齿轮传动的载荷系数

合集下载

齿轮的载荷系数

齿轮的载荷系数

02
03
利用数学统计方法和图表 分析手段,分析载荷系数 与各种因素之间的关系。
比较不同实验条件下的载 荷系数变化,找出影响载 荷系数的主要因素。
04
对实验结果进行误差分 析和不确定性评估,提 高数据可靠性。
结论与展望
总结实验研究成果,阐述载荷系数的变化规律和影响因 素。
展望未来齿轮载荷系数研究的发展方向和应用前景。
案例三
某型号齿轮的接触强度不足,导致齿面点蚀严重。通过增大载荷系数、优化几何参数和采用合适的热处理工 艺后,齿轮的接触强度得到提高,延长了使用寿命。
04 载荷系数与齿轮寿命关系
齿轮疲劳寿命概念
齿轮疲劳寿命是指齿轮在循环载荷作 用下,从开始使用到出现疲劳破坏所 经历的时间或循环次数。
疲劳破坏通常发生在齿轮的齿根部位, 表现为裂纹的萌生和扩展,最终导致 齿轮断裂或点蚀失效。
动态载荷分析
通过对齿轮传动系统进行 动力学建模,分析齿轮在 动态载荷作用下的响应, 得到动载荷系数。
振动与冲击考虑
在计算动载荷系数时,需 要考虑齿轮传动过程中产 生的振动和冲击对载荷的 影响。
阻尼与刚度影响
齿轮传动系统的阻尼和刚 度特性对动载荷系数也有 显著影响,需要在计算中 予以考虑。
有限元法应用
斜齿轮载荷系数特点
同时受径向和轴向载荷作用,载荷系数需同时 考虑两个方向力影响;
载荷分布不均匀,轮齿接触线为斜线,因此载 荷系数相对较高;
适用于高速、重载场合,需要选择较高的载荷 系数以保证安全性。
锥齿轮载荷系数特点
受径向、轴向和周向载荷作用,载荷系数需全面考虑 三个方向力影响;
载荷分布极不均匀,轮齿接触线为曲线,载荷系数较 高;
适用于相交轴传动,需选择较高的载荷系数并关注轮 齿的弯曲和接触强度。

机械设计基础复习精要:第11章 齿轮传动

机械设计基础复习精要:第11章 齿轮传动

133第11章 齿轮传动11.1考点提要11.1.1 重要的术语及概念软齿面、硬齿面、许用应力、弯曲疲劳强度、接触疲劳强度、接触应力、弯曲应力、点蚀、胶合、载荷系数、齿宽系数、齿形系数、应力集中系数、应力循环次数、齿轮精度等级。

11.1.2 许用应力的计算接触疲劳强度的许用应力为: HH HN H S K lim ][σσ= (11—1) 式中:HN K 称为寿命系数,由应力循环次数确定;lim H σ是齿面材料的接触疲劳极限;H S 为安全系数。

即使两齿轮采用同样的材料和热处理,由于两齿轮会有齿数不同,所以应力循环次数也就不同,从而导致寿命系数HN K 不同,因此许用应力也不同。

只有两齿轮齿数相同或齿数虽不同但都按无限寿命取相同的寿命系数HN K 并取相同的安全系数H S ,许用应力才相同。

弯曲疲劳强度的许用应力为:FFE FN F S K σσ=][ (11—2) 式中:环次数确定)为寿命系数(由应力循FN K ;FE σ为齿面材料的弯曲疲劳极限;F S 为安全系数。

即使两齿轮采用同样的材料和热处理,由于两齿轮会有齿数不同,所以应力循环次数也就不同,从而导致寿命系数FN K 不同,因此许用应力也不同。

如果两齿轮齿数相同或齿数虽不同但都按无限寿命取相同的寿命系数FN K 并取相同的安全系数F S ,许用应力才会相同。

为实现等强度设计,如果采用软齿面(HBS 350≤),一般小齿轮比大齿轮硬度高30-50HBS,小齿轮对大齿轮有冷作硬化作用。

如采用硬齿面(HBS 350>),在淬火处理中难以做到如此的硬度差,设计时按同样硬度设计。

要注意:如果是开式齿轮传动,则极限应力要乘以0.7,由于极限应力是按单向转动所获得的数据,如果是双向转动,则也要乘以0.7。

11.1.3齿轮的失效形式和计算准则齿轮的失效形式有五种:(1)轮齿折断。

减缓措施:增大齿根的圆角半径,提高齿面加工精度,增大轴及支承的刚度。

齿轮传动扭矩计算公式

齿轮传动扭矩计算公式

齿轮传动扭矩计算公式
齿轮传动是一种机械传动方式,通过齿轮之间的啮合,将动力从一个轴传递到另一个轴,通常用于变速和传递大功率。

齿轮传动中的扭矩传递是其最主要的功能之一。

以下是两种常见的齿轮传动扭矩计算公式:
1. T = K × P ×η / ω
T 表示齿轮传动所需扭矩。

K 表示载荷系数,与齿轮的类型、材料、精度等因素都有关系。

P 表示功率,单位为 W。

η 表示传动效率,通常是一个小于1的值。

ω 表示角速度,单位为 rad/s。

2. T = KmZF
T 为齿轮的扭矩。

K 为齿轮传动的效率系数。

m 为齿轮的模数。

Z 为齿数。

F 为齿面的有效载荷系数。

以上信息仅供参考,如有需要,建议咨询机械工程专家或查阅相关文献资料。

标准直齿圆柱齿轮传动的强度计算

标准直齿圆柱齿轮传动的强度计算

标准直齿圆柱齿轮传动的强度计算一、轮齿的受力分析图6-6所示为齿轮啮合传动时主动齿轮的受力情况,不考虑摩擦力时,轮齿所受总作用力f n将沿着啮合线方向,f n称为法向力。

f n在分度圆上可分解为切于分度圆的切向力f t和沿半径方向并指向轮心的径向力f r 。

圆周力f t=n径向力 f r= f t tg n (6-1)法向力 f n=n式中:d1为主动轮分度圆直径,mm;为分度圆压力角,标准齿轮=20°。

设计时可根据主动轮传递的功率p1(kw)及转速n1(r/min),由下式求主动轮力矩t1=9.55×106×(n mm)(6-2)根据作用力与反作用力原理,f t1=-f t2,f t1是主动轮上的工作阻力,故其方向与主动轮的转向相反,f t2是从动轮上的驱动力,其方向与从动轮的转向相同。

同理,f r1=-f r2,其方向指向各自的轮心。

二、载荷与载荷系数由上述求得的法向力f n 为理想状况下的名义载荷。

由于各种因素的影响,齿轮工作时实际所承受的载荷通常大于名义载荷,因此,在强度计算中,用载荷系数k 考虑各种影响载荷的因素,以计算载荷f nc 代替名义载荷f n 。

其计算公式为(6-3)式中:k 为载荷系数,见表6-3。

表6-3 载荷系数k二、齿根弯曲疲劳强度计算齿根处的弯曲强度最弱。

计算时设全部载荷由一对齿承担,且载荷作用于齿顶,将轮齿看作悬臂梁,其危险截面可用30o 切线法确定,即作与轮齿对称中心线成30o 夹角并与齿根过渡曲线相切的两条直线,连接两切点的截面即为齿根的危险截面,如图6-7所示。

运用材料力学的方法,可得轮齿弯曲强度校核的公式为= ≤或σf =≤(6-4)或由上式得计算模数m的设计公式m≥ (6-5)式中:=b/d1称齿宽系数(b为大齿轮宽度),由表6-4查取;称为齿形系数,由图6-8查取;[]为弯曲许用应力,由式6-8计算。

表6-4齿宽系数=b/d1三、齿面接触疲劳强度计算齿面接触疲劳强度计算是为了防止齿间发生疲劳点蚀的一种计算方法,它的实质是使齿面节线处所产生的最大接触应力小于齿轮的许用接触应力,齿面接触应力的计算公式是以弹性力学中的赫兹公式为依据的,对于渐开线标准直齿圆柱齿轮传动,其齿面接触疲劳强度的校核公式为≤或≤ (6-6)将上式变换得齿面接触疲劳强度的设计公式d1≥ (6-7)式中:“±”分别用于外啮合、内啮合齿轮;z e为齿轮材料弹性系数,见表6-5;z h为节点区域系数,标准直齿轮正确安装时z h =2.5;[σh]为两齿轮中较小的许用接触应力,由式6-9计算;u为齿数比,即大齿轮齿数与小齿轮齿数之比。

齿间载荷分配系数表

齿间载荷分配系数表

齿间载荷分配系数表
齿间载荷分配系数表通常是用于齿轮设计和计算的参考表格,其中列举了不同条件下的载荷分配系数。

这些系数反映了齿轮传动中齿轮之间承受载荷的分配情况,对于确定齿轮的尺寸、强度和耐久性至关重要。

这样的表格通常包括以下一些参数和信息:
1.齿轮类型:表格可能区分了不同类型的齿轮,如直齿轮、斜齿
轮、螺旋齿轮等。

2.载荷分配条件:表格中可能包含不同的载荷分配条件,例如轴
向载荷、径向载荷、正向旋转载荷、反向旋转载荷等。

3.工作环境和应用:考虑到不同的工作环境和应用场景,表格可
能提供了多个工况下的载荷分配系数。

4.材料和硬度:齿轮的材料和硬度对载荷分配系数也有影响,因
此表格可能包括了不同材料和硬度下的系数。

5.齿轮参数:齿轮的模数、齿数、压力角等参数也可能是表格中
的一部分。

这样的表格通常是通过理论计算和实验数据得出的,并由专业的齿轮工程师和设计者使用。

在实际的齿轮设计中,根据具体的工程要求和条件选择适当的载荷分配系数是非常关键的,以确保齿轮传动的可靠性和性能。

请注意,具体的齿间载荷分配系数表可能由不同的标准或文献提供,具体的数据和参数可能有所不同。

如果你有特定的要求,建议查
阅相关的齿轮设计手册或标准。

齿轮传动的载荷和应力

齿轮传动的载荷和应力

1. 齿轮传动的载荷计算(1) 直齿圆柱齿轮传动的受力分析圆周力:径向力:法向力:o d1——小齿轮的分度圆直径mmoα——分度圆压力角o T1——小齿轮传递的名义转矩(N.m)o P1为小齿轮所传递的功率(KW)o n1为小齿轮转速(rpm)作用在主动轮和从动轮上的力大小相等,方向相反。

主动轮上的圆周力是阻力,其方向与它的回转方向相反;从动轮上的圆周力是驱动力,其方向与它的回转方向相同;两轮所受的径向力分别指向各自的轮心。

齿面上的总法向力方向则为啮合点的法向方向,对于渐开线齿廓即为通过啮合点与基圆相切的啮合线方向。

(2) 斜齿圆柱齿轮传动的受力分析圆周力:径向力:轴向力:法向力:∙αt——端面分度圆压力角;∙αn——法向分度圆压力角;∙β——分度圆螺旋角;∙βt——基圆螺旋角。

(3) 直齿锥齿轮传动的受力分析法向力Fn集中作用在齿宽节线中点处,则Fn可分解为互相垂直的三个分力。

圆周力:径向力:轴向力:dm1——小齿轮齿宽中点分度圆直径mm;δ1——小锥齿轮分度圆锥角圆周力和径向力的方向判别与直齿圆柱齿轮判别方法相同,轴向力方向分别指向各自的大端。

由于锥齿轮传动两轴的空间交角为90°,因此存在以下关系:;。

负号表示方向相反。

(4) 齿轮传动的计算载荷齿轮承受载荷常表现为其传递的力矩或圆周力。

由上述力的分析计算所得出的圆周力为齿轮传动的名义圆周力。

实际工作中,由于各种因素的影响,齿轮实际承受的圆周力要大于名义圆周力。

考虑各种因素的影响,实际圆周力Ftc为:Ftc也称为计算载荷。

1)KA——使用系数。

2)KV——动载系数。

3) KHα和KFα——齿间载荷分配系数。

4) KHβ和KFβ——齿向载荷分布系数。

2. 齿轮传动应力分析齿轮传动工作过程中,相啮合的轮齿受到法向力Fn的作用,主要产生两种应力:齿面接触应力和齿根弯曲应力。

(1) 齿面接触应力σH齿轮传动工作中,渐开线齿面理论上为线接触,考虑齿轮的弹性变形,实际上为很小的面接触。

齿轮的载荷系数解析

齿轮的载荷系数解析

本书中介绍的齿轮传动计算方法只适用于一般精度及低速齿轮传动,故不 需作精确计算的直齿轮和β≤30°的斜齿圆柱齿轮的传动的Kα值可查下表。
1.对于硬齿面和软齿面相啮合小齿轮精度等不同时的 齿轮副,ka取其平均值,若大,则按精度等级较低 的取值。
2.对修形齿轮kFa=kHa=1
3.若kFa>eg/(eaYe),则取kFa=eg/(eaYe) 4.ea={1.88-3.2(1/z11/z2)}cosb,+用于外啮合,-用于 内啮合。
齿轮制造及装配的误差,轮齿受载后产生的
弹性变形,将使啮合轮齿的法向齿距Pb1与 Pb2不相等(见下图),因而轮齿就不能正 确啮合传动,齿轮传动瞬时传动比就不是定 值,就会产生角加速度,于是引起动载荷或
冲击。
•影响因数
主要因素有:基圆齿距(基节)偏差、齿形误差、圆周速 度、大小齿轮的质量、轮齿的啮合刚度及其在啮合过程中的 变化、载荷、轴及轴承的刚度、齿轮系统的阻尼特性等。 其中:齿轮的制造精度和圆周速度对动载荷系数影响最大, 精度越低,基圆齿距误差和齿形误差就越大。 为了减小动载荷,对于重要的齿轮可采用齿顶修缘,即对齿 顶一小部分渐开线齿廓适量修削。注意,若修缘量过大,不 仅重合度会减小,动载荷也不一定就相对减少。
改善齿向载荷分布状态的措施:
•1)适当提高零件的制造和安装精度; •2)增大轴、轴承及其支座的刚度,合理布置齿轮在轴上
的位置(尽可能采用对称支承,避免悬臂支承形式);
•3)将一对齿轮中的一个齿轮做成鼓形齿; •4)轮齿的螺旋角修形; •5)齿轮最好布置在远离转矩输入端的位置。
4.齿间载荷分配系数Kα
Kα是考虑同时啮合的各对轮齿间载荷分配不均的影响系数。 在齿面接触强度计算中记为 KH ,在轮齿弯曲强度计算中记为 KF

直齿圆柱齿轮传动的受力分析和载荷计算

直齿圆柱齿轮传动的受力分析和载荷计算

直齿圆柱齿轮传动的受力分析和载荷计算直齿圆柱齿轮传动的受力分析:图 9-8为一对直齿圆柱齿轮,若略去齿面间的摩擦力,轮齿节点处的法向力F n 可分解为两个互相垂直的分力:切于分度圆上的圆周力F t 和沿半径方向的径向力F r 。

(1)各力的大小图 9 - 8直齿圆柱齿轮受力分析圆周力(9-1)径向力(9-2)法向力(9-3)其中转矩(9-4)式中:T1 ,T2 是主、从动齿轮传递的名义转矩,N.mm ;d1 ,d2 是主、从动齿轮分度圆直径, mm ;为分度圆压力角;P是额定功率, kW ;n1 ,n2 是主动齿轮、从动轮的转速, r/min 。

作用在主动轮和从动轮上的各对应力大小相等,方向相反。

即:,,(2)各力的方向主动轮圆周力的方向与转动方向相反;从动轮圆周力的方向与转动方向相同;径向力F r 分别指向各自轮心 ( 外啮合齿轮传动 ) 。

9.4.2 计算载荷前面齿轮力分析中的F n 、F t 和F r 及F a 均是作用在轮齿上的名义载荷。

原动机和工作机性能的不同有可能产生振动和冲击;轮齿在啮合过程中会产生动载荷;制造安装误差或受载后轮齿的弹性变形以及轴、轴承、箱体的变形,会使载荷沿接触线分布不均,而同时啮合的各轮齿间载荷分配不均等,因此接触线单位长度的载荷会比由名义载荷计算的大。

所以须将名义载荷修正为计算载荷。

进行齿轮的强度计算时,按计算载荷进行计算。

(9-4)计算载荷(9 - 5)载荷系数(9- 6)式中:K是载荷系数;K A 是使用系数;K v 是动载系数;是齿向载荷分布系数;是齿间载荷分配系数。

1 .使用系数K A使用系数K A 是考虑由于齿轮外部因素引起附加动载荷影响的系数。

其取决于原动机和工作机的工作特性、轴和联轴器系统的质量和刚度以及运行状态。

其值可按表 9 - 3选取。

表 9-3使用系数K A工作机的工作特性工作机器原动机的工作特性及其示例电动机、均匀运转的蒸气机、燃气轮机蒸气机、燃气轮机液压装置电动机(经多缸内燃机单缸内燃机(小的,启动转矩大)常启动启动转矩大)均匀平稳发电机、均匀传送的带式或板式运输机、螺旋输送机、轻型升降机、机床进给机构、通风机、轻型离心机、均匀密度材料搅拌机等1.00 1.101.251.50轻微冲击不均匀传送的带式输送机、机床的主传动机构、重型升降机、工业与矿用风机、重型离心机、变密度材料搅拌机、给水泵、转炉、轧机、1.25 1.351.51.75中等冲击橡木工机械、胶积压机、橡胶和塑料作间断工作的搅拌机、轻型球磨机、木工机械、钢坯初轧机、提升装置、单缸活塞泵等1.50 1.601.752.00严重挖掘机、重型球磨机、橡 1.75 1.85 2.0 2.25冲击胶揉合机、落沙机、破碎机、重型给水泵、旋转式钻探装置、压砖机、带材冷轧机、压坯机等0或更大注: 1. 对于增速传动,根据经验建议取表中值的 1.1 倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档