9-1.3.1函数的单调性与导数第一课时

合集下载

函数的单调性与导数 课件

函数的单调性与导数   课件

【典型例题】
1.若函数f(x)=x3-ax2-x+6在(0,1)内单调递减,则实数a的取
值范围为( )
A.a≥1
B.a=1
C.a≤1
D.0<a<1
2.已知函数f(x)=x3-kx在区间(-3,-1)上不单调,则实数k的
取值范围是______.
3.(2013·天津高二检测)设函数f(x)=ax3+ 3 (2a-1)x2-6x
【解析】1.选A.因为f′(x)=3x2-2ax-1,f(x)在(0,1)内单调 递减,所以f′(0)≤0,f′(1)≤0,所以a≥1. 2.因为f′(x)=3x2-k.当k≤0时,f′(x)≥0,不合题意,舍 去,所以k>0. 令f′(x)=0,则 x k .
3
因为在(-3,-1)上函数不单调,
________,单调递增区间为_______.
3.讨论函数f(x)=x2-aln x(a≥0)的单调性.
【解题探究】1.解含有对数函数的问题,应注意什么?利用 导数求函数的单调区间,其实质是什么? 2.如何求多项式乘积形式函数的导数? 3.当函数的解析式中含有参数时,一般的处理思路是什么?
探究提示: 1.(1)要注意对数函数的定义域,即真数大于零.(2)求函数的单 调区间就是求不等式f′(x)>0(或f′(x)<0)的解集. 2.求多项式乘积式的导数,可以利用积的导数法则求解,也可以 把乘积式展开,利用和与差的导数法则求解. 3.当函数的解析式中含有参数时,一般的处理思路是对参数进 行分类讨论,然后在参数的不同情况下,分别求出结果.
x2
1 a
,
因为f(x)在(-∞,-3)上是增函数,即x<-3时,f′(x)>0恒成

函数的单调性与导数 公开课 ppt课件

函数的单调性与导数 公开课 ppt课件
解:(1)f '(x)=x3+3x= 3(x2+1)>0
所以函数f(x)=x3+3x在R上单调递增。 所以函数f(x)=x3+3x的单调增区间为R。
函数的单调性与导数 公开课
二、讲授新课-----典例精讲
例 3. 判断下列函数的单调性, 并求出单调区间:
(1) f(x)=x2-2x-3,
(2) f(x)=x2-2lnx
函数的单调性与导数 公开课
Байду номын сангаас
1.3.1函数的单调性与导数(第1课时)
函数的单调性与导数 公开课
一、新课导入------复旧知新
1.函数的单调性是怎样定义的?
一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2, 当x1<x2时,都有f(x1)<f (x2),那么就说f(x)在区间D上是增函数; 当x1<x2时,都有f(x1)>f (x2),那么就说f(x)在区间D上是减函数;
致形状如右图所示.
O1
4
x
函数的单调性与导数 公开课
二、讲授新课-----牛刀小试
练习. 设导函数y=f '(x)的图象如图,则其原函数可能为
( C)
(A) y y=f(x) (B) y y=f(x) o 1 2x o 1 2x
y y f '(x)
(C) y
(D) y
o 2x
y=f(x)
y=f(x)
函数的单调性与导数 公开课
四、巩固练习
判断函数f(x)=3x-x3的单调性, 并求出单调区间:
解:
f '(x)=3x-x3=3-3x2=-3(x2-1)=-3(x-1)(x+1) 当f '(x)>0,即-1<x<1时,函数f(x)=3x-x3 单调递增; 当f '(x)<0,即x>1或x<-1时,函数f(x)=3x-x3 单调递减; 所以函数f(x)=3x-x3的单调增区间为 (-1,1),单调

1.3.1函数的单调性和导数.pptx

1.3.1函数的单调性和导数.pptx
问 1)、为什么 y x2 4x 3 在 (, 2) 上是减函数,在 (2,) 上是增函数?
解答:, 2)、研究函数的单调区间你有哪些方法?
解答:, 2、确定函数 f(x)=2x3-6x2+7 在哪个区间内是增函数?哪个区间内是减函数? 解答:, 【探 究】 我们知道函数的图象能直观的反映函数的变化情况,下面通过函数的图象规律来研究。
5
学生继续探索,得出初步规律。几何画板演示,共同探究。
得到这个二次函数图象的切线斜率的变化与单调性的关系。(学生总结):
①该函数在区间(, 2) 上单调递减,切线斜率小于 0,即其导数为负;
在区间(2, ) 上单调递增,切线斜率大于 0,即其导数为正;
注:切线斜率等于 0,即其导数为 0;如何理解?
②就此函数而言这种规律是否一致?是否其它函数也有这样的规律呢? 2、先看一次函数图象; 3、再看两个我们熟悉的函数图象。(验证)
1
观察三次函数 y x3 的图象;(几何画板演示)
2
观察某个函数的图象。(几何画板演示)
指出:我们发现函数的单调性与导数的符号有密切的关系。这节课我们就来学习如何用导
数研究函数的单调性(幻灯放映课题)。
例1、 求证: y x3 1 在 (, 0) 上是增函数。
由学生叙述过程老师板书:
因为 y' (x3 1)' 2x2 , x (, 0) ,
学海无涯
所以 x2 0 ,即 y' 0 ,
所以函数 y x3 1 在 (, 0) 上是增函数。
注:我们知道 y x3 1 在 R 上是增函数,课后试一试,看如何用导数法证明。
在同一个直角坐标系中,不可能正确的是( )
2.已知函数 f (x) x ln x ,则( ) A.在 (0,) 上递增 B.在 (0,) 上递减

函数的基本性质

函数的基本性质
f(x1) f(x1) f(x2) f(x2) x1 x2o x2 x1 x
例1. 如图是定义在区间[-5, 5]上的函数 y=f(x), 根据图象说出函数的单调区间, 以及在每一单调区间 上, 它是增函数还是减函数? y
解: 函数的单调区
间有 [-5, -2), [-2, 1). [1, 3), [3, 5].
例题(补充). 如图是函数 y=f(x) 的图象, 其定义域 为[-p, p], x0 为何值时, 有f(x)≥f(x0), 或 f(x)≤f(x0)? 函数的最大值是多少? 最小值是多少? 解: (1) 当 x0 = - p 时, f(x)≥f(x0),
2
-p y
-p 2
1
这时函数取得最小值
o
-1
[解析] 任取 x1、x2,使得-1<x1<x2<1, 则 Δx=x2-x1>0. ax1x2+1x1-x2 Δy=f(x2)-f(x1)= , 2 x2 - 1 x - 1 1 2
∵-1<x1<x2<1,
2 ∴x1x2+1>0,x2 1-1<0,x2-1<0,
Байду номын сангаас
x1x2+1x1-x2 ∴ 2 <0, x1-1x2 - 1 2 ∴当 a>0 时,f(x2)-f(x1)<0, 故此时函数 f(x)在(-1,1)上是减函数, 当 a<0 时,f(x2)-f(x1)>0, 故此时 f(x)在(-1,1)上是增函数. 综上所述,当 a>0 时,f(x)在(-1,1)上为减函数, 当 a<0 时,f(x)在(-1,1)上为增函数.
• 3.函数单调性在图象上的反映:若f(x)是区间A上的单调增 函数,则图象在A上的部分从左向右是逐渐________ 的,若 上升 f(x)是单调减函数,则图象在相应区间上从左向右是逐渐 下降 的. ________ 取值 作差 , • 4.用定义证明单调性的步骤:__________ ,________ 变形 ,________ 定号 ,________. 结论 ________

高中数学课件-函数的单调性(示范课课件)

高中数学课件-函数的单调性(示范课课件)

思考4:如何用数学符号语言定义函 数的单调性?
y
图象在区间D逐渐上升
区间D内随着x的增大,y也增大
22
1
0 12
x
方案A:在区间(0,+∞ )上取自变量1,2,∵1<2, f(1)<f(2) ∴f(x)在 (0,+∞ )上, 图象逐渐 上升
方案B:
函数f (x)在区间(a,b)上有无数个自变量x, 使得当a x1 x2 b时,有f (a) f (x1) f (x2) f (b), 由此能否说明该函数f (x)在(a,b)上的图象一直保持上升趋势? 请你说明理由(举例或者画图)
说明:1.区间端点处若有定义写开写闭均可.无定义只能写开区间;
2.图象法判断函数的单调性:从左向右看图象的升降情况
练习1 根据下图说出函数的单调区间,以及在每 一单调区间上,函数是增函数还是减函数.
y 4 3
2
1
-1 O
2 4 5x
解:函数y=f(x)的单调区间有[-1,0),[0,2) ,[2,4), [4,5]
(1) 函数单调性是针对某个区间D而言的,显然D是定义域 I的一部分,因此单调性是函数局部性质;
x1、x2的三大特征: (2)((11))任x1、意x性2同属于一个单调区间
(2)x1、x2不相等,通常取 x1<x2
(3)不是所有的函数都有单调性;
例1. 如图是定义在闭区间[-5,5]上的函数 y = f(x)的
的任意两个自变量的值x1,x2,
当x1<x2时,都有f(x1 ) < f(x2 ) , 当x1<x2时,都有 f (x1 ) > f(x2 ) ,
那么就说在f(x)这个区间上是单调增 那么就说在f(x)这个区间上是单调

高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

x),所以
x-2<1-x,解得
3 x<2
②.
由①②得 1≤x<32. [答案] 1,32
[类题通法] 1.上题易忽视函数的定义域为[-1,1],直接利用单调性得 到不等式 x-2<1-x,从而得出 x<32的错误答案. 2.解决此类问题的关键是利用单调性“脱去”函数符号 “f”,从而转化为熟悉的不等式.若函数 y=f(x)在区间 D 上是增 函数,则对任意 x1,x2∈D,且 f(x1)<f(x2),有 x1<x2;若函数 y =f(x)在区间 D 上是减函数,则对任意 x1,x2∈D,且 f(x1)<f(x2), 有 x1>x2.需要注意的是,不要忘记函数的定义域.
由图象可知函数在(-∞,a]和[a,+∞ )上分别单调,因此 要使函数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x)在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区 间[1,2]上单调递减),从而 a∈(-∞,1]∪[2,+∞).
[类题通法] “函数的单调区间为 I”与“函数在区间 I 上单调”的区别 单调区间是一个整体概念,说函数的单调递减区间是 I,指 的是函数递减的最大范围为区间 I.而函数在某一区间上单调,则 指此区间是相应单调区间的子区间.所以我们在解决函数的单调 性问题时,一定要仔细读题,明确条件含义.
由函数的单调性求参数的取值范围 [例 3] (1)已知 y=f(x)在定义域(-1,1)上是减函数,且 f(1 -a)<f(2a-1),则 a 的取值范围是________. (2)已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实数 a 的取值范围.
(1)[解析]由题意可知--11<<12-a-a<1<1,1

初中数学:1.3.1函数的单调性与导数


练习
判断下列函数的单调性, 并求出单调区间:
例3 如图, 水以常速(即单位时间内注入水的体积相同)注 入下面四种底面积相同的容器中, 请分别找出与各容器对应 的水的高度h与时间t的函数关系图象.
h
h
h
h
O
t
(A)
O
t
(B)
O
t
(C)
O
t
(D)
一般地, 如果一个函数在某一范围内导数 的绝对值较大, 那么函数在这个范围内变化得 快, 这时, 函数的图象就比较“陡峭”(向上或 向下); 反之, 函数的图象就“平缓”一些.
可知 在此区
间内单调递减;
y
当 x = 4 , 或 x = 1时,
综上, 函数 图象
O1
4
的大致形状如右图所示.
x
题2 判断下列函数的单调性, 并求出单调区间:
解: (1) 因为
, 所以
因此, 函数 (2) 因为

上单调递增.
, 所以

, 即 时, 函数

, 即 时, 函数
单调递增; 单调递减.
题2 判断下列函数的单调性, 并求出单调区间:
也能使f(x)在这个区间上单调,
所以对于能否取到等号的问题需要单独验证
增例2:
本题用到一个重要的转化:
例3:方程根的问题 求证:方程
只有一个根。
作业:
已知函数f(x)=ax³+3x²-x+1在R上是减函数, 求a的取值范围。
解:

内是减函数.
由 的递减区间是 函数.
, 解得 , 即函数
, 所以函数

内是减
一、求参数的取值范围

第一章 1.3 1.3.1 函数的单调性与导数

解析:令f'(x)=x(x-2)<0,解得0<x<2,所以f(x)在区间(0,2)内单调递 减.
答案:(0,2)
-3-
目标导航
知知识识梳梳理理
重难聚焦
典例透析
【做一做 1-2】
下列区间中,函数
f(x)
=
1+ln ������
������
在其上是单调递增
的是 ( )
A.(0,1) C.(1,e)
B.(0,e)
的左端点的值代入f(x),检验其值为零(或为正),即证得f(a)≥0;若 f'(x)<0,说明f(x)在区间(a,b)内是减函数,只需将所给的区间的右端 点的值代入f(x),检验其值为零(或为正),即证得f(b)≥0.
例如:求证:当x>0时,ex>x+1. 证明:令f(x)=ex-(x+1),则f'(x)=ex-1. 因为x>0,所以f'(x)>0,即函数f(x)在(0,+∞)内单调递增,所以 f(x)>f(0)=0,故ex>x+1.
试画出函数y=f(x)的大致图象.
分析:根据函数y=f(x)在某个区间上导数f'(x)的符号,可以得到函
数y=f(x)的单调性,即函数y=f(x)图象的“上升下降”趋势,从而画出函
数y=f(x)的大致图象.
-12-
题型一
题型二
题型三
目标导航
知识梳理
重难聚焦
典例透析
解:由①②③可知函数 y=f(x)在区间(-∞,-1)和
重难聚焦
典例透析
2.一般地,如果一个函数在某一范围内导数的绝对值较大,那么函 数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或 向下);反之,函数的图象就“平缓”一些.

函数的单调性与导数(说课)


05 课程总结
本节课的收获
01
理解了函数的单调性与导数的关系
通过本节课的学习,学生们能够理解函数的单调性与其导数之间的关系,
掌握利用导数判断函数单调性的方法。
02
掌握了求导的基本法则
学生们学会了使用求导的基本法则,如链式法则、乘积法则、商的求导
法则等,能够熟练地求出函数的导数。
03
增强了数学思维能力
04 导数与函数的单调性
导数与单调性的关系
01
02
03
导数大于零
函数在该区间内单调递增。
导数小于零
函数在该区间内单调递减。
导数等于零
函数可能存在拐点或极值 点。
单调性判定定理的应用
判断函数单调性
通过求导数并分析导数的 正负来判断函数的单调性。
确定极值点
通过导数为零的点来确定 可能的极值点,并结合单 调性判断是否为极值点。
通过本节课的学习,学生们不仅掌握了相关的数学知识,更重要的是培
养了他们的数学思维能力,如逻辑推理、抽象思维和归纳演绎等。
课程中的不足与改进
部分学生对于求导法则的运用还不够熟练
在练习过程中,发现部分学生对于求导法则的运用还不够熟练,需要在课后加强练习和巩固。
部分学生对单调性与导数的关系理解不够深入
在讨论单调性与导数的关系时,发现部分学生对其理解不够深入,需要在后续课程中加强这方面的讲解和练习。
详细描述
基本初等函数的导数公式包括指数函数、对数函数、幂函数、三角函数和反三 角函数的导数。复合函数的导数法则涉及到内外函数的导数计算,以及链式法 则的应用。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。

导数与函数的单调性第一课时.ppt


导数与函数单调性
观察函数y=x2-4x+3的图象上的点的切线:
y
0
. . . .. ..
2
总结:该函数在区间 (-∞,2)上递减, 切线斜率小于0,即其 导数为负,在区间(2, +∞)上递增,切线斜 率大于0,即其 导数为正.而当x=2时 其切线斜率为0,即导 x 数为0.函数在该点单 调性发生改变.
y y
y f ( x)
1 2
x o
y
y f ( x)
1 2 x
y f '( x )
2 x
o
o
(A)
y
(B)
y
y f ( x)
2
y f ( x)
1 2
x
o
1
x
o
(C)
(D)
课 堂 小结
1、利用导数法确定函数的单调性及单调区间 2、利用导数法确定函数的大致图像
教学目标
1 从感性上认识函数单调性与导数之间的关系,体
会由特殊到一般的、数形结合的研究方法。
2.掌握如何求简单高次函数单调性的一般方法。
3 能由导函数信息绘
1 过去我们求函数单调性有什么办法?
2 如何判断下列函数的单调性呢?
(1) y x 2 x x;
3 2
附近几乎没有升降
试画出函数 f ( x ) 图象的大致形状。 解: f ( x )的大致形状如右图:
变化,切线平行x轴
y f ( x)
y A B
这里,称A,B两点为“临界点”
o
2
3 x
y 设 f '( x )是函数 f ( x ) 的导函数, f '( x )的图象如 右图所示,则 y f ( x ) 的图象最有可能的是( C )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

独立自学
1.回顾各函数的导函数 2.想一想函数单调性的定义是什么?
3.阅读书本p22-23页掌握函数的单调性和导数之间的关系并讨论以下 函数的单调性。
f ( x) x 3x
3
2
引导探究
函数 y = f (x) 在给定区间 G 上,当 x 1、x 2 ∈G 且 x 1< x 2 时 1)都有 f ( x 1 ) < f ( x 2 ), 则 f ( x ) 在G 上是增函数; 2)都有 f ( x 1 ) > f ( x 2 ), 则 f ( x ) 在G 上是减函数; G=(a,b) y y
课题导入
引例. 内是增函数?在哪个区间内是减函数?
3 2 f ( x ) x 3 x 确定函数 在哪个区间
函数单调性的定义是讨论函数单调性的基本方 法,但有时十分麻烦,尤其当函数的解析式复 杂时(如引例) 这里就需要寻求一种新的方法
1.3.1函数的单调性和导数
第一课时
目标引领
1.理解函数的单调性与导数的关系 2.会用导数求解函数的单调区间
观察下面一些函数的图象, 探讨函数的单调性与其导函 数正负的关系.
y y=x y
y= x2 y
y=
x3
y
y
x O
1 x
x
O
x x O
O
在某个区间(a,b)内,如果 f ( x) 0 ,那么函数
y f ( x)在这个区间内单调递增; 如果 f ( x) 0 ,那
么函数 y
f ( x)
(1) f ( x) x 2 x 4;
2
(2) f ( x) e x;
x
(3) f ( x) 3x x ;
3
(4) f ( x) x x x.
3 2
目标升华
1、求可导函数f(x)单调区间的步骤: (1)求f’(x) (2)解不等式f’(x)>0(或f’(x)<0) (3)确认并指出递增区间(或递减区间) 2、证明可导函数f(x)在(a,b)内的单调性的方法:
在(- ∞,+∞)上是 增函数
(1)函数的单调性也叫函数的增减性;
(2)函数的单调性是对某个区间而言的,它是个局部概 念。这个区间是定义域的子集。 (3)单调区间:针对自变量x而言的。 若函数在此区间上是增函数,则为单调递增区间;
若函数在此区间上是减函数,则为单调递减区间。
以前,我们用定义来判断函数的单调性.在假设x1<x2的 前提下,比较f(x1)<f(x2)与的大小,在函数y=f(x)比较复杂 的情况下,比较f(x1)与f(x2)的大小并不很容易.如果利用 导数来判断函数的单调性就比较简单.
o a b x o 若 f(x) 在G上是增函数或减函数, 则 f(x) 在G上具有严格的单调性。
a
b
x
G 称为单调区间
Байду номын сангаас念回顾
画出下列函数的图像,并根据图像指出每个函数的单调区间
1 y x
y
y x 2x 1
2
y 3
y
x
y
o
x
o
1
x
1 o
x
在(- ∞ ,0)和(0, +∞) 在(- ∞ ,1)上是减 函数,在(1, +∞)上 上分别是减函数。但在定 是增函数。 义域上不是减函数。
在这个区间内单调递减.
如果恒有 f ' ( x) 0 ,则 f ( x) 是常数。
引导探究
1.在区间(a,b)内,若f′(x)>0,则f(x)在此
区间上单调递增,反之也成立吗?
提示:不一定成立.比如 y = x 3 在 R 上为增函 数,但其在0处的导数等于零.也就是说 “ f ′ ( x)>0”是“ y= f (x) 在某个区间上递增 ”的充分不必要条件.
(1)求f’(x)
(2)确认f’(x)在(a,b)内的符号
(3)作出结论
当堂诊学
完成课本p26页练习题 3 2 1、函数f ( x ) x ax bx c , 其中a , b, c为常数,
当a 3b 0时,f ( x )在R上(
2
)
( A)增函数 ( B )减函数 (C )常数 ( D )既不是增函数也不是减函数
2、求证:函数 f(x)=2x3+3x2-12x+1 在 区间(-2,1)内是减函数
3 如图, 水以常速(即单位时间内注入水的体积相同)注入 下面四种底面积相同的容器中, 请分别找出与各容器对应的 水的高度h与时间t的函数关系图象.
h
h
h
h
O
(A)
t
O
t (B)
O
t
(C)
O
t (D)
强化补清
1、完成红对勾上相应的练习 2、教材全解上对应练习
归纳:“y=f(x)在某个区间上递增”是 “ f′ (x ) 0”的充要条件?
2、判断下列函数的单调性,并求出单调区间。 (1) f(x)=x3+3x
(2) f(x)=x2-2x-3
(3) f(x)=sinx-x, x (0, )
(4) f(x)=2x3+3x2-24x+1
练习
判断下列函数的单调性, 并求出单调区间:
相关文档
最新文档