电与磁知识点总结
(完整版)初中物理-电和磁-知识点

用右手握住螺线管,让四指指向螺线管中电 流的方向,则拇指所指的那端就是螺线管的N极。
ห้องสมุดไป่ตู้
第三节 电磁铁电磁继电器
一、电磁铁
➢一根条形磁体,它的周围存在着磁场,这种磁体是一种永久磁体。 ➢如果把一根导线绕成螺线管,再在螺线管内插入铁芯,当有电流通过 时,它会有较强的磁性,没有电流时就失去磁性。我们把这种磁铁叫做 电磁铁。 ➢家里的一些电器,如电冰箱、吸尘器;工厂、码头上的电磁起重机, 都有应用电磁铁。
如果把小磁针拿到一个磁体附近,它会发生偏转。磁针和磁体并 没有接触,怎么会有力的作用呢? ➢磁体周围存在着一种物质,能使磁针偏转。这种物质看不见、摸不 着,我们把它叫做磁场。
在物理学中,许多看不叫、摸不着的物质,都可以通过它对其他 物体的作用来认识。像磁场这种物质,我们也可以用实验来感知它。 ➢在条形磁体周围的不同地方,小磁针静止时指示着不同的方向。物 理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。
实验结论:匝数一定时,通入的电流越大,电磁铁的磁性越强;
电流一定时,外形相同的螺线管,匝数越多,电磁铁的磁性越强。
第三节 电磁铁电磁继电器
三、电磁继电器
大型机器的电流可能高达几十、几百安,而在工厂里, 利用按钮来控制机器,难道强大的电流就在按钮下面流过?
➢当然不是! ➢用手直接控制强大的电流或操作高压电路是很危险的,是否可 以利用电磁铁的原理来解决这个问题呢?在实际中,按钮控制的 只是继电器的开关,而电源的接通和断开是由继电器来控制的。
二、电磁铁的磁性
➢我们自制的电磁铁只可以吸引曲别针,而工厂里的电磁起重机却可 以吸引很重的钢铁。那么电磁铁磁性的强弱与哪些因素有关呢? ➢ 第一,电磁铁只有在线圈中通电时才有磁性,那么电流的大小应 该会影响电磁铁磁性的强弱。 ➢ 第二,构成电磁铁的主要部件是线圈,那么线圈的形状和匝数可 能也会影响电磁铁的磁性强弱。
九年级物理电与磁知识点

1.电流:电流是单位时间内通过导体的电荷量。
用I表示,单位是安培(A)。
电流可分为直流和交流两种,直流是指电荷在导体中的流动方向保持不变;交流是指电荷在导体中的流动方向时刻变化。
2.电压:电压是电流流动的驱动力。
用U表示,单位是伏特(V)。
电压可以理解为电荷在电路中获得或失去的能量。
例如,电池的正负极之间有电压差,可以驱动电流在电路中流动。
3.电阻:电阻是导体阻碍电流流动的程度。
用R表示,单位是欧姆(Ω)。
电阻越大,电流流动的难度越大。
常见的导体材料如金属具有较小的电阻,而绝缘体如塑料则有较大的电阻。
4.电路:电路是指导体、电源和电器之间形成的完整路径。
电路主要包括串联电路和并联电路两种形式。
串联电路中电流只能沿着一条路径流动,而并联电路中电流则分流在不同路径上。
5.欧姆定律:欧姆定律是描述电路中电流、电压和电阻之间关系的基本定律。
它表述为电流等于电压与电阻的比值,即I=U/R。
通过欧姆定律可以计算电路中的电流、电压或电阻。
6.磁场:磁场是磁性物质周围的区域,磁场具有磁力作用。
磁场由磁铁、电流或电磁铁等磁体产生。
磁场的强度用磁感应强度表示,单位是特斯拉(T)。
7.磁铁:磁铁是具有磁性的物质,分为人工磁铁和自然磁铁两种。
人工磁铁如钢磁针、磁铁棒等,可以通过电流或其他方式产生磁场。
自然磁铁如地磁,是地球的磁场对物体产生的磁化效应。
8.磁力:磁力是磁体对物体施加的作用力。
磁力的大小与磁体的强度、距离以及两者之间的相对位置有关。
磁力的方向与磁场线的方向相同。
9.楞次定律:楞次定律是描述电磁感应现象的定律。
它表述为变化的磁场会在闭合回路中产生感应电流,感应电流的方向使得产生的磁场与变化磁场抵消。
10.法拉第定律:法拉第定律是描述电磁感应现象的定律。
它表述为感应电动势的大小与闭合回路中的导线数目、导线的长度和磁场变化的速率成正比。
以上是九年级物理电与磁的主要知识点,通过对这些知识点的学习,可以帮助我们理解电流、电压、电阻的关系,以及磁场和磁力的产生和作用。
《电与磁》知识点总结

《电与磁》知识点总结一、磁现象:1、磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)。
2、磁体:定义:具有磁性的物质分类:永磁体分为天然磁体、人造磁体3、磁极:定义:磁体上磁性最强的部分叫磁极。
(磁体两端最强中间最弱)种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)作用规律:同名磁极相互排斥,异名磁极相互吸引。
说明:最早的指南针叫司南。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
4、磁化:①定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
5、物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性最强判断。
二、磁场:1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。
这里使用的是转换法。
通过电流的效应认识电流也运用了这种方法。
2、基本性质:磁场对放入其中的磁体产生力的作用。
磁极间的相互作用是通过磁场而发生的。
3、方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。
4、磁感应线:①定义:在磁场中画一些有方向的曲线。
任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。
②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
说明:A、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。
但磁场客观存在。
B、用磁感线描述磁场的方法叫建立理想模型法。
C、磁感线是封闭的曲线。
D、磁感线立体的分布在磁体周围,而不是平面的。
E、磁感线不相交。
高考物理电与磁专题知识点

高考物理电与磁专题知识点在高考物理中,电与磁是一个非常重要的专题,涉及到电流、电磁力、电磁感应等知识点。
下面将重点介绍几个高考物理电与磁的知识点。
一、电流和电阻电流是指电荷在单位时间内通过导体的数量,用符号I表示。
单位为安培(A)。
电阻是物质阻碍电流通过的能力,用符号R表示。
单位为欧姆(Ω)。
欧姆定律描述了电流、电压和电阻之间的关系:U=IR,其中U为电压,R为电阻,I为电流。
二、欧姆定律和功率欧姆定律不仅可以描述电流、电压和电阻之间的关系,还可以用来计算功率。
功率表示单位时间内电能消耗或释放的速率,用符号P表示,单位为瓦特(W)。
根据欧姆定律,可以得到功率的计算公式:P=UI,其中U为电压,I为电流。
三、电功和电功率电功是电流通过电阻所做的功,用符号W表示,单位为焦耳(J)。
电功可以用电流、电压和时间来计算:W=UIt,其中U为电压,I 为电流,t为时间。
电功率是单位时间内做功的速率,用符号P表示,单位为瓦特(W)。
电功率可以用电流和电压来表示:P=UI,其中U为电压,I为电流。
四、电磁感应电磁感应是指通过磁场的变化产生感应电流的现象。
根据法拉第电磁感应定律,磁场的变化会在导线中产生感应电流。
根据安培环路定理,通过闭合回路的磁通量的变化会在回路中产生感应电流。
电磁感应现象广泛应用于电磁感应、电动机和发电机等领域。
五、电磁力和电场电磁力是指电荷之间由于电场和磁场作用而产生的力。
库仑定律描述了电荷之间的电磁力,公式为F=k*q1*q2/r^2,其中F为电磁力,k为库仑常数,q1和q2为两个电荷的电荷量,r为两个电荷之间的距离。
电荷在电场中会受到电场力的作用,电场力的大小与电荷量和电场强度有关。
六、磁场和磁力磁场是指物体周围存在的磁性物质所产生的磁力作用的区域。
根据洛伦兹力定律,运动电荷在磁场中会受到磁力的作用。
磁力的大小与电荷的速度、磁场强度和电荷的正负有关。
七、电磁波电磁波是指电场和磁场通过空间传播的波动现象。
初中电与磁知识点归纳

初中电与磁知识点归纳电与磁是物理学的重要内容,涉及到电荷、电流、电场、电磁感应等概念和原理。
下面将初中电与磁的知识点进行归纳总结。
一、电荷和静电1.原子是由带正电荷的质子和带负电荷的电子组成的。
2.电子带负电荷,质子带正电荷,中性原子的电荷数相等。
3.不同电荷之间相互吸引,相同电荷之间相互排斥。
4.静电引力是电荷间的引力作用,符合库伦定律,与电荷间的距离和电荷大小有关。
二、电流和电路1.电流是电荷在单位时间内通过导体横截面的数量,单位是安培(A)。
2.导体中的电荷移动形成电流,电子在导体中的移动方向与电流方向相反。
3.电阻是阻碍电流通过的因素,单位是欧姆(Ω)。
4.电路是由电源、导线和用电器组成的,可分为串联电路和并联电路。
5.串联电路中,电流在各个元件之间是相同的;并联电路中,总电流等于各支路电流之和。
三、电压和电阻1.电压是电势差,表示单位电荷在电场中获得的能量,单位是伏特(V)。
2.电源提供电势差使电荷移动形成电流。
3.电阻对电流产生阻碍作用,通过电阻的电流与电压成正比,与电阻成反比,符合欧姆定律。
4.串联电阻的总阻力等于各个电阻之和;并联电阻的总阻力等于各个电阻的倒数之和的倒数。
四、电功和功率1.电功是描述电路中电能转化的物理量,单位是焦耳(J)。
2.电能转化的速率称为功率,单位是瓦特(W)。
3.电功等于电压乘以电流乘以时间,功率等于电流乘以电压。
五、电磁感应1.磁场是物质中产生磁力的区域,可以由磁铁或电流产生。
2.电流在磁场中会受到力的作用,称为洛仑兹力。
3.当导体切割磁力线时,会在导体上产生感应电动势。
4.电磁感应的原理可以应用于发电机、电磁铁、电动机等设备。
5.法拉第电磁感应定律:导体中感应电动势的大小与导线切割磁力线的速率成正比。
6.电磁感应的方向遵循楞次定律:感应电流产生的磁场方向与初始磁场方向相反,以保持磁通量不变。
总结:。
初中物理电与磁知识点总结

初中物理电与磁知识点总结
初中物理电与磁知识点总结如下:
1. 电流和电路:电流是电荷流动的现象,电路是导体和电源连接成闭合路径的装置。
电流的单位是安培(A),符号是I。
2. 电阻和电阻率:电阻是导体阻碍电流通过的程度,电阻的单位是欧姆(Ω),符号是R。
电阻率是物质本身的电阻程度,是一个材料的特性。
3. 电压和电动势:电压是电流在电路中的推动力,单位是伏特(V),符号是U。
电动势是电源提供给电路的电能,单位也是伏特(V),符号是E。
4. 串联和并联:串联是将电器依次连接在一起,电流相等,电压相加;并联是将电器同时连接在一起,电压相等,电流相加。
5. 电功和功率:电功是电流通过电路产生的功,单位是焦耳(J),符号是W。
功率是单位时间内产生的电功,单位是瓦特(W),符号是P。
6. 磁场和磁力线:磁场是磁体周围的力场,磁力线是表示磁场的线条。
磁力线从南极指向北极,不会相交。
7. 磁力和电流:安培定则说明电流会产生磁场,电流越大磁场越强;洛伦兹力定律说明磁场会对电流产生力,力的方向由左手定则确定。
8. 电磁感应和发电机:电磁感应是通过磁场的变化产生电压和电流的现象,法拉第定律说明感应电压和磁场变化率成正比;发电机是利用电磁感应原理将机械能转化为电能的装置。
9. 电磁铁和电动机:电磁铁是利用电流在导线中产生磁场的原理,使铁芯具有磁性;电动机是利用电磁感应原理将电能转化为机械能的装置。
10. 右手定则:右手螺旋定则用于确定磁场、电流和力的方向;右手法则用于确定电流在磁场中受力的方向。
(完整版)电与磁知识点总结

引言概述:电与磁是物理学的基本知识,广泛应用于科学、工程和日常生活中。
本文将对电与磁的知识点进行总结,包括电荷、电场、电流、磁场和电磁感应等主要内容。
通过深入理解这些知识点,我们能够更好地理解电子设备的工作原理,以及电和磁在各种应用中的作用。
正文内容:1.电荷:1.1原子结构中的电子与质子1.2电子的带电性质和电荷的量子化1.3电荷守恒定律和库仑定律1.4电磁力和静电场2.电场:2.1电场的概念和性质2.2电场强度和电场线2.3电势和电势差2.4高斯定律和电场能2.5电容和电场中的电介质3.电流:3.1电流的概念和电流密度3.2电阻和欧姆定律3.3环路定律和基尔霍夫定律3.4电源和电动势3.5电功和功率4.磁场:4.1磁场的概念和性质4.2磁感应强度和磁场线4.3洛伦兹力和磁场能4.4磁场中的电流和安培定律4.5磁介质和磁感应强度的量子化5.电磁感应:5.1法拉第电磁感应定律和互感器5.2感生电动势和感应电流5.3洛伦兹力和电磁铁5.4电磁感应中的自感和互感5.5麦克斯韦方程组和电磁波总结:电与磁是物理学中非常重要的知识点,本文总结了电荷、电场、电流、磁场和电磁感应等方面的内容。
通过深入了解这些知识,我们能够更好地理解电子设备的工作原理,如电路中的电流流动和元器件中的电荷分布;同时,我们还能够理解电和磁在医学成像、通信技术和能源转换等领域中的应用。
电与磁的研究也为我们提供了深刻的物理现象和规律,推动了科学技术的发展。
因此,对于电与磁的研究和理解是非常有价值的。
希望通过本文的总结,读者能够加深对电与磁的认识,提高对这一领域的兴趣,并将这些知识应用于实际生活和工作中。
电与磁必背知识点的总结

电与磁必背知识点的总结一、电荷、电场及其基本性质1. 电荷的基本属性电荷是物质的基本性质,分为正电荷和负电荷。
电荷守恒定律:在一个孤立系统中,电荷的代数和保持不变。
2. 电场的概念电场是指一种特定区域内存在的电荷相互作用的力场。
电场强度E定义为单位正电荷在电场中所受的力F与其电量q之比:E = F/q3. 电场的基本性质① 电场中所有点的电场强度方向与电荷正电荷所受的力方向相同,而与负电荷所受的力方向相反;② 电场强度与电荷的大小和位置有关;③ 电场强度的单位是牛顿/库仑;④ 电场线是表示电场强度的图象,它有一下性质:① 电场线上任一点的切线方向,即切线方向与曲线的切线方向相同;② 电场线的密集程度及电场强度的大小成反比关系;③ 电场线不可能相互交叉和断裂,也不存在封闭电场线。
二、电场中的电荷运动及电场中的能量1. 运用库仑定律解释电荷在电场中的受力假设有两个电荷q1和q2之间的距离r1,那么两者之间的库伦作用力就是f12=K•q1•q2/R22. 电场中的能量① 电场中的电势能定义为:单位正电荷在电势场中由于位置不同所具有的能量:Epq=Eq=∬Edl(s)=∫bcafdr(sr)=−Wab=Uba② 电场中的电势电势是一个标量,电势与电势能之间的关系是:U=pq•Vab3. 电场中带电粒子的运动规律由于电场对电荷产生作用力,所以带电粒子在电场中具有受力运动的特点。
根据小学生所学到的内容,可以知道物体做简谐运动的运动方程X(t)=Asin(ωt+φ)当弹簧恢复力与质量的作用力平衡则有正好是谐波运动的基础初步知识,如果将电场视为该弹簧恢复力,那么它就是正好呈简谐运动。
三、导电体内的电场1.拓展了解:电场中如果导体内表面有不平凹凸的地方或者因为导电体表面位置处于电场极化物质附近,则内部带电手球的电场情况将发生改变,即放置在电场中的导电体内部也会存在电场,但是由于导体内部总是处于静电平衡状态,在它的内部电场始终保持为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电与磁知识点总结高考物理电与磁知识点篇一一、磁现象1.磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)。
2.磁体:定义:具有磁性的物质。
分类:永磁体分为天然磁体、人造磁体。
3.磁极:定义:磁体上磁性的部分叫磁极。
(磁体两端中间较弱)种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)。
作用规律:同名磁极相互排斥,异名磁极相互吸引。
说明:较早的指南针叫司南。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
4.磁化:①定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
5.物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性判断。
练习:☆磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
(填“软”和“硬”)磁悬浮列车底部装有用超导体线圈饶制的电磁体,利用磁体之间的相互作用,使列车悬浮在轨道的上方以提高运行速度,这种相互作用是指:同名磁极的相互排斥作用。
☆放在条形磁铁南极附近的一根铁棒被磁化后,靠近磁铁南极的一端是磁北极。
☆用磁铁的N极在钢针上沿同一方向摩擦几次钢针被磁化如图那么钢针的右端被磁化成S极。
二、磁场1.定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。
这里使用的是转换法。
通过电流的效应认识电流也运用了这种方法。
2.基本性质:磁场对放入其中的磁体产生力的作用。
磁极间的相互作用是通过磁场而发生的。
3.方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。
4.磁感应线:①定义:在磁场中画一些有方向的曲线。
任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。
②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
③典型磁感线:④说明:A、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。
但磁场客观存在。
B、用磁感线描述磁场的方法叫建立理想模型法。
C、磁感线是封闭的曲线。
D、磁感线立体的分布在磁体周围,而不是平面的。
E、磁感线不相交。
F、磁感线的疏密程度表示磁场的强弱。
5.磁极受力:在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。
6.分类:Ι、地磁场:定义:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。
磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。
磁偏角:首先由我国宋代的沈括发现。
☆、电流的磁场:奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。
该现象在18被丹麦的物理学家奥斯特发现。
该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。
通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。
其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。
③应用:电磁铁A、定义:内部插入铁芯的通电螺线管。
B、工作原理:电流的磁效应,通电螺线管插入铁芯后磁场大大增强。
C、优点:磁性有无由通断电来控制,磁极由电流方向来控制,磁性强弱由电流大小、线圈匝数、线圈形状来控制。
D、应用:电磁继电器、电话。
电磁继电器:实质由电磁铁控制的开关。
应用:用低电压弱电流控制高电压强电流,进行远距离操作和自动控制。
电话:组成:话筒、听筒。
基本工作原理:振动、变化的电流、振动。
三、电磁感应1.学史:该现象年被国物理学家发现。
2.定义:这种现象叫做电磁感应现象3.感应电流:九年级物理电与磁知识点篇二九年级物理电与磁知识点一、磁现象1.磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)。
2.磁体:定义:具有磁性的物质。
分类:永磁体分为天然磁体、人造磁体。
3.磁极:定义:磁体上磁性的部分叫磁极。
(磁体两端中间较弱)种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)。
作用规律:同名磁极相互排斥,异名磁极相互吸引。
说明:较早的指南针叫司南。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
4.磁化:①定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
5.物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性判断。
练习:☆磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
(填“软”和“硬”)磁悬浮列车底部装有用超导体线圈饶制的电磁体,利用磁体之间的相互作用,使列车悬浮在轨道的上方以提高运行速度,这种相互作用是指:同名磁极的相互排斥作用。
☆放在条形磁铁南极附近的一根铁棒被磁化后,靠近磁铁南极的一端是磁北极。
☆用磁铁的N极在钢针上沿同一方向摩擦几次钢针被磁化如图那么钢针的右端被磁化成S极。
二、磁场1.定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。
这里使用的是转换法。
通过电流的效应认识电流也运用了这种方法。
2.基本性质:磁场对放入其中的磁体产生力的作用。
磁极间的相互作用是通过磁场而发生的。
3.方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。
4.磁感应线:①定义:在磁场中画一些有方向的曲线。
任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。
②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
③典型磁感线:④说明:A、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。
但磁场客观存在。
B、用磁感线描述磁场的方法叫建立理想模型法。
C、磁感线是封闭的曲线。
D、磁感线立体的分布在磁体周围,而不是平面的。
E、磁感线不相交。
F、磁感线的疏密程度表示磁场的强弱。
5.磁极受力:在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。
6.分类:Ι、地磁场:定义:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。
磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。
磁偏角:首先由我国宋代的沈括发现。
☆、电流的磁场:奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。
该现象在18被丹麦的物理学家奥斯特发现。
该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。
通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。
其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。
九年级物理学习方法一、应降低起点,从头开始。
我们要转变概念,不要认为初中物理好,高中物理就一定会好。
初中物理的知识比较肤浅,只要动动脑筋就能学会,在加上通过大量的练习,反复强化训练,对物理的熟练程度也会提升,物理成绩也会稳步提高。
可以这么说分数高并不代表学得好。
要想学好高中物理,就需要同学们对物理产生浓厚的兴趣,加上好的学习方法,这两个条件缺一不可。
所以我们要转化观念,踏实的学习,稳中求进!二、对物理产生浓厚的兴趣。
兴趣是思维的动因之一,兴趣是强烈而又持久的学习动机,兴趣是学好物理的潜在动力。
培养兴趣的途径很多,从学生角度:应注意到物理与日常生活、生产、现代科技密切联系,息息相关。
在我们的身边有很多的物理现象,用到了很多的物理知识,如:说话时,声带振动在空气中形成声波,声波传到耳朵,引起鼓膜振动,产生听觉;喝开水时、喝饮料时、钢笔吸墨水时,大气压帮了忙;走路时,脚与地面间的静摩擦力帮了忙,行走过程中就是由一个个倾倒动作连贯而成;淘米时除去米中的杂物,利用了浮力知识;一根直的筷子斜插入水中,看上去筷子在水面处变弯折;闪电的形成等等。
有意识地在实际中联系到物理知识,将物理知识应用到实际中去,使我们明确:原来物理与我们联系这样密切,这样有用。
可以大大地激发学习物理的兴趣。
从老师角度:应通过生动的学生熟悉的实际事例、形象的直观实验,组织学生进行实验操作等引入物理概念、规律,使学生感受到物理与日常生活密切相关;结合教材内容,高中物理向学生介绍物理发展史和进展情况以及在现代化建设中的广泛应用,使学生看到物理的用处,明确今天的学习是为了明天的应用;根据教材内容,经常有选择地向学生介绍一些形象生动的物理典故、趣闻轶事和中外物理学家探索物理世界的奥妙的故事;根据教学需要和学生的智力发展水平提出一些趣味性思考性强的问题等等。
老师从这些方面下功夫,也可以使学生被动地对物理产生兴趣,激发学生学习物理的激情。
九年级物理学习技巧与生活相联系,从日常生活中引发兴趣达·芬奇曾说;“水波离开了它产生的地方,而那里的水并不离开,就像风在原野里掀起的麦浪。
我们看到,麦浪滚滚地向田野里奔去,但是麦子却停留在原来的地方。
”这是生活中常见的现象,但是其中却蕴含了丰富的物理知识。
我们可以通过举例这种生活中的常见现象来引发学生们的思考,为什么事情是这个样子的?其中有什么奥秘呢?还有什么实例是和这个一样的呢?作为老师,我们要引导学生们去多思考,多问问题。
爱因斯坦曾说:“我们思想的发展在某种意义上常常来源于好奇心。
”一个人只要对一件事物有了好奇心,有了兴趣,那他的物理学习就拥有了较好的老师,在讲授和学习知识时也会更容易理解接受。
比如,在讲解光现象时,我们可以给他们用生活中的事物来进行举例。
如夜晚中拿手电筒照射天空可以发现一条光亮的通路,把筷子放入水中在水面处好似已经弯折。
通过这些现象可以引发学生的求知欲,进而引导他们去思考探索,再讲解丁达尔现象和折射现象在初中物理课本中的学习。
《电与磁》学习心得篇三《电与磁》学习心得xxxx年5月一⑦号下午,在海南白驹学校的多媒体教室我听了杨建涛老师的《电与磁》的复习课。
在课堂上杨老师教学思路明晰,重点突出,注重知识的运用,课堂的掌控力强,课堂气氛活跃,是一节高效的复习课。
杨老师为体现以学生为本,面向全体学生,帮助他们构建自己的科学概念,以提高广大学生的科学素养,为他们的终身发展打基础。
所以,本课鼓励他们自主地、创造性地完成复习,并以自己喜爱的方式完成由现象到结论的过程。