东南大学随机过程课件--《随机过程》第5章小结

合集下载

《随机过程》第5章-布朗运动

《随机过程》第5章-布朗运动
LOGO
随机过程
第五章 布朗运动
1 布朗运动的基本概念 2 布朗运动的首中时及最大值 3 布朗运动的应用
1 基本概念
• 最初由英国生物学家布朗(Brown)于1827年提出这种物理现 背 象; 景
• 1905年爱因斯坦首次对这一现象的物理规律给出数学描述;
定 • 1918年维纳(Wiener)运用数学理论严格描述这种无规则运 义 动,并用随机过程理论和概率理论建立了数学模型。因此
中南民族大学经济学院
3
《随机过程》第5章-布朗运动
1 基本概念
例:设布朗运动������ ������ ~������(0, ������2������),求其均值、方差、协方差及相关函数。
背 解: 景 由布朗运动定义可得:
������������(������) = ������ ������ ������ = 0, ������������(������)2 = ������������������ ������ ������ = ������2������
性 质
= ������ ������ ������1 − ������(0) ������ ������2 − ������ ������1 + ������ ������2(������1) = ������ ������ ������1 − ������(0) ������ ������ ������2 − ������ ������1 + ������ ������ ������1 − ������������(������1) 2 = ������2������1

������

������������ ������1, ⋯ , ������������; ������1, ⋯ , ������������ = ������ ������������ − ������������−1; ������������ − ������������−1

随机过程及其统计描述ppt课件.ppt

随机过程及其统计描述ppt课件.ppt

任意时刻下,观测目的是X取什么值;全程的情况下, 观测目的是X(t)的函数形式.
7
12.1 随机过程的概念
随机相位正弦波
随机过程举例
考虑: X (t) a cos(t ), t (,)
式中 a,是正常数,是 (0, 2 ) 上服从均匀分布的随机变量。
当 在(0, 2 ) 内随机的取一个值 i ,可得样本函数:
2
0 cos(t1 ) cos(t2 ) f ( )d
a2
2
2
0 cos(t1 ) cos(t2 )d
a2
4
2
0 {cos[(t1 t2 ) 2 ] cos(t1 t2 )}d
a2 2
cos (t1
t2 )
方差函数
2 X
(t)
RX
(t , t )
2 X
(t)
a2 2
18
12.2 随机过程的统计描述
随机过程举例
抛掷一枚硬币的试验,样本空间是S={H,T}, 现借此定义随机过程:
cos t,
X (t) t,
当出现H, 当出现T,
t (, )
可将此随机过程改写为
X (t) Y cost (1Y )t ,
其中
Y
1, 0,
出现H 出现T
,
t (, )
X对Y和t的依赖,决定了X是一个随机过程. 确定了 Y之后,即可确定任意时刻和全程的观测结果.
集平均(统计平均)
X (t)是随机过程的所有样本函数在时刻 t 的函数值的平均值,通常称
这种平均为集平均或统计平均。
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均方值函数
Ψ

演示文稿应用随机过程第五章

演示文稿应用随机过程第五章

S
Yn1
若x s 若x s
第13页,共123页。
因此{ Xn ,n 1}是Markov链,是写出它的转移概率 . 解: (1) 当Xn i s时,
Pij P( Xn1 j | Xn i) P(S Yn1 j) P(Yn1 S j) as j
(2) 当Xn i s时, Pij P( Xn1 j | Xn i) P( Xn Yn1 j | Xn i)
j
显然 P Pij 是一随机矩阵。
第7页,共123页。
3 . Markov链的例子 例5.1:
第8页,共123页。
例5.2: 带有两个吸收壁的随机游动: 此时 { X (n), n 0,1,2}是一齐次马氏链,状态空间为
S {0,1,2,, n}, 0, n 为两个吸收状态,它的一步转移
以"0"表示晴天,"1"表示雨天, Xn表示第n天的状态 (0或1),试写出马氏链 { Xn , n 1}的一步转移概率
矩阵,又已知 5月1日为晴天 ,问5月3日为晴天,5月5日 为雨天的概率各等于多 少?
第22页,共123页。
5.3 状态的分类及性质
引入:
设系统有三种可能状态 S {1,2,3},“1”— 良好;
称 P(n) (Pi(jn) ) — —n步转移矩阵
当n 1时, Pi(j1) Pij, P(1) P
规定
Pi(j 0 )
0 1
i j i j
第15页,共123页。
Pi(j n )与Pij 的关系如下:
定理5.1: (Chapman-Kolmogorov方程,简称C-K方程)
对一切 m, n 0, i, j S 有
定义5.3:当P( Xn1 j | Xn in )只与i, j有关,而与n 无关时,即 P( Xn1 j | Xn in ) pij (n) pij 称Markov链为齐次的(时齐的). 否则,称为非齐次的 (非时齐的)。

东南大学随机过程

东南大学随机过程

例1、设随机序列Xn=Sn,(n=1,2,…),其中S是
在[0,1]区间上服从均匀分布的随机变量,求
{Xn,n≥1}的一维分布密度函数族。
解:F ( x , n) P ( X n x ) 0, x 0
1 P ( S n x ) x n ,0 x 1 1, x 1
0, 其它 f(x,n) F ( x, n) 1 1 1 x n ,0 x 1 n
例2、投掷一枚硬币定义一个随机过程 sint , 若H
X (t ) t/2
1 ,其中P ( H ) P ( H ) 2 , 若H
求:F ( x,1);F ( x1 , x 2 ,1,3 / 2)
1 3 1 1 3 3 R X (1,3 / 2) sin sin 2 2 2 2 4 16
例2(续). 随机相位正弦波 X ( t ) a cos(t ), t 0, 其中a和都是常数, 在[0,2 ]上服从 均匀分布。求相关函数 。
解:R X ( s, t ) EX ( s ) X ( t )
把随机过程{X(t),tT}写成{X(ω,t),ωΩ,tT} 的形式,其中ω,Ω分别是随机试验的样本 点和样本空间。 (1)固定一个时间t0,随机过程对应于一个随 机变量X(t0)。 (2)固定ω0Ω让t在T中变化, X(ω0,t)是定义 在T上的一个实函数,称之为对应于ω0的一个 样本函数或者样本轨道。
随 机 过 程
第十章
随机过程的基本概念
• 随机过程的基本概念
• 随机过程的有限维分布函数族
• 随机过程的数字特征
• 泊松过程和维纳过程
§10.1 基本概念
例1(随机游动)设质点在时刻t=0从原点出 发沿x轴按如下规则移动:每个一个时间单 位以概率p右移一格,以概率q=1-p左移一 格。若用X(n)表示时刻n质点所处的位置, 则{X(n),n=1,2,…}构成一随机变量序列。

随机过程课件.ppt

随机过程课件.ppt

随机过程的统计描述 二 有限维分布族
两种描述
分布函数 特征数
设随机过程X (t),t T,对每一固定的t T ,随机变量X (t)的分布函数与t有关, 记为FX (x,t) PX (t) x,x R,称它为随机过程X (t),t T的一维分布函数 FX (x,t),t T称为一维分布函数族
为了描述随机过程在不同时刻状态之间的统计联系, 一般地,对任意n(n 2,3,L )个不同的时刻,t1,t2,L tn T
研究生课程
随机过程
汪荣鑫编 主讲教师:田ቤተ መጻሕፍቲ ባይዱ俊
2013年9月
第一章 随机过程基本概念
第1节 随机过程及其概率分布
1)随机过程概念 随机过程被认为是概率论的“动力学”部分,即
它的研究对象是随时间演变的随机现象,它是从 多维随机变量向一族(无限多个)随机变量的推广。
自然界中事物的变化过程可以大致分成为两类: 确定性过程:事物变化的过程可用时间的确定函数表示;
4
x1 (t )
3
2
1
t1' t1 t2 t2' t3 t3' t4' t4
t
4
例5:考虑抛掷一颗骰子的试验:
(1) 设X n是第n次(n 1)抛掷的点数,对于n 1, 2,L 的不同值,
X n是随机变量,服从相同的分布,P( X n
i)
1 6
,i
1, 2,3, 4,5, 6
因而X n , n 1构成一随机过程,称为伯努利过程或伯努利随机序列,
它的状态空间为1,2,3,4,5,6。
(2) 设Yn是前n次抛掷中出现的最大点数,Yn , n 1也是
一随机过程,它的状态空间仍是1, 2,3, 4,5, 6。

随机过程课件-c5

随机过程课件-c5
引理5.1 设齐次马尔可夫过程满足正则性条件,则对 于任意i,j∈I,pij(t)是t的一致连续函数。 转移概率的正则性条件:
⎧1 , i = j lim pij (t ) = ⎨ t →0 ⎩0 , i ≠ j
5 连续时间的马尔可夫链
12
转移速率
5 连续时间的马尔可夫链
13
Q矩阵
若连续时间齐次马尔可夫链具有有限状态空间I={0,1,2,…,n}
λ
λ
26
求其平稳分布。
pij(t)极限存在且与i无关,存在平稳分布
5 连续时间的马尔可夫链
27
或者
此Markov链是不可约的
5 连续时间的马尔可夫链
28
5 连续时间的马尔可夫链
29
5.3 生灭过程
5 连续时间的马尔可夫链
30
Q矩阵
I = {0,1,2,3,...}
⎛ − λ0 ⎜ ⎜ μ1 ⎜ Q=⎜ ⎜ ⎜ ⎜ ⎜ ⎝
⎛ − q00 ⎜ ⎜ q10 Q =⎜ ⎜ ⎜ q ⎝ n0 q01 − q11 qn1 q0 n ⎞ ⎟ q1n ⎟ ⎟ ⎟ − qnn ⎟ ⎠
Q= P′ (0)
利用Q可以推出任意时间间隔的转移概率所满足的方程组,从 而求解转移概率。
5 连续时间的马尔可夫链
14
微分方程
P′(t)=QP(t) 定理5.5 (科尔莫戈罗夫向前方程) 在适当的正则条件下有
5 连续时间的马尔可夫链
22
渐近性质
5 连续时间的马尔可夫链
23
5 连续时间的马尔可夫链
24
回顾
转移概率: pij(s,t)= P{X(s+t)=j|X(s)=i} P(s+t)=P(s)P(t) 转移速率 Q= P′ (0) 科尔莫戈罗夫微分方程 向后方程:P′(t)=QP(t) 向前方程:P′(t)=P(t)Q

(解答)《随机过程》第五章习题


T 2 (u)du
0

T 0

2
(v)dv


P
2
1 T T E{ 2 (u) 2 (v)}dudv P 2 T2 0 0
1 T2
T 0
T 0
[
R2
(0)

2
R2
(u

v)]dudv

P
2
2
T2
T 0
T 0
R2
(u

v)dudv
H ( j) 2 1
j
2 2
由维纳-辛嵌定理,有:
S
()

F[R
(
)]

2
2
2
2
由输入输出功率谱的关系,有:
因此,我们有
S ()

H ( j) 2 S ()

( 2
2
2
2 )( 2
2)

2
2
2 2
2
H ( j) 2 Sn ()

N0 2( 2 2 )
由维纳-辛嵌定理,有:
由于
R
( )

F
1[S
()]

N0 4
e

E{(t)} 0 , D{(t)}
E{(t)(t)} 2[R (0) R (T )]
N0 2
1 eT
ˆ
(1)在 t 0 时输出(0) 大于 y 的概率 P{(0) y};
(2)求条件概率 P{(0) y (T ) 0},其中T 0 ;
(3)求条件概率 P{(0) y (T ) 0},其中T 0 。

随机过程第五章 平稳随机过程



1,
0,
T st;
其他.
E{Y (s)Y (t)} E{E[Y (s)Y (t) ]}
st
1 P{ T s t } 1 ,
T 对于 t 的其它情形可做类似推理.
电子科技大学
随机二元传输过程是一个平稳过程,记τ=s-t,
其自相关函数为
0,


),
a;
0,
a
RX(t, t+τ)与 t 无关, 故X(t) 是宽平稳过程.
P128例12 泊松过程不是平稳过程,
是平稳增量过程.
电子科技大学
三、两种平稳性的关系
1)严平稳过程不一定是宽平稳的; 因宽平稳过程一定是二阶矩过程,而严平稳 过程未必是二阶矩过程. 2)宽平稳不一定 严平稳;
CX (s,t) RX (s,t) mX 2 RX () mX 2
电子科技大学
注 自协方差函数与自相关函数都仅依赖于t-s.
平稳过程在实际中是常见过程,如
照明电网中电压的波动过程; 电子系统中的随机噪声; 稳定气象条件下海域中一定点处的海浪高度 随时间的变化或随地点的变化(平稳随机场); 卫星图片中相同条件下的灰度水平.
t 0,
随机变量与 随机过程》
其中X0 与N(t)相互独立,且
美 A.帕普
力斯,p303
C C
X0 ~ 1 1 C > 0,
2 2
电子科技大学
讨论{X(t), t≥0}的平稳性.
C
-C
解 因 X (t) X0(1)N(t) , t 0, mX (t) E[X(t)] E(X0 )E[(1)N(t)] 0, t 0

《随机过程教程》PPT课件幻灯片PPT


主要教学成果
编写出版了教材?通信与信息工程中的随 机过程? 开设的?随机过程?课程2002年12月被评为 江苏省优秀研究生课程 至今培养了7名硕士研究生获得硕士学位, 目前正在指导13名硕士研究生 协助指导5名博士研究生获得博士学位 指导本科毕业设计20名
教学理念
教者方面 认真、尽职 教的过程也是学的过程 学者方面 “贤良、喜悦、勤奋〞可使学习者臻于完善的 境地 共同方面 互换角度、互相尊重 互相配合、互相理解、互相学习
科研方向
主要科研方向
无线通信中的各种信号处理问题 无线通信系统中的无线资源管理问题
具体涉及的研究领越
DS/CDMA通信系统中的多用户检测 智能天线技术 MIMO系统中的空时编码技术 HSDPA技术 无线网络规划
完成的科研工程
1997年1月到12月,作为工程负责人完成了国 家863高技术开展工程“多址干扰抑制技术〞 1998年4月到2001年3月,作为工程技术负责人, 完成了本室与芬兰NOKIA移动 公司的国际合作 工程“移动通信中的新方法〞 2001年7月到2002年5月,作为工程负责人,完 成了深圳华为公司的委托工程 “WCDMA/HSDPA系统仿真分析〞
科研方向主要科研方向?无线通信中的各种信号处理问题?无线通信系统中的无线资源管理问题具体涉及的研究领越?dscdma通信系统中的多用户检测?智能天线技术?mimo系统中的空时编码技术?hsdpa技术?无线网络规划完成的科研项目1997年1月到12月作为项目负责人完成了国家863高技术发展项目多址干扰抑制技术1998年4月到2001年3月作为项目技术负责人完成了本室与芬兰nokia移动电话公司的国际合作项目移动通信中的新方法2001年7月到2002年5月作为项目负责人完成了深圳华为公司的委托项目wcdmahsdpa系统仿真分析2001年4月至今作为项目技术负责人负责本室与芬兰nokia移动电话公司的国际合作项目3g以后系统的基带算法研究2003年1月至今作为项目负责人正在进行深圳华为公司委托的开发项目hsdparrm调度算法建模和网络规划的建模2003年2月至今作为项目负责人正在进行和中国移动集团总公司的委托研究项目ngsobsss卫星系统和地面wcdma系统的干扰分析2002年9月至今作为项目副组长负责国家863高技术发展项目新型天线和分集技术研究的基带研究部分在研的科研项目主要教学成果编写出版了教材通信与信息工程中的随机过程开设的随机过程课程2002年12月被评为江苏省优秀研究生课程至今培养了7名硕士研究生获得硕士学位目前正在指导13名硕士研究生协助指导5名博士研究生获得博士学位指导本科毕业设计20名教学理念教者方面?认真尽职?教的过程也是学的过程学者方面?贤良喜悦勤奋可使学习者臻于完善的境地共同方面?互换角度互相尊重?互相配合互相理解互相学习一张去年的照片内容提要教者简介所教内容简介教学方式约定考核方式劝勉勤奋学习随机过程的内容随机对象

卢正新《随机过程》第五章 布朗运动与鞅-全


解:B(2) ~ N (0, 2) P{B(2) 0} 0.5,则
PB(t) 0,t 1, 2 PB(1) 0, B(2) 0
PB(1) 0, B(1) B(2) B(1) 0
PB(1) 0, B(2) B(1) B(1)
5
布朗运动定义2:随机过程{B(t),t≥0}为布朗运动,如果满足: 1)(正态增量)B(t)-B(s)~N(0,t-s) ; 2)(独立增量)B(t)-B(s)独立于过去的状态B(v),0≤v ≤ s; 3)(轨道连续) {B(t),t≥0}的轨道是t的连续函数。
注:并未强调B(0)=0,如果B(0)=x,可用B(t)-x进行变换。 定理:设{B(t),t≥0}是正态过程,轨道连续,B(0)=0,对任意的s, t>0,有EB(t)=0,E[B(s)B(t)]=min(s,t),则{B(t),t≥0}为布朗运动, 反之亦然。
2)设Y0=0,{Yn, n≥0}是随机变量序列, E|Yn|<∞, EYn= μn≠0, n≥1, 定义X0=0,则Xn =Y1Y2…Yn/ μ1 μ2… μn是鞅。
n
解:1)E | X n | | Yk | ,n 1, 2 k 1
E X n+1 | Yn Y0 E X n Yn+1 | Yn Y0
6
证: 1)充分性 若B(t),t 0是布朗运动,则其为正态过程。
设0 s t,则:
E B(s)B(t) E B(s)B(t) B(s) B(s) E B(s)B(t) B(s) E B(s)B(s) s
2)必要性,当B(t),t 0为正态过程,且 E B(s)B(t) min(s,t),则多s,t 0,有 E B(t) B(s) 0; E B(t) B(s)2 EB2(t) EB2(s) 2E B(t)B(s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《随机过程》 第5章小结
陈明 制作 chenming@
内容提要
• • • • 随机信号的正交分解 常见随机信号的性质 随机信号的检测 随机信号的均方滤波
随机信号的正交分解
• 正交分解和随机信号的表示 • 随机信号的Fourier正交分解 • 随机信号的K-L正交分解
正交分解和随机信号的表示
• 正交函数系 • 标准正交函数系 • 完备正交函数系
正交分解
随机信号的Fourier正交分解
随机信号的K-L正交分解
常见随机信号的性质
• • • • 随机义
• • • • • • • 绝对带宽 等效带宽 有效带宽 3dB带宽 均方根带宽 功率带宽 零点到零点带宽
带限随机信号
• • • • • 定义 采样定理 通过线性系统的性质 均方解析 一致均方连续
带通随机信号
• • • • • • 定义 表达方式 宽平稳性质 带通过程的一个充分条件 Hilbert变换及其性质 解析过程的定义及其性质
带限随机信号的调制
随机信号的检测
• 统计判决理论 • 确定波形的检测 • 离散随机信号的检测
统计判决理论
判决准则
• 最小错误概率准则 • 其他准则
– – – – MMSE 最小二乘 代价函数 ……
随机信号的均方滤波
• 白化滤波器及其物理可实现性 • 连续时间过程的均方滤波 • 离散时间过程的均方滤波
滤波问题示意图
连续时间均方滤波问题
• 非因果解的获得 • 因果解的获得
离散时间均方滤波问题


非因果解的获得 因果解的获得
The End
相关文档
最新文档