b f b <-=-, 所以a b <-,即0a b +<. 故答案为:<.15.定义在R 上的函数()y f x =是减函数,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若,s t 满足不等式22(2)(2)f s s f t t -≤--.则当13s ≤≤时,t s的取值范围是___________.【答案】1,13⎡⎤-⎢⎥⎣⎦【解析】由f (x −1)的图象相当于f (x )的图象向右平移了一个单位 又由f (x −1)的图象关于(1,0)中心对称 知f (x )的图象关于(0,0)中心对称, 即函数f (x )为奇函数, 得f (s 2−2s )⩽f (t 2−2t ),从而t 2−2t ⩽s 2−2s ,化简得(t −s )(t +s −2)⩽0, 又1⩽s ⩽3,则-1⩽2-s ⩽1,故2−s ⩽t ⩽s , 从而211t ss -剟,而211,13s ⎡⎤-∈-⎢⎥⎣⎦,故t s 的取值范围是1,13⎡⎤-⎢⎥⎣⎦.点睛:对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若f (x )为偶函数,则f (-x )=f (x )=f (|x |). 16.对于函数1()1ax f x x +=-(a 为常数),给出下列命题: ①对任意a ∈R ,()f x 都不是奇函数;②()f x 的图像关于点(1,)a 对称;③当1a <-时,()f x 无单调递增区间;④当2a =时,对于满足条件122x x <<的所有1x ,2x 总有1221()()3()f x f x x x -<-.其中正确命题的序号为__________. 【答案】①②④【解析】①()f x 定义域为{}1x x ≠,∴()f x 不可能为奇函数,正确;②(1)11()11a x a a f x a x x -+++==+--,图像关于(1,)a 对称,正确;③当1a <-时,1()1af x a x +=+-在(,1)-∞和(1,)+∞上为增,错误;④2a =时,3()21f x x =+-在(2,)+∞上为减函数,211221123()()()3()(1)(1)x x f x f x x x x x --=<---,正确,故答案为①②④.四、解答题17.已知函数()()()()212813f x a x b x c x =-+-+-∈R . (1)如果函数()f x 为幂函数,试求实数a 、b 、c 的值;(2)如果0a >、0b >,且函数()f x 在区间1,32⎡⎤⎢⎥⎣⎦上单调递减,试求ab 的最大值.【答案】(1)5a =,8b =,1c =,或2a =,9b =,1c =. (2)18【分析】(1)根据幂函数的定义得到方程组,解得即可;(2)分2a =、2a >、02a <<三种情况讨论,结合二次函数的性质及基本不等式计算可得; (1)解:由函数()f x 的定义域为R 知,当()f x 为幂函数时,应满足()12138010a b c ⎧-=⎪⎪⎨-=⎪⎪-=⎩或()12038110a b c ⎧-=⎪⎪-=⎨⎪-=⎪⎩解得,a 、b 、c 的值分别为:5a =,8b =,1c =,或2a =,9b =,1c =. (2)解:①当2a =时,()()()81f x b x c x =-+-∈R 由题意知,08b <<,所以16ab <. ②当2a >时,函数()f x 图象的对称轴为()()3822b x a -=-,以题意得:()()38322b a -≥-,即212a b +≤所以122a b ≥+≥18ab ≤. 当且仅当3a =,6b =时取等号. ③当02a <<时,以题意得:()()381222b a -≤-,即326a b +≤,即()10263b a <≤- 又因为02a <<,所以()()()22111691169026132131633333ab a a a <≤-=--+<--+= 综上可得,ab 的最大值为18. 18.已知函数()()90f x x x x=+≠.(1)当()3,x ∈+∞时,判断并证明()f x 的单调性;(2)求不等式()()2330f x f x +≤的解集.【答案】(1)单调递增,证明见解析;(2){}1-.【解析】(1)根据函数单调性定义,判断当123x x <<时,()()120,0?f x f x -><即可;(2)法一:根据函数()()90f x x x x=+≠得到()()233f x f x +解析式,解关于x 的二次型不等式即可.法二:根据函数为奇函数,和定义域内的单调性,将()()2330f x f x +≤转化为解()()233f x f x ≤-,分0x >,1x =-,1x <-,10x -<<讨论使得()()233f x f x ≤-成立x 时的范围为其解集.【解析】解:(1)设123x x <<,则()()()()121212121212999x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎝⎭+⎭ 因为12120,90x x x x -<->, 所以()()120f x f x -<, 所以()f x 在(3,)+∞上单调递增. (2)法一:原不等式可化为2233330x x x x+++…, 即21120x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭…,所以121x x-+剟, 当0x >时,12x x+…,不合题意,舍去; 当0x <时,只需解12x x-+…,可化为2(1)0x +…,所以1x =-. 综上所述,不等式的解集为{}1-.法二:由(1)的解答过程知()f x 在(0,3)上单调递减,在()3,+∞上单调递增,又()f x 为奇函数,()()2330f x f x +≤,所以()()()2333f x f x f x ≤-=-,当0x >时,2(3)0,(3)0f x f x >-<,与上式矛盾,故舍去; 当1x =-时,上式成立;当1x <-时,2333x x >->,则()()233f x f x >-,与上式矛盾,故舍去;当10x -<<时,20333x x <<-<,则()()233f x f x >-,与上式矛盾,故舍去;综上所述,不等式的解集为{}1-. 【点睛】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.19.已知函数()23111x x f x x +++=+.(1)求()f x 的解析式;(2)若对任意1,22x ⎡∈⎤⎢⎥⎣⎦,[]0,1a ∈,不等式()212f x ma m <++恒成立,求m 的取值范围.【答案】(1)()11f x x x=-+(2)()),2-∞-⋃+∞【分析】(1)令1t x =+,则1x t =-,进而根据换元法求解即可;(2)结合函数()f x 的单调性得()max 52f x =,进而将问题转化为对任意[]0,1a ∈,不等式25122ma m <++恒成立,再求解恒成立问题即可. (1)解:令1t x =+,则1x t =-, 则()()()2131111t t f t t t t-+-+==-+,故()11f x x x=-+. (2)解:由(1)可得()11f x x x=-+.因为函数1y x =+和函数1y x =-均在1,22⎡⎤⎢⎥⎣⎦上单调递增,所以()f x 在1,22⎡⎤⎢⎥⎣⎦上单调递增.故()()max 522f x f ==.对任意1,22x ⎡∈⎤⎢⎥⎣⎦,[]0,1a ∈,不等式()212f x ma m <++恒成立,即对任意[]0,1a ∈,不等式25122ma m <++恒成立,则2251,2251,22m m m ⎧<+⎪⎪⎨⎪<++⎪⎩解得m 2m <-.故m 的取值范围是()),2-∞-⋃+∞.20.已知幂函数()2122mx m m x f ⎛⎫=+- ⎪⎝⎭,且在定义域内单调递增. (1)求函数()f x 的解析式;(2)若函数()()()21g x f x kf x ⎡⎤=+-⎣⎦,1,12x ⎡⎤∈⎢⎥⎣⎦,是否存在实数k ,使得()g x 的最小值为0?若存在,求出k 的值,若不存在,说明理由. 【答案】(1)()f x x = (2)存在,且32k =.【分析】(1)结合幂函数的定义、单调性求得m 的值.(2)求得()g x 的解析式,对k 进行分类讨论,结合()g x 的最小值为0来求得k 的取值范围. (1)函数()2122mx m m x f ⎛⎫=+- ⎪⎝⎭是幂函数, 222131,0,2302222m m m m m m +-=+-=+-=, 解得1m =或32m =-.由于()f x 在定义域内递增,所以32m =-不符合, 当1m =时,()f x x =,符合题意. (2)()21g x x kx =+-,1,12x ⎡⎤∈⎢⎥⎣⎦,()g x 图象开口向上,对称轴为2kx =-,当122k -≤,即1k ≥-时,()g x 在1,12⎡⎤⎢⎥⎣⎦上递增,11310,2422k g k ⎛⎫=+-== ⎪⎝⎭.当1,122k ⎛⎫-∈ ⎪⎝⎭,即21k -<<-时,()222min 1102424k kk k g x g ⎛⎫=-=--=--< ⎪⎝⎭,不符合题意.当12k -≥,即2k ≤-时,()g x 在1,12⎡⎤⎢⎥⎣⎦上递减,()1112g k k =+-=≤-,不符合题意.综上所述,存在32k =使得()g x 的最小值为0.21.1.已知函数2,01,()1, 1.x x f x x x≤<⎧⎪=⎨≥⎪⎩(1)求函数()f x 的值域;(2)记()()()a F x f x f a =-,则4()F x m ≤在[0,4]x ∈上恒成立,求实数m 的取值范围. 【答案】(1)[0,2)(2)7,4⎡⎫+∞⎪⎢⎣⎭【分析】(1)分别求出()2f x x =和1()f x x=在各自区间上的值域,最后求并集即为分段函数的值域;(2)写出分段函数4()F x ,求出4()F x 的值域70,4⎡⎫⎪⎢⎣⎭,然后74m ≥即可(1)当01x ≤<时,()2f x x =,在[)0,1上单调递增,所以 0()2f x ≤< 当1≥x 时,1()f x x=,在[)1,+∞上单调递减,所以0()1f x <≤ 故函数()f x 的值域为[0,2). (2)由题意可知,412,01,41()()(4)()411,1 4.4x x F x f x f f x x x ⎧-≤<⎪⎪=-=-=⎨⎪-≤≤⎪⎩当01x ≤<时,1172444x -≤-<,则4170()244F x x ≤=-<;当14x ≤≤时,113044x ≤-≤,则430()4F x ≤≤; 所以470(),[0,4]4F x x ≤<∈,所以要使4()F x m ≤在[0,4]x ∈上恒成立,只要74m ≥即可,m 的取值范围为7,4⎡⎫+∞⎪⎢⎣⎭.22.已知幂函数()()224222m m f x m m x -+=--在()0,∞+上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()()()211ag x a x f x =--+在(]0,2上的值域为(]1,11?若存在,求出a 的值;若不存在,请说明理由. 【答案】(1)3m =,()1f x x -=;(2)存在,6a =.【分析】(1)根据幂函数的定义及单调性,令幂的系数为1及指数为负,列出方程求出m 的值,将m 的值代入()f x 即可;(2)求出()g x 的解析式,按照1a -与0的大小关系进行分类讨论,利用()g x 的单调性列出方程组,求解即可.【解析】(1)(1)因为幂函数()2242()22m m f x m m x -+=--在(0,)+∞上单调递减,所以22221420m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=;(2)由(1)可得,1()f x x -=,所以()(21)1(1)1g x a x ax a x =--+=-+, 假设存在0a >,使得()g x 在(]0,2上的值域为(]1,11,①当01a <<时,10a -<,此时()g x 在(]0,2上单调递减,不符合题意;②当1a =时,()1g x =,显然不成立;③当1a >时,10a ->,()g x 在和(]0,2上单调递增, 故(2)2(1)111g a =-+=,解得6a =.综上所述,存在6a =使得()g x 在(]0,2上的值域为(]1,11.23.已知幂函数()21()22m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()()30h x f x ax a =++-≥在区间[2,2]-上恒成立,求实数a 的取值范围. 【答案】(1)2()f x x =;(2)[7,2]-.【解析】(1)由幂函数概念及偶函数性质求()f x 解析式(2)由(1)知22()()324a a h x x a =+--+,再由()0h x ≥在[2,2]-上恒成立,即()h x 的最小值恒大于等于0,应用函数思想分类讨论,求a 的范围【解析】(1)由()f x 为幂函数知2221m m -++=,得1m =或12m =-()f x 为偶函数∴当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去所以2()f x x =(2)22()()324a a h x x a =+--+,令()h x 在[2,2]-上的最小值为()g a①当22a-<-,即4a >时,()(2)730g a h a =-=-≥,所以73a ≤ 又4a >,所以a 不存在;②当222a -≤-≤,即44a -≤≤时,2()()3024a ag a h a =-=--+≥所以62a -≤≤.又44a -≤≤,所以42a -≤≤ ③当22a ->,即4a <-时,()(2)70g a h a ==+≥ 所以7a ≥-.又4a <- 所以74a -≤<-.综上可知,a 的取值范围为[7,2]-【点睛】本题考查了幂函数,并综合了偶函数、及根据不等式恒成立求参数范围,应用了分类讨论、函数的思想,属于较难的题 24.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)判断函数()f x 在()1,1-上的单调性,并用定义证明;(3)解不等式:11022f t f t ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝+⎭+-≤.【答案】(1)()21xf x x =+; (2)函数()f x 在()1,1-上单调递增,证明见解析;(3)1,02⎛⎤- ⎥⎝⎦.【分析】(1)根据奇函数的定义可求得b 的值,再结合已知条件可求得实数a 的值,由此可得出函数()f x 的解析式;(2)判断出函数()f x 在()1,1-上是增函数,任取1x 、()21,1x ∈-且12x x <,作差()()12f x f x -,因式分解后判断()()12f x f x -的符号,即可证得结论成立;(3)由11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭得1122f t f t ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,根据函数()f x 的单调性与定义域可得出关于实数t 的不等式组,由此可解得实数t 的取值范围.(1)解:因为函数()21ax bf x x +=+是定义在()1,1-上的奇函数,则()()f x f x -=-, 即2211ax b ax b x x -++=-++,可得0b =,则()21axf x x =+,所以,211222255112af a ⎛⎫=== ⎪⎝⎭⎛⎫+ ⎪⎝⎭,则1a =,因此,()21x f x x =+. (2)证明:函数()f x 在()1,1-上是增函数,证明如下:任取1x 、()21,1x ∈-且12x x <,则()()()()221212112212222212121111x x x x x x x x f x f x x x x x +---=-=++++()()()()()()()()12211212122222121211111x x x x x x x x x x xx xx -+---==++++,因为1211x x -<<<,则120x x -<,1211x x -<<,故()()120f x f x -<,即()()12f x f x <. 因此,函数()f x 在()1,1-上是增函数. (3)解:因为函数()f x 是()1,1-上的奇函数且为增函数,由11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭得111222f t f t f t ⎛⎫⎛⎫⎛⎫+<--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由已知可得112211121112t t t t ⎧+<-⎪⎪⎪-<+<⎨⎪⎪-<-<⎪⎩,解得102t -<<.因此,不等式11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭的解集为1,02⎛⎫- ⎪⎝⎭.25.已知______,且函数()22x bg x x a+=+. ①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中,选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题.(1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围.【答案】(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析;(2)77,88⎡-⎤⎢⎥⎣⎦. 【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中,再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数,得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+. 选择②.当0a >时,()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩,所以()222xg x x =+. ()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数. (2)当0x >时,()122g x x x =+,因为224x x +≥,当且仅当22x x=,即x =1时等号成立,所以()104g x <≤; 当0x <时,因为()g x 为奇函数,所以()104g x -≤<;当x =0时,()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立,所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.。

高一数学指数与指数幂的计算题及答案解析

高一数学指数与指数幂的计算题及答案解析

高一数学知识点 幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于 0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果 同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为 不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大 于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的 值域
定义
一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又 是偶函数,称为既奇又偶函数。
高一数学指数与指数幂的计算题(一) 1.将532写为根式,则正确的是( ) A.352 B.35 C.532 D.53 解析:选D.532=53. 2.根式 1a1a(式中a>0)的分数指数幂形式为( ) A.a-43 B.a43 C.a-34 D.a34 解析:选C.1a1a= a-1• a-1 12= a-32=(a-32)12=a-34. 3. a-b 2+5 a-b 5的值是( ) A.0 B.2(a-b) C.0或2(a-b) D.a-b 解析:选C.当a-b≥0时, 原式=a-b+a-b=2(a-b); 当a-b<0时,原式=b-a+a-b=0. 4.计算:(π)0+2-2×(214)12=________. 解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118. 答案:118

高一数学幂函数试题

高一数学幂函数试题

高一数学幂函数试题1.幂函数经过点P(2,4),则 .【答案】2【解析】将P(2,4)点坐标代入幂函数,可得,所以,则.【考点】函数的求值.2.已知幂函数的图像过点,若,则实数的值为()A.B.C.D.【答案】D【解析】由函数过点可得,所以,所以,故,选答案D.【考点】幂函数的图像与性质.3.已知幂函数的图像过点,则【答案】【解析】因为幂函数的图像过点,所以得,因此故.【考点】幂函数的解析式.4.已知,则从小到大用“﹤”号排列为【答案】【解析】因为幂函数在单调递增,且,所以,即.又,又因为对数函数在单调递减,所以,因此.【考点】1、利用幂函数的单调性比较同指数幂的大小;2、借助于中间变量比较大小.5.幂函数的图象过点且,则实数的所有可能的值为A.4或B.C.4或D.或2【答案】C【解析】根据题意,由于幂函数的图象过点且,设幂函数故选C.【考点】幂函数点评:解决的关键是对于幂函数的解析式的求解,属于基础题。

6.幂函数的图像经过点(2,4),则=【答案】9【解析】设幂函数为,因为的图像经过点(2,4),所以代入得:。

【考点】幂函数的解析式。

点评:我们要注意区分幂函数的解析式和指数函数的解析式的区别。

属于基础题型。

7.已知幂函数的图像经过点,则的值等于A.16B.C.2D.【答案】D【解析】幂函数过【考点】函数求解析式求值点评:函数过点可将点的坐标代入求解析式,本题较简单8.已知幂函数的图像经过,则等于( )A.B.C.D.【答案】C【解析】根据已知条件,那么可设幂函数因为的图像经过,那么可知,有,那么可知幂函数为,故选C.【考点】本试题考查了幂函数知识。

点评:解决该试题的关键是能设出幂函数,然后代点得到解析式,进而求解函数值的差,属于基础题。

9.三个数,,之间的大小关系为()A.a<c<b B.a<b<c C.b<a<c D.b<c<a【答案】C【解析】因为对于比较大小,先分析各自的大致范围,然后确定大小关系。

高一数学上册 第二章初等函数之幂函数知识点及练习题(含答案)

高一数学上册 第二章初等函数之幂函数知识点及练习题(含答案)

〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.2.3幂函数的图象及性质1.下列函数中,其定义域和值域不同的函数是( )A .y =x 13 B .y =x -12 C .y =x 53D .y =x 232.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-123.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错 4.函数f(x)=(1-x)0+(1-x)12的定义域为________. 5.已知幂函数f(x)的图象经过点(2,22),则f(4)的值为( ) A .16 B.116 C.12D .26.下列幂函数中,定义域为{x|x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13D .y =x -347.已知幂函数的图象y =x m2-2m -3(m ∈Z ,x≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3 8.下列结论中,正确的是( )①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④9.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( )A .1个B .2个C .3个D .4个10.幂函数f(x)的图象过点(3,3),则f(x)的解析式是________ .11.函数f(x)=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,试确定m 的值.12.已知函数f(x)=(m 2+2m)·x m2+m -1,m 为何值时,f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?13.已知幂函数y =x m2-2m -3(m ∈Z)的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.答案1. 解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同. 2.解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.解析:选C.∵y =x 0,可知x≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.解析:⎩⎪⎨⎪⎧1-x≠01-x≥0,∴x<1.答案:(-∞,1)5 解析:选C.设f(x)=x n ,则有2n =22,解得n =-12,即f(x)=x -12,所以f(4)=4-12=12.6 解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x≥0;C.y =x -13=13x,x≠0;D.y =x-34=14x 3,x >0.7 解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.8 解析:选D.y =x α,当α=0时,x≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.9 解析:选B.y =x 2与y =x 0是幂函数.10 解析:设f(x)=x α,则有3α=3=312⇒α=12.答案:f(x)=x 1211 解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f(x)=x 2在(0,+∞)上是增函数;当m =-2时,f(x)=x -3在(0,+∞)上是减函数,不符合要求.故m =3.12 解:(1)若f(x)为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1m 2+2m≠0⇒m =1. (2)若f(x)为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m≠0⇒m =-1. (3)若f(x)为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m≠0⇒m =-1±132.(4)若f(x)为幂函数,则m 2+2m =1,∴m =-1±213 解:由已知,得m 2-2m -3≤0,∴-1≤m≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意. ∴m =±1或m =3.当m =-1或m =3时,有y =x 0,其图象如图(1).当m =1时,y =x -4,其图象如图(2)..。

高一数学指对幂函数专项训练

高一数学指对幂函数专项训练

(每日一练)高一数学指对幂函数专项训练单选题>0,1、已知函数f(x)=(m2−m−1)x m3−1是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2若a,b∈R,a+b<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断答案:B解析:根据函数为幂函数以及函数在(0,+∞)的单调性,可得m,然后可得函数的奇偶性,结合函数的单调性以及奇偶性,可得结果.由题可知:函数f(x)=(m2−m−1)x m3−1是幂函数则m2−m−1=1⇒m=2或m=−1>0又对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2所以函数f(x)为(0,+∞)的增函数,故m=2所以f(x)=x7,又f(−x)=−f(x),所以f(x)为R单调递增的奇函数由a+b<0,则a<−b,所以f(a)<f(−b)=−f(b)则f(a)+f(b)<0故选:B小提示:本题考查幂函数的概念以及函数性质的应用,熟悉函数单调递增的几种表示,比如f (x 1)−f (x 2)x 1−x 2>0,[f (x 1)−f (x 2)]⋅(x 1−x 2)>0,属中档题.2、指数函数y =a x 的图象经过点(3,18),则a 的值是( ) A .14B .12C .2D .4答案:B解析:将已知点的坐标代入指数函数的表达式,求得a 的值.因为y =a x 的图象经过点(3,18),所以a 3=18,解得a =12, 故选:B.3、已知f(x)是R 上的偶函数,当x ∈[0,+∞)时,f(x)=−x 2+x +1,若实数t ,满足f(lgt)>1,则t 的取值范围是( )A .(110,1)∪(1,10)B .(0,110)∪(1,10)C .(−1,0)∪(0,1)D .(0,110)∪(1,+∞) 答案:A解析:依题意画出函数图象,可得当−1<x <1且x ≠0时f (x )>1,即可得到不等式,解得即可; 解:由题意知,当x ∈[0,+∞)时,f (x )=−x 2+x +1,则f (1)=f (0)=1,又f (x )是R 上的偶函数,f (−1)=f (1)=1,函数图象如下所示:<t<10且t≠1,则t的当f(x)>1时,则−1<x<1且x≠0,所以由f(lg t)>1,得−1<lg t<1且lg t≠0,所以110,1)∪(1,10).取值范围是(110故选:A.4、已知函f(x)=log2(√1+4x2+2x)+3,且f(m)=−5,则f(−m)=()A.−1B.−5C.11D.13答案:C解析:令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,则先判断函数g(−x)+g(x)=0,进而可得f(−x)+f(x)=6,即f(m)+f(−m)=6,结合已知条件即可求f(−m)的值.令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,因为g(x)+g(−x)=log2(√1+4x2+2x)+log2(√1+4x2−2x)=log2(1+4x2−4x2)=0,所以f(−x)+f(x)=g(−x)+3+g(x)+3=6,则f(m)+f(−m)=6,又因为f(m)=−5,则f(−m)=11,故选:C.5、已知函数f(x)=te x −lnx +lnt 对任意x ∈(0,+∞)都有f(x)≥0,则正数t 的最小值为( )A .e 2B .1e 2C .eD .1e 答案:D解析:转化f(x)≥0为e x+lnt +x +lnt ≥e lnx +lnx ,令g(x)=x +lnx ,则g(x +lnt)≥g(lnx),结合g(x)的单调性分析即得解根据题意得f(x)=te x −lnx +lnt =e x+lnt −lnx +lnt ≥0, 即e x+lnt +x +lnt ≥x +lnx =e lnx +lnx , 令g(x)=x +lnx ,则g(x +lnt)≥g(lnx), 由于y =x,y =lnx 都在(0,+∞)单调递增故g(x)在x ∈(0,+∞)上单调递增,所以x +lnt ≥lnx , 所以lnt ≥lnx −x 在(0,+∞)上恒成立,令ℎ(x)=lnx −x,ℎ′(x)=1x −1=1−x x (x >0) 令ℎ′(x)>0∴x <1,故函数ℎ(x)在(0,1)单调递增; 令ℎ′(x)<0∴x >1,故函数ℎ(x)在(1,+∞)单调递减 故ℎ(x)max =ℎ(1)=−1所以lnt ≥(lnx −x)max =−1,即t ≥1e ,所以正数t 的最小值为1e . 故选:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学幂函例题
解: (1)底数不同,指数相同的数比大小,可以转化为同一幕函数,不同函数值的大小问
1 1 1
题.••• y x 3在 0, 上单调递增,且 1.7 1.5 1,二 1.73 1.53 1 .
3
3
3
3
(2)底数均为负数,可以将其转化为 -.2 7
-.2 7,
7
-.3 7,
3 .57
3 3
■ y x 7
在 0 ,
上单调递增,且--5
. 3
2
3
3
3
3
3
3
5 7
.3 7
2 7,即■. 5 7
3 7
2 ?,
3
57 3
37 3
2 7 .
(3)先将指数统一,底数化成正数.
例1、 幕函数y x m
( m 、n N ,且m 、n 互质)的图象在第一,二象限,且不经过原
点,则有
(A) m 、n 为奇数且m 1
n (B) m 为偶数,n 为奇数,且m 1
n (C) m 为偶数,n 为奇数,且m 1
n (D) m 奇数,n 为偶数,且m 1
n 例2、 右图为幕函数y x 在第一象限的图像,则
a,b,c,d 的大小关系是
(A)a b c
d (B) b a d
(C)a
(D) a
解:取x
1
1
,由图像可知:
2
c ,应选(C).
例3、 比较下列各组数的大小:
(1) (3)
1 1
1.53,1.73,
2
J 3 2 ,
(2)
3
-.3
7

10 7
1.1
2 - 3
-2-2
2
一 3
-2-2
2 - 3
W- 7
2 - 3
10
一 7
2 - 3
.2
X —
4 - 3
X —
X —
7 、2
「y x 3在0,上单调递减'且10亍12 ,
2
2
2
2
7 3
、2 3
1

7 3
2 3 4
1.21 3,即:
V 1.1 3
10
2
10
2
点评:比较幕形式的两个数的大小,一般的思路是:
(1) 若能化为同指数,则用幕函数的单调性; (2) 若能化为同底数,则用指数函数的单调性;
(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比 较大小.
求m 的值.
2
解:•••幕函数y x m 2m 3 ( m Z )的图象与x 轴、y 轴都无交点, • m 2 2m 3是奇数,• m 0或 m 2 .
例6设函数f (x )= x 3,
(1) 求它的反函数;
(2) 分别求出厂1 (x )= f (x ),厂1 (x )>f (x ),厂1 (x )v f (x )的实数x 的范围.
1
解析:(1)由y =x 3两
边同时开三次方得x = 3 y , •「1 (x )二x?.
1
(2)v 函数f (x )= x 3和厂1 (x )= x 空的图象都经过点(0, 0)和(1, 1). •••厂1 (x )= f (x )时,x =± 1 及 0;
在同一个坐标系中画出两个函数图象,由图可知 厂1 ( x )> f ( X )时,x v — 1 或 0v X V 1 ;
1
m 2m 3 0,二 1 m 3;
a 1 0 a 1 0 有三种可能: a 0
或 3 2a 0 或 3 2a 0 , a
3 2a 0
a 1 3 2a
a 1 3 2a
2
x m 2m 3 ( m Z )的图象与 x 轴、y 轴都无交点,且关于原点对称,
■/ m Z , • (m 2 2m 3) Z ,又函数图象关于原点对称, 例5•已知幕函数y
厂1(x)v f (X)时,x> 1 或一1 v x v 0.
点评:本题在确定x的范围时,采用了数形结合的方法,若采用解不等式或方程则较为麻烦.
2 1
例7、求函数y= x5+ 2x5+ 4 (x> —32)值域.
1
解析:设t = x5,••• x> —32,二t> —2,则y= t2+ 2t + 4=( t + 1) 2+ 3.
当t =— 1 时,y min = 3.
2 1
•函数y= x5+ 2x5+ 4 (x > —32)的值域为]3,+ ).
点评:这是复合函数求值域的问题,应用换元法.
【同步练习】
解析:函数可化为根式形式,即可得定义域. 答案:B
1
5.
函数y =( 1 — x 2) 2的值域是( )
A . [0,+x]
B . (0, 1)
C . (0, 1)
D . [0, 1]
解析:这是复合函数求值域问题,利用换元法,令 t = 1 — x 2,则科=t .
••• — K x < 1,二 0< t < 1,二 0< y < 1.
答案:D
2
6.
函数y = x 5的单调递减区间为( )
A . ( — x, 1)
B . ( — x, 0)
C . [0,+x]
D . ( — x, +
oo
1. 下列函数中不是幕函数的是(
)
A. y . x
B. yx 3
C. y
答案:C
2. 下列函数在 ,0上为减函数的是(
1
A. y x 3
B. y x 2
C. y
答案:B
3.下列幂函数中疋义域为
x x 0的是(
2
3
A. y x 3
B. y x'
C. y 答案:D
4.函数 y =(x 2
- 1
-2x )
2
的定义域是(
2x
D. y x
)
3
D. y
2
x
x
)
2
3
x^
D. y x 2
A . {X |X M 0 或 x 壬 2}
B . ( — x, 0) D . (0, 2)
)
(2,+x) C . ( — x,
o )
[2,+x
2
解析:函数y= x5是偶函数,且在[0,+^)上单调递增,由对称性可知选B.
答案:B
7•若a2v a 2,则a的取值范围是( )
1 _ 1
A. a> 1
B. a>0
C. 1 >a>0 D . 1 >a>0
解析:运用指数函数的性质,选C.
答案:C
8.函数y= (15+2x_x2)3的定义域是_____________________________ 。

解析:由(15+ 2x_x2) 3>0.A 15+ 2x_x v20.二一3<x<5.
答案:A
1
9•函数y= 2—m_m2在第二象限内单调递增,则m的最大负整数是_____________ .
x m m
解析:m的取值应该使函数为偶函数.故m=—1.
奇偶性、单调性,并画出图象的示意图.
2
思路:函数y= x5是幕函数.
2
(1)要使y= x5= Vx2有意义,
x可以取任意实数,故函数定义域为R.
(2)v x R,.°. x2> 0.二y>0.
(3) f ( —x)= 5 (—x)2二5 x2二f (x),
2
•••函数y= x5是偶函数;
2
(4)v n= >0,
5
2
•••幕函数y= x5在]0,+ ]上单调递增.
2
由于幕函数y= x5是偶函数,
2
•••幕函数y= x5在(—,0)上单调递减.
2
10、讨论函数y= x5的定义域、值域、
(5)其图象如下图所示.
12•已知函数尸415— 2x —x2.
(1)求函数的定义域、值域;(2)判断函数的奇偶性;
(3)求函数的单调区间.
解析:这是复合函数问题,利用换元法令t= 15—2x—x2,则y= 4t ,
(1)由15—2x—x2>0得函数的定义域为[—5, 3],
••• t= 16—( x—1) 2[0, 16]. A 函数的值域为[0, 2]
(2)v函数的定义域为[—5, 3]且关于原点不对称,二函数既不是奇函数也不是偶函数.
(3)v函数的定义域为[—5, 3],对称轴为x= 1,
二x [ —5, 1 ]时,t随x的增大而增大;x (1, 3)时,t随x的增大而减小.
又•••函数y= 4t在t [ 0, 16]时,y随t的增大而增大,
•••函数y= V15-2x—x2的单调增区间为[—5, 1],单调减区间为(1, 3].
答案:(1)定义域为[—5, 3],值域为[0, 2];
(2)函数即不是奇函数,也不是偶函数;
(3)(1, 3].。

相关文档
最新文档