平行线的性质

合集下载

平行线的性质

平行线的性质

平行线的性质平行线是几何学中一个重要的概念,它具有一系列独特的性质和规律。

本文将从定义、性质以及常见应用几个方面来探讨平行线的特点。

一、定义平行线指在同一个平面上,永远不会相交的两条直线。

两条平行线之间的距离是不变的,无论它们延伸多远。

二、性质1. 平行线具有相同的斜率:对于两条平行线,它们的斜率相等。

可以通过直线的斜率公式来证明这个性质。

2. 平行线没有交点:平行线不会相交,因此在它们之间不存在交点。

这一性质是平行线的基本特征。

3. 平行线的内角和性质:当一条直线与两条平行线相交时,相应的内角和是补角。

也就是说,这些内角的和等于180度。

4. 平行线的外角性质:当一条直线与两条平行线相交时,相应的外角是等于对应内角的。

5. 平行线的转角性质:当有两条平行线与一条交线相交时,它们所对应的转角相等。

三、应用平行线的性质在几何学中有广泛的应用。

下面列举几个常见的应用场景。

1. 建筑与设计:在建筑和设计过程中,平行线的概念经常被用来处理墙壁、地板、屋顶等元素的布局。

通过确保平行线之间的距离一致,可以营造出整齐、协调的空间效果。

2. 路面交通:在道路设计和交通规划中,平行线的性质被用于绘制车行道、人行道和停车位等交通设施。

通过确保平行线的平直性和正确的间距,可以提高交通流畅度和安全性。

3. 数学证明:平行线的性质在数学证明中扮演重要的角色。

通过运用平行线的相关性质和定理,可以推导出更复杂的几何定理,解决各种几何问题。

总结:平行线是几何学中一个基础而重要的概念,它具有独特的性质和规律。

通过理解和应用平行线的性质,我们可以更好地解决几何问题,同时在建筑、设计和交通规划等领域中发挥重要作用。

掌握平行线的性质对于理解几何学和应用几何学都是至关重要的。

七年级数学下《平行线的性质》知识点总结归纳

七年级数学下《平行线的性质》知识点总结归纳

七年级数学下《平行线的性质》知识点总结归纳一、平行线的性质1.同位角相等:两条平行线被一条横截线所截,形成的同位角相等。

2.内错角相等:两条平行线被一条横截线所截,形成的内错角相等。

3.同旁内角互补:两条平行线被一条横截线所截,形成的同旁内角互补,即角度和为180°。

二、性质的应用1.计算平行线的距离:利用平行线的性质,可以计算两条平行线之间的距离。

2.判断角度大小:利用平行线的性质,可以判断两条直线之间的角度大小。

3.解决实际问题:平行线的性质在实际生活中有广泛的应用,如建筑、机械制造等领域。

三、注意事项1.平行线的性质是在同一平面内,两条不相交的直线所具备的属性。

因此,确定两条线是否平行,首先需要确定它们是否在同一平面内。

2.平行线的性质需要通过横截线来体现,因此在证明或应用性质时,需要明确横截线的位置。

3.在实际应用中,需要根据具体情境判断两条线是否平行,并选择适当的方法来解决问题。

四、相关定理与概念1.平行线的判定定理:同位角相等、内错角相等、同旁内角互补等。

2.垂直线的性质:垂直于同一条直线的两条直线互相平行。

3.平行公理:经过直线外一点,有且只有一条直线与已知直线平行。

五、易错点提醒1.学生在应用性质时,容易出现混淆,将判定定理和性质混淆使用。

需要明确的是,判定定理用于判断两条直线是否平行,而性质用于说明平行线之间的关系或推导其他结论。

2.对于同旁内角互补的理解,学生容易出现误区,认为同旁内角之和为90°而非180°。

需要强调的是,同旁内角互补是指它们的角度和为180°,不是90°。

3.在实际解决问题时,学生容易忽略题目中的限制条件或隐藏条件,导致解题错误。

需要提醒学生认真审题,注意细节,以免出现不必要的错误。

平行线的判定和性质

平行线的判定和性质

平行线的判定和性质
1、平行线的判定方法:
同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;
另:平行于同一条直线的两条直线相互平行;垂直于同一条直线的两条直线互相平行。

2、平行线的性质:
两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

3、注意区别平行线的性质和判定方法:
(1)叙述方式不同:尽管叙述平行线的性质与判定方法的文字相同,个数相同,但条件和结论的顺序是不同的;
(2)意义不同:平行线的判定方法是根据三种角(同位角、内错角、同旁内角)的数量关系,来识别两直线是否平行;而平行线的性质,是已知两直线平行,得到三种角的数量关系。

(3)作用不同:一个是作为平行线的识别,一个是平行线的特征。

本文由101教育整理发布。

平行线的性质及应用

平行线的性质及应用

平行线的性质及应用平行线是几何学中的重要概念,具有许多特殊的性质和应用。

在本文中,我将为您详细介绍平行线的性质以及其在实际生活中的应用。

一、平行线的定义在欧几里得几何中,平行线是指在同一个平面内永远不会相交的直线。

简而言之,两条平行线之间不存在任何交点。

二、平行线的性质1. 互换性质:如果有一条直线和另外一条直线平行,那么可以互换它们位置,结果仍然是平行的。

2. 对偶性质:如果有两个直角相互垂直,那么它们与一条平行线的交线也是相互垂直的。

3. 唯一性质:通过一个给定点可以作一条且仅一条直线与已知的直线平行。

4. 平行线之间的距离是恒定的,在同一平面内,两条平行线的距离始终相等。

三、平行线的应用1. 地理测量:在地理测量中,平行线的概念被广泛应用。

例如,在制图和测绘中,通过绘制平行线可以准确地表示不同地区的经纬度。

2. 建筑设计:平行线在建筑设计中起着重要作用。

建筑师使用平行线概念来确定建筑物的平面布局和立面设计。

平行线的使用可以使结构更加稳定和美观。

3. 交通规划:在交通规划中,平行线可以用于道路设计、车道划分和交叉口设计。

通过保持道路与车道之间的平行关系,交通流动更加顺畅。

4. 电路设计:在电路设计中,平行线被用于电缆的布线。

通过保持电缆之间的平行关系,可以减少信号干扰和电流的损失。

5. 数学推理:平行线的性质在数学推理中被广泛应用。

例如,在证明中,我们可以利用平行线的性质来推导出新的定理和结论。

四、平行线的相关定理除了前文提到的平行线性质外,还有一些相关定理需要了解:1. 同位角定理:当两条直线被一条截线切割时,同位角相等。

2. 内错角定理:当两条平行线被一条截线切割时,内错角相等。

3. 别错角定理:当两条平行线被一条截线切割时,别错角之和为180度。

综上所述,平行线是几何学中的重要概念,具有许多特殊的性质和应用。

我们可以利用平行线的性质来解决实际问题,同时也可以通过平行线的性质进行数学推理。

平行线的性质

平行线的性质

平行线的性质平行线是几何中重要的概念之一。

了解平行线的性质对于理解空间关系和几何问题解决至关重要。

本文将介绍平行线的定义、性质和应用。

首先,让我们来定义平行线。

在欧几里得几何中,平行线是指在同一个平面上永远不会相交的两条直线。

这意味着平行线之间的距离保持恒定,无论它们延伸多远。

平行线通常用符号“||”表示,如AB || CD 表示线段AB与线段CD平行。

接下来,我们将介绍平行线的性质。

性质1:如果两条直线与同一条第三条直线交叉,使得对于两个相交的角,它们的对应角相等,那么这两条直线将是平行线。

性质2:如果两条直线与同一条第三条直线交叉,使得对于两个相交的角,它们的内角和为180度,那么这两条直线将是平行线。

性质3:平行线之间的距离在整条线上随处相等。

这意味着,如果我们从一个平行线上取一个点,然后通过这个点画一条垂直于该平行线的线,那么这条垂直线与另一条平行线之间的距离与初始平行线上的点无关。

性质4:如果一条直线与两条平行线相交,那么它将与其中一条平行线的内角和与该角与另一条平行线的内角和相等。

这被称为同位角性质。

性质5:如果两条直线分别与一条平行线相交,并且它们的同位角相等,那么它们将互相平行。

了解了这些性质后,平行线可以在许多几何问题中有着广泛的应用。

在平行线的应用中,我们经常使用平行线的性质进行角度测量。

例如,当我们需要计算被平行线交叉的两条直线上的角度时,可以利用同位角性质来推导出角度的大小。

此外,平行线的性质还能应用于平行四边形和等腰梯形等形状的计算。

由于平行线保持距离恒定,因此在这些形状中,我们可以利用平行线的性质来计算边长、角度和面积。

平行线的研究不仅仅局限于欧几里得几何,也在非欧几里得几何中有广泛的应用。

在非欧几里得几何中,平行线不再保持恒定的距离,这开启了一些非常有趣的研究领域。

通过研究非欧几里得几何中的平行线,我们可以发现一些超越传统几何学的奇异性质。

总而言之,平行线是几何学中的重要概念,我们通过了解平行线的定义和性质,可以应用它们来解决各种问题。

初中数学平行线的性质与判定

初中数学平行线的性质与判定

初中数学平行线的性质与判定一、引言平行线是初中数学中的重要概念,它在几何学中具有许多重要的性质和应用。

了解平行线的性质和判定方法,对于进行几何证明和解题都有着重要的指导意义。

本文将从平行线的性质和判定方法两个方面进行探讨,以帮助初中学生更好地理解和掌握平行线的相关知识。

二、平行线的性质1. 平行线的定义在平面上,任意两条直线如果永不相交,那么我们称它们是平行线。

2. 平行线的唯一性平面上,通过一点可以画无数条与已知直线平行的直线,但经过一点存在且只存在一条与已知直线平行的直线。

3. 平行线的性质1:对应角相等如果一组平行线被一条截线所切,那么它们所对应的内角和外角分别相等。

4. 平行线的性质2:同位角相等如果两条平行线被一条截线所切,那么它们所对应的同位角相等。

5. 平行线的性质3:内错角互补如果两条平行线被一条截线所切,那么它们所对应的内错角互补,即角的度数之和为180度。

三、平行线的判定方法1. 直线与直线的判定两条直线如果有一点与一直线上的两个角分别相等,那么这两条直线平行。

2. 角与直线的判定如果两条直线上的内角或外角、同位角或内错角相等,那么这两条直线平行。

3. 举例说明例如,已知直线l与直线m分别与一直线n相交,且∠A = ∠B和∠C = ∠D,则可以得出直线l与直线m平行。

四、平行线的应用1. 平行线的应用1:解题在解题中,平行线常常被用来求解线段比例关系、求解角度关系等。

通过运用平行线的性质和判定方法,我们可以更加简洁地解决一些几何问题。

2. 平行线的应用2:建筑设计在建筑设计中,平行线的应用非常广泛。

建筑师常常利用平行线的性质来设计建筑物的立面和空间布局,使其更加美观和合理。

3. 平行线的应用3:地理测量在地理测量中,平行线广泛应用于测量线段的长度和角度的测量。

利用平行线的性质和判定方法,地理测量师可以更准确地进行测量和勘测工作。

五、结论通过对初中数学平行线的性质和判定方法的讨论,我们可以看到平行线在几何学和实际生活中的重要性。

平行线的性质

平行线的性质

平行线的性质平行线是几何学中重要的概念之一,它们有着独特的性质和特点。

本文将介绍平行线的性质,包括定义、判定方法以及与其他几何对象的关系。

一、定义及判定方法平行线是指在同一平面上永不相交的直线。

根据平行线的定义可以得出以下性质:1. 平行线具有相同的斜率:如果两条直线的斜率相等,那么这两条直线是平行线。

反之,如果两条直线平行,那么它们的斜率一定相等。

2. 平行线具有相同的夹角:如果两条直线分别与一条横穿它们的直线相交,且交角相等,那么这两条直线是平行线。

反之,如果两条直线平行,那么它们与同一条横穿它们的直线的交角一定相等。

3. 平行线具有相同的倾斜角:倾斜角指直线与水平线之间的夹角。

如果两条直线的倾斜角相等,那么这两条直线是平行线。

反之,如果两条直线平行,它们与水平线的倾斜角一定相等。

二、平行线与其他几何对象的关系1. 平行线与角的关系:当一条直线与两条平行线相交时,所对应的内角或外角具有特定的关系。

如果同时给定两条直线为平行线,以及一条与它们相交的第三条直线,那么我们可以根据角的性质计算出交角的大小。

2. 平行线与三角形的关系:如果一条直线与一个三角形的两条边分别平行,那么这条直线将会将这两条边分成对应的等分线段,从而形成一组相似三角形。

3. 平行线与平行四边形的关系:平行四边形是指具有两对平行边的四边形。

在平行四边形中,对角线相交于一点,并且相交点将对角线等分。

同时,两对相对边及相对角也具有相等关系。

三、应用举例平行线的性质在实际应用中有着广泛的应用。

以下是一些例子:1. 建筑工程:在建造房屋或桥梁等结构时,工程师需要利用平行线的性质来确保构件的平行度和垂直度。

2. 地理测量:地理测量中使用的经纬线是地球表面上的平行线,它们能够提供位置和方向信息。

3. 电路布局:在电路设计中,平行线的性质被应用于布线和电路板设计,以确保信号传输的稳定性和减少电磁干扰。

4. 图形学:在计算机图形学中,平行线的性质被用于3D渲染和投影算法,以模拟真实世界中的透视效果。

平行线的性质

平行线的性质

平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.【典型例题】类型一、平行线的性质1.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.【思路点拨】(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.【答案与解析】解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.【总结升华】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.举一反三:【变式】(2015•青海)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.【答案】32°类型二、两平行线间的距离2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、尺规作图3. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α-∠β).【答案与解析】作法:如图所示.(1)作∠COD=∠α;(2)以射线OD为一边,在∠COD 的外部作∠DOA,使∠DOA=∠α;(3)以射线OC为一边,在∠COA的内部作∠COE,使∠COE=∠β;(4)以射线OE为一边,在∠EOA内部作∠EOB,使∠EOB=∠β,则∠AOB就是所求作的角.【总结升华】本题考查作一个差角的倍数角,本题的做法有两种:一种可以先做倍数角再做差角,如本题提供的答案;另一种也可以先做差角再做倍数角.4. (苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m 的道路,余下的部分种植花草,求种植花草部分的面积.【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型四、平行的性质与判定综合应用5.(黄冈调考)如图所示,AB∥CD,分别写出下面四个图形中∠A与∠P,∠C的数量关系,请你从所得到的关系中任选一图的结论加以说明.【思路点拨】过P点作AB的平行线,问题便会迅速得到求解.【答案与解析】解: (1)∠A+∠C=∠P;(2)∠A+∠P+∠C=360°;(3)∠A=∠P+∠C;(4)∠C=∠P+∠A.现以(3)的结论加以证明如下:如上图,过点P作PH∥AB ,因为AB∥CD,所以PH∥AB∥CD.所以∠HPA+∠A=180°,即∠HPA=180°-∠A;∠HPA+∠P+∠C=180°,即180°-∠A+∠P+∠C=180°,也即∠A=∠P+∠C.【总结升华】随着折点的不同,结论也会不同,但解法却如出一辙.都是过折点作平行线求解.举一反三:【变式1】如图,AB∥CD,∠ABG=42°,∠CDE=68°,∠DEF=26°.求证:BG∥EF.【答案】如图,分别过点G、F、E作GP∥AB,FQ∥AB,ER∥CD,又因为AB∥CD,所以AB∥GP∥FQ∥CD∥FQ.∴∠1=42°,∠2=∠3,∠4=∠5,∠5+26°=68°,∴∠5=68°-26°=42°,且∠4=∠5=42°.∴∠1+∠2=42°+∠2;∠4+∠3=42°+∠3.∴∠1+∠2=42°+∠3,即∠BGF=∠GFE.∴BG∥EF.【变式2】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().A.120°B.130°C.140°D.150°【答案】D平行线的性质及尺规作图(提高)巩固练习【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是()A.45°B.135°C.45°或135°D.不能确定2.(2016•安徽模拟)如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是()A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有()A.5个B.4个C.3个D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是()A.3:4 B.5:8 C.9:16 D.1:2二、填空题8.(2016春•江苏月考)如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.11.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.12.如图所示,过点P画直线a的平行线b的作法的依据是_.13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题14.如图所示,AD⊥BC,EF⊥BC,∠3=∠C,则∠1和∠2什么关系?并说明理由.15.已知如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.16.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.【答案与解析】一、选择题1. 【答案】D;【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的. 2. 【答案】D;【解析】∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选D.3. 【答案】C;【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C=180°-30°-30°=120°.4. 【答案】B;【解析】反向延长射线ST交PR于点M,则在△MSR中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A【解析】与∠AOE相等的角有:∠DCA,∠ACB,∠COF,∠CAB,∠DAC.6. 【答案】C;【解析】解:∵AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,∴∠BCD =∠ABC =46°,∠FEC +∠ECD =180°,∴∠ECD =180°—∠FEC =26°,∴∠BCE =∠BCD —∠ECD =46°—26°=20°.7. 【答案】B ;【解析】=22+312=10S ⨯⨯⨯阴,=44=16S ⨯正ABCD ,所以ABCD S =10:165:8S =正阴:.二.填空题8. 【答案】70°;【解析】∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC 中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.9.【答案】95°;【解析】如图,过点E 作EF ∥AB .所以∠ABE +∠FEB =180°(两直线平行,同旁内角互补),所以∠FEB =180°-120°=60°.又因为AB ∥CD ,EF ∥AB ,所以EF ∥CD ,所以∠FEC =∠DCE =35°(两直线平行,内错角相等),所以∠BEC =∠FEB +∠FEC =60°+35°=95°.10.【答案】60°;【解析】解:如图所示:∵l 1∥l 2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC 中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.11.【答案】20°;【解析】根据题意画出示意图,可得:∠ABC =80°-60°=20°.12.【答案】内错角相等,两直线平行;13.【答案】①②③④;【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.三.解答题14.【解析】解:∠1=∠2.理由如下:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴AD∥EF(同位角相等,两直线平行),∴∠1=∠4(两直线平行,同位角相等).又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行).∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2.15.【解析】解:如图,过点D作DE∥AB交BC于点E.∴∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).又∵∠3=∠1+∠C,∴∠A+∠B+∠C+∠1+∠2=360°,即∠A+∠B+∠C+∠ADC=360°.16.【解析】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,11∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质§5.3.1平行线的性质本节课的主要内容是平行线的三个性质和命题等内容,首先在研究了平行线的判定的基础上了研究平行线的性质,因为学生在研究判定是已经了解到研究平行线就是研究两条直线被第三条直线所截形成的角之间的关系,所以学生很自然就想到研究平行线的性质也要研究同位角、内错角、同旁内角的关系;因此,从平行线的判定与性质的关系入手引入了对平行线性质的探究,对于命题的相关知识是在学生已经解触了一些命题,如:“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”,“等式两边加同一个数,结果仍是等式“,“对顶角相等”等命题的基础上,初步了解了命题、命题的构成、真假命题、定理等内容,使学生初步接触有关形式逻辑概念和术语。

平行线的性质是本节课的重点,而平行线的判定与性质互为逆命题,条件与结论相反,因此区分判定和性质是本节课的一个难点,教学过程中可告诉学生,从角的关系得到两直线平行时判定,由已知直线平行得出角的相等或互补关系,是平行线的性质。

本节课在利用两直线平行,同位角相等,来推理证明其他两条性质的过程中又一次让学生感受到转化思想在解决数学问题中的应用,在教学过程中,应注意这种思想方法的渗透,有意识的让学生认识整理,使学生在今后的不断训练中掌握这种方法。

【教学重点与难点】教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.教学难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用【教学目标】1.使学生理解平行线的性质和判定的区别.2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.3.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

毛【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。

教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。

【教学过程】一、复习回顾(设计说明:平行线的判定定理与性质定理是互逆的,对初学者来说易将他们混淆,因此,复习平行线的判定为后面性质与判定的比较做好准备,同时利用性质定利用判定定理的互逆关系自然引入新课。

)问题:如何用同位角、内错角、同旁内角来判定两条直线是否平行?反过来:,如果两条直线平行,那么同位角、内错角、同旁内角由各有什么样的关系呢?这是我们这节课讲要探究的问题。

(教学说明:在学生回答平行线的判定定理时,可将其合理板书,以便直观地进行平行线的判定与性质的对比分析,加深学生的印象。

)二、动手实践,探究新知(设计说明:通过动手实验,让学生首先在动手探索的过程中感知平行线的性质,后再在性质1的基础上推理论证行至2、3的正确性,从而使学生对知识的认识从感性上升到理性。

)1.生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角。

2.学生测量这些角的度数,把结果填入表内.角∠1∠2∠3∠4∠5∠6∠7∠8度数3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,检验你的猜想是否还成立?如果直线a与b不平行,你的猜想还成立吗?5.师生归纳平行线的性质平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.可让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质平行线的判定①因为a∥b, ①因为∠1=∠2,所以∠1=∠2 所以a∥b.②因为a∥b, ②因为∠2=∠3,所以∠2=∠3, 所以a∥b.③因为a∥b, ③因为∠2+∠4=180°,所以∠2+∠4=180°, 所以a∥b.6.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.7.进一步研究平行线三条性质问题:在上节课中,我们利用平行线的判定方法1,推出了平行线的判定方法2,类似地,大家能根据平行线的性质1,推出性质2吗?可以先放手让学生思考、分析,后教师总结:性质1、性质2的不同就在于性学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.因为a∥b,所以∠1=∠2(两直线平行,同位角相等);又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.学生仿照以下说理,说出如何根据性质1得到性质3的推理过程。

8.平行线性质应用.例1:如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?教师可根据学生情况,启发提问:①梯形这一条件如何使用?②∠A与∠D、∠B 与∠C的位置关系如何,数量关系呢?为什么?解:因为AB∥CD所以∠A+∠D=180°∠B+∠C=180°于是∠D=180°-∠A=180°-100°=80°∠C=180°-∠B=180°-115°=65°所以梯形的另外两个角分别是80°、65°。

例2:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.分析:本题平行线的判定和性质的综合应用, 要引导学生观察图形,考察已知角的数量关系以及所求角与已知角的关系,从而确定解题的思路。

解:因为∠A=∠2=75°所以AB∥CE所以∠B=∠1=53°(教学说明:在学完本节知识后,学生容易出现一个知识负迁移,认为同位角相等,内错角相等,同旁内角互补,为此在学生动手探究的过程中,不仅要关注学生对直线a与b平行时被第三条直线所截形成的同位角、内错角、同旁内角之间数量关系的探索,同时也要关注学生对直线a与b不平行时同位角、内错角、同旁内角之间关系变化的认识,从而突出同位角相等,内错角相等,同旁内角互补的前提条件。

虽然现在对于推理论证的要求还不高,为了培养学生思维的严谨性和条理性,无论在性质的证明还是在例题教学中,要求学生尽可能的将推理过程书写规范。

)三、巩固训练熟练技能(设计说明:通过不同形式的练习,巩固学生所学知识,训练学生灵活应用知识解决问题的能力)(一)、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )(二)、填空题.1.如图(1),若AD∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°; 若DC∥AB,则∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.(1) (2) (3)2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.3.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).(三)、解答题1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.2.如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.参考答案:(一)1、× 2、∨(二)1、∠1=∠5 ∠8=∠4,∠ABC+∠BAC=180°; ∠2=∠7 ∠3=∠6,∠ABC+∠BCD=180°;2、北偏东56°;两直线平行,内错角相等。

3、内错角相等,两直线平行;平行于同一条直线的两直线平行。

(三)1、∠4=70°(过程略)2、解:因为DE∥CB所以∠1=∠DCB又因为∠1=∠2所以∠2=∠DCB所以CD平分∠ECB.四、总结反思,情意发展(设计说明:设计了以下三个问题,让学生围绕这三个问题,先反悟,后谈自身的收获和疑问,最后师生共同归纳总结)1.本节课你认为自己解决的最好的问题是什么?2.本节课你有哪些收获?3.在本节课的学习中,你还存在哪些疑问?(教学说明:通过对以上三个问题的思考引导学生回顾整节课的学习历程,让学生对知识有一个沉淀、吸收的过程。

此外,由于学生的学习基础、反思归纳能力不同,所以不同的学生可能会有不同的收获,学生之间的这种差异也是一种学习资源。

通过教师为学生提供的交流互动的平台,使学生倾听别人的想法、意见、收获的同时,不断完善自己的认识,形成完整的知识结构.)五、课堂小结1.本节主要学习了平行线的三条性质。

2.主要用到的思想方法是转化思想。

3.注意的问题平行线的判定方法与性质的区别。

六、布置课后作业:课本23页习题4、5、6、12七、拓展延伸已知:如图,AB ∥CD,EF分别交AB、CD于E、F,EG平分∠AEF ,FH平分∠EFD ,EG与FH平行吗?为什么?答:EG ∥FH因为AB ∥CD所以∠AEF=∠EFD又因为EG平分∠AEF ,FH平分∠EFD所以∠GEF =1/2∠AEF ∠EFH =1/2∠EFD 所以∠GEF= ∠EFH所以EG ∥FH(教学说明:此题是平行线的性质与判定的综合应用,实际上本题证明了两平行线被第三条直线所截形成的内错角的角平线是互相平行的,可在此基础上提出问题:两平行线被第三条直线所截形成的同位角的角平线有什么关系?同旁内角的呢?)【评价与反思】本节课研究的内容是平行线的性质,它是在学生学习了平行线的判定之后来进行学习,因此,在引入环节,就充分考虑到这一点,从复习平行线的判定入手,创设一个疑问来激发学生思考,进而引导学生进行平行线性质的探究。

相关文档
最新文档