大学物理稳恒磁场课件
合集下载
大学物理课件第11章稳恒磁场

p
已知:I、c
解:
0
B AO
0I 4a
(cos 1
cos 2 )
B
I cP
•
Ia
0 I [cos 0 cos( )]
A
4a
2
0I 4c sin
(1 cos )
2
所以 B p BAO BOB
2
方向
同理
BOB
0I 4c sin
(1 cos )
2
0I 2c sin
(1 cos )
r0
OR
dB dB
p•
dBx
X
方向
Idl r0
分析对称性、写出分量式
B
dB 0
Bx
dBx
0 4
Idl sin
r2
统一积分变量
Y
sin R r
Bx
dBx
0 4
Idl sin
r2
I Idl
O
0 IR 4r 3
dl
0 IR 4r 3
2R
r0
R x
2(
0 IR 2
R2 x2
)3
R
•
a LI
a
I
A a
•P
0 0I 5 105T S•
•T
4a R点
方向
BR BLA BLA
0 I (cos 0 cos 3 ) 0 I (cos 1 cos )
4a
4 4a 4
1.71 105T
方向 •
S点
BLA
0I 4a
(cos 0
cos
3
4
)
BLA
0I 4a
(cos
《大学物理课件》稳恒磁场

B 0I 2 r
0rR
B dl L
0
r2 R2
I
2 rB
0r 2
R2
I
B
0 Ir 2 R2
I
RR
r B
I . dB
dI B
B 的方向与 I 成右螺旋
0 r R,
r R,
B
0 Ir 2 R2
B 0I 2 r
I
R
0I B
2 R
oR r
第三节 磁场对电流和运动电荷的作用
一、安培力(载流导线在磁场中所受的宏观力)
2R
三.运动电荷的磁场。
电流激发的磁场可以视为所有运动电荷所激发的磁 场叠加,取载流导线上电流元 Idl ,其截面积为S ,
单度位为体v积,每内个作电定荷向带运电动为的q电。荷数为 n ,定向运动速
Idl
I
r
p
S
q
v
I
I dl
代入
dB 0 4
Idl r r3
0 4
nqsvdl r r3
在个运电动流电元荷中(有q, 电荷v)数在为rd处N的磁n感dV应,强则度一
r
r0
sin
r0 csc
r0
x 1
dB p y
所以
B 0
4
Ir0 csc2 d sin r02 csc2
0I 2 sin d
4 r0 1
Idz
z 2
dB
0 I 4 r0
(cos1
cos2 )
oz x 1
p
y
1, 2 分别是直电流
始点与终点处电流流向与
r
的夹角
讨论(1)若直导线视为“无限长”,
第6章稳恒磁场925优秀课件

磁场对外的重要表现为: (1) 磁场对运动电荷(电流)有磁力作用 (2) 磁力作功,表明磁场具有能量。 2. 磁感应强度
•磁矩: dABsIiSdn
I
pm
pm与I组成右螺旋
试验线圈
• 磁场方向: 规定线圈在稳定平衡
位置时的磁矩的方向
pm
• 磁感应强度的大小:
S
B
当实验线圈从平衡位置转过900时
,线圈所受磁力矩为最大,且
dB 4 0qn urs2dlr04 0 qnrs2udlr0
电流元Idl中载流子(运动电荷)有 dN个
dNnsdl
B
dB dN
4 0 q(ndsN )d ur2lr0
B 40 qur2 r0
毕奥-沙伐尔定 律的微观形式
q
u
r
p
B
u
r
p
B
五、毕奥-萨伐尔定律的应用
1.载流直导线的磁场
已知:真空中I、1、 2、a
B2dl220rI2r2d20Id
B
d BdlB0IdA0Id
l A2 B2
dl 0I1I2lndL
2 2d
A L2 B
0I(d0d)0
2 0
0Id00Id
0 2 2
A
lBdl
0
B
B i lB dll B i dl
lBidl
0
3 . 积分回路环绕多个载流导线
lBdl0 Ii
方向:
Ekdl
用非静电场强定义电源电动势
No Image
No Image
如果对整个回路进行积分,即非静电场强场的环流 。
No Image
这时电动势的方向与回路中电流的方向一致。
•磁矩: dABsIiSdn
I
pm
pm与I组成右螺旋
试验线圈
• 磁场方向: 规定线圈在稳定平衡
位置时的磁矩的方向
pm
• 磁感应强度的大小:
S
B
当实验线圈从平衡位置转过900时
,线圈所受磁力矩为最大,且
dB 4 0qn urs2dlr04 0 qnrs2udlr0
电流元Idl中载流子(运动电荷)有 dN个
dNnsdl
B
dB dN
4 0 q(ndsN )d ur2lr0
B 40 qur2 r0
毕奥-沙伐尔定 律的微观形式
q
u
r
p
B
u
r
p
B
五、毕奥-萨伐尔定律的应用
1.载流直导线的磁场
已知:真空中I、1、 2、a
B2dl220rI2r2d20Id
B
d BdlB0IdA0Id
l A2 B2
dl 0I1I2lndL
2 2d
A L2 B
0I(d0d)0
2 0
0Id00Id
0 2 2
A
lBdl
0
B
B i lB dll B i dl
lBidl
0
3 . 积分回路环绕多个载流导线
lBdl0 Ii
方向:
Ekdl
用非静电场强定义电源电动势
No Image
No Image
如果对整个回路进行积分,即非静电场强场的环流 。
No Image
这时电动势的方向与回路中电流的方向一致。
大学物理恒定磁场PPT课件

qv
(3) 当正电荷在某点的速度 v
方向于磁感应强度
B
的方向
之间F 的 夹qv角方为B向垂时直运,于所动v受电与磁荷场B在力组磁成场的F中平面受q.力vB sin 。
磁感强度 B 的定义
B 的方向: 小磁针平衡时N 极指示的方向为磁场的方向。
B 的大小:
B Fmax qv
单位:特斯拉
1( T ) 1 N (A m)-1
二、磁通量 磁场的高斯定理
静电场
定义
垂直通过某一曲面的磁感线的条数
中的电 通量
1、均匀磁场
B S BS cos
单位:韦伯(Wb)
en
s s
B
2、不均匀磁场
d B dS
B dS
B
S d S B dS
s
B
dS2 S2
dS1
1
B1
B2
dΦ1 B1 dS1 0
dΦ2 B2 dS2 0
2π
d2
d1
dx x
x Φ 0 Il ln d2
2 π d1
四、 毕奥—萨伐尔定律
一、毕奥—萨伐尔定律 1、 电流元 Idl产生的磁场
由毕奥和萨伐尔实验总结出:
dB
0
4π
Idl sin
r2
dB
0 4
Idl er
r2
r
dB
P* r Idl
dB
Idl
I
0 真空磁导率 0 4 107 N / A2
五、磁场中的高斯定律 B cos dS 0
B
S
ds
0
S
磁场中的高斯定律:
通过任意闭合曲面的磁通量等于零(磁
场是无源场) 。
大学物理稳恒磁场 ppt课件

2
NI R
B2
0 NI R2
2(R2 x2 )32
R
O1
O2
x
(1) 电流方向相同:
B B1 B2
0 NI
2R
[1
(R2
R3
x2
3
)2
]
8.51105 T
(2) 电流方向相反:
B B1 B2
0 NI
2R
[1 pp(t课R件2
R3
x
2
)
3 2
]
4.06 105 T
R 2 Indx R2 x2 3/2
B
dB 0nI
2
x2 x1
R2dx μ0nI ( R2 x2 3/2 2
x2 R2 x22
x1 ) R2 x12
B
0nI
2
cos2
ppt课件
cos1
27
讨论
B
0nI
2
cos2
cos1
I
在弧长为 dl 的线元内 流过的电流元为:
dI
dI I dl
真空的磁导率ppt课件
13
O
r P
Idl
dB
dB
Idl
P r
dB
I
电流元的磁感应线在垂直于电流元的平面内 是圆心在电流元轴线上的一系列同心圆。
磁感应线绕向与电流流向成右手螺旋关系
磁场叠加原理: B dB
oIdl rˆ
ppt课L件
L 4r 2
dB
μ0 4π
NI R
B2
0 NI R2
2(R2 x2 )32
R
O1
O2
x
(1) 电流方向相同:
B B1 B2
0 NI
2R
[1
(R2
R3
x2
3
)2
]
8.51105 T
(2) 电流方向相反:
B B1 B2
0 NI
2R
[1 pp(t课R件2
R3
x
2
)
3 2
]
4.06 105 T
R 2 Indx R2 x2 3/2
B
dB 0nI
2
x2 x1
R2dx μ0nI ( R2 x2 3/2 2
x2 R2 x22
x1 ) R2 x12
B
0nI
2
cos2
ppt课件
cos1
27
讨论
B
0nI
2
cos2
cos1
I
在弧长为 dl 的线元内 流过的电流元为:
dI
dI I dl
真空的磁导率ppt课件
13
O
r P
Idl
dB
dB
Idl
P r
dB
I
电流元的磁感应线在垂直于电流元的平面内 是圆心在电流元轴线上的一系列同心圆。
磁感应线绕向与电流流向成右手螺旋关系
磁场叠加原理: B dB
oIdl rˆ
ppt课L件
L 4r 2
dB
μ0 4π
物理学稳恒磁场课件

B内ab 由安培环路定理
0
N l
abI
n N l
b B内a
c d
B 0nI
均匀场
由安培环路定理可解一些典型的场
无限长载流直导线
密绕螺绕环
匝数
B 0I 2 r
Ir
B 0 NI 2 r
无限大均匀载流平面
B 0 j
2
(面)电流的(线)密度
场点距中心
的距离 r
电流密度
I
Idl
B dF
安培指出 任意电流元受力为
dF Idl B
安培力公式
整个电流受力 F Idl B
l
例1 在均匀磁场中放置一半径为R的半圆形导线, 电流强度为I,导线两端连线与磁感强度方向夹角 =30°,求此段圆弧电流受的磁力。
解:在电流上 任
ab 2R
取电流元 Id l
(b)
洛 仑兹力是相对论不变式 B 磁感强度
(Magnetic Induction)
或称磁通密度 (magnetic flux density) 单位:特斯拉(T)
§3 磁力线 磁通量 磁场的高斯定理
一.磁力线
1. 典型电流的磁力线
2. 磁力线的性质
无头无
与电流
与电流成右
尾 闭 套连
手螺旋关系
合二曲. 线磁通量
IS
(体)电流的(面)密度
如图 电流强度为I的电流通过截面S
若均匀通过 电流密度为 J I S
(面)电流的(线)密度
I
如图 电流强度为I的电流通过截线 l
l
若均匀通过 则
j I l
§6 磁力及其应用
一 1..洛带仑电兹粒力子在磁f场m 中受qv力
《稳恒磁场》PPT课件

d B 0nd lSv q r
4 π r3
B
q+
r
v
又 dNndls
故运动电荷的磁场
B d dN B 4 π 0q v r 3r
B
q
r
v
7-4 安培环路定律
预习要点 1. 安培环路定律的内容及数学表达式是怎样的?注意
其中电流正、负号的规定. 2. 注意安培环路定律所描述的稳恒磁场的性质. 3. 领会用安培环路定律计算磁感应强度的方法.
23一磁场叠加原理一磁场叠加原理几个电流共同激发磁场任意电流是无数小电流首尾相接组成其上任一电流元在某场点产生的磁感应强度为任意载流导线在点p处的磁感强度电流元在空间一点p产生的磁感应强度
《稳恒磁场》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
一、安培环路定律
合路在径真的空积的分稳的恒值磁(场即中B ,的磁环感流应)强,度等于B沿0任乘一以闭该
闭合路径所包围的各电流的代数和.
n
安培环路定理 Bdl 0 Ii
i1
电流I正负的规定: I与L成右螺旋时, I为正;反
之为负.
在场的理论中,把环流不等于零的场称为涡旋 场,所以,稳恒磁场是涡旋场.
大小与 q,v无关
磁感应强度大小定义为:B Fmax qv
二、洛由伦实兹验电力荷量为q的电荷以速度v
在磁场中运动时受到的磁场力:
Fm
F m q v B
运动电荷在磁场中所受的力
q+
B
大学物理课件 第9章 稳恒磁场

向里
0 I 0 I B2 (sin 2 sin 1 ) (sin 1) 4b 4a cos 向外
则: B p
0 I
4a cos
(sin 1 cos )
向外
2)圆形电流轴线上的磁场
电流元产生的磁感应强度大小:
0 Idl sin 0 Idl dB 2 4 4 r 2 r
6
3a b
2
q 2
a 2 IS
例7:求旋转的带电圆盘的圆心处及轴线上的B。设圆盘的电荷 面密度为σ,半径为R,旋转的角速度为ω。 等效电流: 圆心:
max
磁感应强度的大小:
M max B Pm
Bb Ba a Bc
三、磁通量
1)磁力线(Magnetic force line) 为了形象的描述磁场,引入磁力线。
大小:通过垂直于磁力线单位面积的磁 力线数等于这一点磁感应强度的大小; 方向:曲线上任一点的切线方向。
b
c
B
磁力线特性: (1)磁力线是环绕电流的无头无尾的闭合曲线,每条磁力线与 电流相互套合,磁场是涡旋场、无源场; (2)任何两条磁力线在空间不相交; (3)磁力线的环绕方向与电流方向之间遵守右螺旋法则。
则电流:
由毕-萨定律:
I qnvS
0 qnvSdlsin(v , r ) dB 4 r2
dN nSdl
则一个粒子产生的磁场大小为:
0 qv r dB 0 qv sin(v , r ) B B 2 dN 4 4 r 3 r
由于同方向运动的正负电荷产生的电流方 向相反,故产生的磁感应强度相反。
(2)线元磁矩: