二苯碳酰二肼分光光度法测定六价铬
六价铬的测定方法(二苯碳酰二肼分光光度法)

六价铬的测定方法(二苯碳酰二肼分光光度法)GB/T 74671 适用范围1.1 本标准适用于地面水和工业废水中六价铬的测定1.2 测定范围试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。
1.3 干扰含铁量大于1mg/L显色后呈黄色。
六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。
钒有干扰,其含量高于4mg/L即干扰显色。
但钒与显色剂反应后10min,可自行褪色。
2 原理在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。
3 试剂测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。
3.1 丙酮。
3.2 硫酸3.2.1 1+1硫酸溶液将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。
3.3 磷酸:1+1磷酸溶液。
将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。
3.4 氢氧化钠:4g/L氢氧化钠溶液。
将氢氧化钠(NaOH)1g溶于水并稀释至250ml。
3.5 氢氧化锌共沉淀剂3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。
称取硫酸锌(ZnSO4•7H2O)8g,溶于100ml水中。
3.5.2 氢氧化钠:2%(m/v)溶液。
称取2.4g氢氧化钠,溶于120ml水中。
用时将3.5.1和3.5.2两溶液混合。
3.6 高锰酸钾:40g/L溶液。
称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。
3.7 铬标准贮备液。
称取于110?干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829?0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。
六价铬的测定 二苯碳酰二肼分光光度法

六价铬的测定方法(二苯碳酰二肼分光光度法)1 适用范围1.1 本标准适用于地面水和工业废水中六价铬的测定1.2 测定范围试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。
1.3 干扰含铁量大于1mg/L显色后呈黄色。
六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。
钒有干扰,其含量高于4mg/L即干扰显色。
但钒与显色剂反应后10min,可自行褪色。
2 原理在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。
3 试剂测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。
3.1 丙酮。
3.2 硫酸3.2.1 1+1硫酸溶液将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。
3.3 磷酸:1+1磷酸溶液。
将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。
3.4 氢氧化钠:4g/L氢氧化钠溶液。
将氢氧化钠(NaOH)1g溶于水并稀释至250ml。
3.5 氢氧化锌共沉淀剂3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。
称取硫酸锌(ZnSO4•7H2O)8g,溶于100ml水中。
3.5.2 氢氧化钠:2%(m/v)溶液。
称取2.4g氢氧化钠,溶于120ml水中。
用时将3.5.1和3.5.2两溶液混合。
3.6 高锰酸钾:40g/L溶液。
称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。
3.7 铬标准贮备液。
称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。
六价铬的测定—二苯碳酰二肼分光光度法

六价铬的测定—二苯碳酰二肼分光光度法1.学会六价铬的水样采集保存、预处理及测定办法。
2.学会各种标准溶液的配制办法和标定办法。
(二)水样保存水样应用瓶壁光滑的玻璃瓶采集。
如测总铬水样采集后,加入硝酸调整pH 2;如测六价铬,水样采集后,加NaOH使pH为8-9;均应尽快测定,如放置不得超过24h。
(三)干扰及清除含铁量大于lmg/L水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本办法的显色酸度下反应不敏捷。
钼和汞达200mg/L不干扰测定。
钒有干扰,其含量高于4mg/L即干扰测定。
但钒与显色剂反应后10min,可自行褪色。
氧化性及还原性物质,如:ClO-、Fe2+、SO2-3、S2O2-3等,以及水样有色或混浊时,对测定均有干扰,须举行预处理。
(四)办法的挑选的测定可采纳分光光度法、原子汲取分光光度法和滴定法。
清洁的水样可挺直用二苯碳酰二肼分光光度法测六价铬。
如测总铬,用高锰酸钾将三价铬氧化成六价铬,再用二苯碳酰二肼分光光度法测定。
本试验采纳二苯碳酰二肼分光光度法。
(五)测定办法 1.试验原理在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大汲取波长为540nm,吸光度与浓度的关系符合比尔定律。
反应式如下:假如测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。
2.仪器和试剂 (1)仪器容量瓶、可见分光光度计、试验室常用仪器。
(2)试剂①。
②(1+1)磷酸溶液将磷酸(H3PO4,优级纯,ρ=1.69g/mL)与水等体积混合。
③4g/L氢氧化钠溶液。
④氢氧化锌共沉淀剂用时将100mL80g/L 硫酸锌(ZnSO4.7H2O)溶液和120mL20g/L氢氧化钠溶液混合。
⑤40g/L 高锰酸钾溶液称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100mL。
⑥铬标准贮备液称取于110℃干燥2h的重铬酸钾(K2CrO7,优级纯)(0.2829±0.0001)g,用水溶解后,移入1000mL容量瓶中,用水稀释至标线,摇匀。
二苯碳酰二肼分光光度法测定六价铬及其影响因素分析

多因素都会对地表水环境中六价铬准确地测定造成影响。
其中最主要干扰因素以下几种:水样的采集和保存,水样的酸碱性,水样的颜色和浑浊程度,水样中的金属离子的浓度,氧化性物质的浓度以及程色时间等,而影响水样测量结果的主要因素之一是水样的收集和存储方法。
因此,在水样采集和储存方面,一定要考虑这些因素的影响。
化学物质在酸性溶液中容易还原,所以可以把六价铬还原成三价铬。
在进行测定时应该选择无色透明玻璃瓶,保证没有刮痕,用普通的pH 试纸进行水样的pH 值测试收集,将氢氧化钠或稀硝酸适量添加到瓶中,控制水样pH 在8~9。
保持水样的方法是将其放入温度为0~4℃的冷藏运输箱中,并尽快测量水样。
将水样保存在冷藏室中的最佳时间是24h 之内。
2.2 彩色显影剂的选择和制备彩色显色剂对于水样中金属离子测定结果的准确性,以及测试过程是否顺利有十分重要的影响作用,因此,选择或制备优良且合适的显色剂显得尤为重要。
在用于水样测试的试剂中,水样测试的结果会受到水样自身含有的物质影响,优质的二苯碳酰二肼通常为白色或透明状。
长期放置在空气中的红色晶体粉末容易被空气氧化而变红并变质。
通常,国内生产的分析纯药物可以满足日常测试的需求。
在准备解决方案时,在要求的生产期限内选择新制造的产品。
当测试要求高时,需要选0 引言近年来,各种科学检测手段和仪器都突飞猛进地发展,与此同时,分析技术也不断发展的背景下,检测六价铬的技术也在不断扩张。
但目前最为常用的技术和方法还是分光光度法。
二苯碳酰二肼分光光度法具有以下特点:干扰少,操作简单,灵敏度高,应用范围广。
因此,到目前为止,确定样本中六价格含量的主要实验方法仍是分光光度法。
本文重点了讨论和分析二苯碳酰二肼分光光度法,解释了影响其测定的常见因素,并提出消除该影响的具体措施,有助于将来改善水生环境中六价铬的测定。
1 方法原理在酸性环境下,由于六价铬具有强氧化性,能够把二苯碳酰二肼通过氧化作用转化为二苯缩二氨基脲,再通过结合三价铬,变成紫红色络合物,紫红色络合物在一定浓度范围内的色度与六价铬呈现正相关,当波长达到540nm 波长处出现极限值吸收时,确定水样中是否含有六价铬[1]。
二苯碳酰二肼分光光度法测定饮用水中的铬(六价)

式中: y —吸 光 度; 2 2 4 3 9 —校 准 曲 线 斜 率; 0 0 0 0 2 —校准曲线截距;x —铬含量, m g / L 。铬分 析方法的空白测定值在很小的范围内波动,空白值 的标准偏差很小。
表1 空白测定值的标准偏差 重复测定 次数 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 测定日期 2 0 1 2- 3- 2 3 2 0 1 2- 3- 2 3 2 0 1 2- 3- 2 3 2 0 1 2- 3- 2 3 2 0 1 2- 3- 2 6 2 0 1 2- 3- 2 6 2 0 1 2- 3- 2 6 2 0 1 2- 3- 2 6 2 0 1 2- 3- 2 8 2 0 1 2- 3- 2 8 2 0 1 2- 3- 2 8 2 0 1 2- 3- 2 8 2 0 1 2- 3- 3 0 2 0 1 2- 3- 3 0 2 0 1 2- 3- 3 0 2 0 1 2- 3- 3 0 2 0 1 2- 4- 1 2 0 1 2- 4- 1 2 0 1 2- 4- 1 2 0 1 2- 4- 1 铬含量测 定值 μ g / L 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 7 8 2 2 3 2 2 3 2 7 8 2 2 3 2 2 3 1 7 8 2 2 3 2 7 8 2 2 3 2 7 8 2 2 3 2 2 3 2 2 3 2 2 3 0 批,每批 4
— 9 6—
h t t p :/ / h j k x d k y i e s o r g c n 个平行样,共计测定空白 2 0次。 = 2 2 4 3 9 x + 0 0 0 0 2 校准曲线公式:y
六价铬二苯碳酰二肼分光光度法

六价铬二苯碳酰二肼分光光度法六价铬二苯碳酰二肼(Cr(o-P-TPC)2)是一种常用的有机合成中间体,分光光度法(SPD)方法用于快速、精确地测定Cr(o-P-TPC)2的含量。
本文就该方法的原理、步骤以及应用展开详细说明,以期为Cr(o-P-TPC)2的含量测定提供参考。
一、六价铬二苯碳酰二肼分光光度法原理Cr(o-P-TPC)2具有良好的吸收光谱性质,可以在可见光区365 nm处有较强的吸收度,根据Bouger-Lambert-Beer定律,可以简单测定其含量。
利用该法检测Cr(o-P-TPC)2的含量,把样品加入定容的稀释剂中搅拌均匀,在365 nm处,测定样品处、标准溶液和空白液的吸光度,通过矫正后的数据,可以计算出样品的含量。
二、六价铬二苯碳酰二肼分光光度法步骤(1)确定样品浓度:把样品加入合适的容器中,利用重量测定把样品重量确定,再加入稀释剂搅拌均匀,确定其相应测定浓度。
(2)稀释样品溶液:根据第一步,确定的样品浓度,把样品加入稀释剂中,搅拌均匀,稀释至指定浓度。
(3)准备标准溶液和空白液:根据样品浓度,准备对应浓度的标准溶液和空白液,同样搅拌均匀。
(4)吸光度测定:把样品、标准溶液、空白液分别放入吸光度仪中,在365 nm处,测定其吸光度值。
(5)数据处理:把步骤四测得的吸光度值,进行线性矫正,可以得到正确的数据,并根据Bouger-Lambert-Beer定律,计算出Cr(o-P-TPC)2的含量。
三、六价铬二苯碳酰二肼分光光度法的应用Cr(o-P-TPC)2的含量测定是有机合成中重要的指标,不仅在分子量控制、纯度确认和检测等环节中十分重要,而且在生物反应的中间体合成等过程中也被广泛应用。
因此,快速、精确地测定Cr (o-P-TPC)2的含量显得尤为重要。
而分光光度法(SPD)恰好满足了这样的要求,是现阶段应用最广泛的一种检测Cr(o-P-TPC)2的方法。
因此,本文就利用分光光度法(SPD)测定Cr(o-P-TPC)2的含量的原理、步骤以及应用进行了详细说明,以期能为学习和应用Cr (o-P-TPC)2提供参考。
分析二苯碳酰二肼分光光度法测定水质六价铬的不确定度

分析二苯碳酰二肼分光光度法测定水质六价铬的不确定度计量天地分析二苯碳酰二肼分光光度法测定水质六价铬的不确定度锦州市环境监测中心站口黄海英国家标准规定了用于地面水和工业废水中六某一浓度点对应的六价铬质量,g价铬的测定的方法是二苯碳酰二肼分光光度法.其式中的1.0g/ml六价铬标准使用液是由储备液稀释原理是在酸性溶液中,六价铬与二苯碳酰二肼反得到,用公式表示为:C.=c储/(6)应,生成紫红色化合物,其最大吸收波长为540nm,C储:六价铬标准储备液的准确浓度,g/ml;fl:稀释摩尔吸光系数为4×104L?tool?cm-.而为了保证因子,代表储备液稀释至中间液的稀释倍数.测定结果的准确性,我们对其不确定度进行了如下准确配制100g/ml 的储备液,并按1:100稀释到分析.1.0g/ml标准使用液.稀释是采用5ml无分度吸管和1数学模型的建立c=旦(1)其中1TI:水中六价铬的质量,g;v:水样体积,ml;c:六价铬的浓度,mg/1.=,/【r+【】(2)2各量值不确定度的计算(1)u(n1)的计算六价铬校准曲线方程表示为:y=bx+a(3)式中,X:溶液中六价铬的质量,g;Y:六价铬质量为x时对应的吸光度;b:校准曲线的斜率,b=O.0363,a:校准曲线的截距,a=一0.0017.对m进行六吸光度测量,由校准曲线方程取得:m=(2.91+3.05+3.00+3.08+3.05+3.05)/6=3.02g则tl1 (m一.u1(隋)式中::i~[Y-(a+bxi)]2_: (22)P=6,对1TI进行6次测量;N=9,校准曲线浓度点总测量次数.譬s2,窆(,z钏9s6.将上述各值代入公式(4)得出:U(m)=0.018,堡2::墨:0.0060nl3.02(2)1.1:(11”1)的计算绘制校准曲线的标准系列,其六价铬的质量可用下式来表示:m.=c.×V标(5)C.:六价铬标准使用液的浓度,1.0g/ml;V标:度点对应的加入六价校准曲线标准系列中500ml的容量瓶来完成.fl=L=100(7),将公式(7)代入V5OO公式(6)得到:C.:c赭×(8),再将公式(8)代入公式V500(5)得到下式mi=V标×C储×(9)V500则相对不确定度计算为:生:【】z+【】:+【】z+[]z(10)C储V标iV5V500其中:u(储)=0.606%.U(V标)=X/O.02892+0.02892+0.00242=0.041ml; =0.0041;=0.0033;9.将以上四项不确定度分量代人(10),得到:u2=rni,/【【【r+[】=0.00853当V标=10ml,对应的mi=10g.u2(Jni)=O.00853×10=0.0853(g)(3)U(1TI)计算对六价铬样品进行六次分析的结果标准偏差S(m)=0. o612,所以u(m):V=6旦043,nV2IJlJ?U二:0.0143.将,,)-合成得到:nlmim:v[uxm(m)12+[u2(mrni)12+[u~m(m)12=().0177,u(m)=0.0127×3.02=0.038(g)(4)v的标准测量不确定度分量v的标准测量不确定度由三部分构成.(1)50ml比色管的不确定度分析结果为=0.0047.(2)lOrrd无分度VSO吸管不确定度分析结果是_vln_J=0.0031.(3)250ml容量V10瓶不确定度分析结果是=0.0030.V250将三项合成得到:电能表接线方式的规范化盘锦市计量测试所口姜寅丰当前,全国电能表生产厂家众多,其生产的电能表安装尺寸和接线方式各不相同,互换性比较差,给供电企业和电力客户的安装,维护,使用以及计量部门检定电能表带来很多问题和麻烦.电能表安装尺寸和接线方式不同带来的问题电能表互换性很差,给电能表定期更换,事故更换带来困难,并给电力客户及计量部门工作造成不便.由于各厂家生产的电能表外型尺寸不同,接线方式不同,特别是机械表,电子表,多功能表和磁卡表之间相差就更大.这对使用单位按一种类型电能表设计的电能表箱或计量柜,在更换不同厂家的电能表或更换不同功能的电能表时,造成很大的困难,耗用更多的人力,物力,无疑给使用单位增加了维护费用和成本,造成浪费.同时,由于各厂家生产的电能表电量显示方式不尽相同,加之客户文化水平参差不齐,一旦熟悉了~种电能表型的抄读方式,再换成另一种电量显示方式的电能表,就不会读,继而产生抱怨和不理解,给供电企业的优质服务工作也带来压力.可开启的接线方式,为用户提供了窃电和违章用电的机会.我国电能表的下端都有一个接线端子盒,这种接线方式虽然方便接线和现场检定试验,但也同时为用户窃电和违章用电提供了可乘之机.多年来的查处窃电实践经验表明,通过摘电压线或短路电能表电流线圈等方式窃电,都是在这个地方操作的.接线方式不同,容易发生误接线.由于各电能表厂家生产的电能表接线方式不尽相同,使得在进行电能表定期更换,事故更换以及计量检定工作时,容易发生误接线,造成计量差错,甚至酿成营业责任事故,给电费收缴带来不必要的麻烦.如DSSD331型威盛多功能电能表第5孔接线为B相电压线,而ZMC型兰吉尔多功能电能表第11孔位B相电压线,如果不注意,两块表型互换时就会发生误接线,甚至发生烧表,伤人事故.电能表外型尺寸和接线方式应统一建议统一电能表外型尺寸,使之标准化,使得全国各电能表厂家生产的各类功能不同的电能表都采用相同的外型尺寸,使其具有良好的互换性.建议改革并统一电能表接线方式.把电能表接线由底端接线改为背后接线,采用如同继电器接线方式一样带有接线底版,电能表与底版间采取钢片插接方式.接线底版背面接线柱为外接线端子,统一规定电压,电流,通讯485接口及其他接口的位置,能与不同功能的电能表配合接线;接线底版可固定在电能表箱内预制高位垫块上,可保护电能表接线不受侵害.接线底版正面为与电能表插片相匹配的插口.电能表背面为与底版插口相匹配的插片,电能表内部接线通过插片与底版接线端子一一对应.要求电能表安装在底版上后,能够有效加装封印.此项改革建议的优缺点电能表统一外型尺寸和接线方式,具有了良好的互换性,方便了使用单位的定期换表和事故换表,并方便不同功能和型式电能表之间的互换.电能表与底版的插片连接,是更换电能表时断开插接即可换表,不用再改动接线.电能表采用底版背面接线方式固定后,接线藏在底版后面,可减少或防止窃电行为的发生.由于电能表装,换的简易操作,提高了电能表定期更换,事故更换的工作效率.由于电能表装,换通过插接即可完成,缩短了对客户的停电时间,提高了供电可靠率,也有助于保证计量检定人员现场作业时的安全.此项改革建议,将有利于各电能表厂家之间的竞争,规范计量管理.缺点是要增加电能表厂家的研发成本.改革电能表接线方式,把电能表接线由底端接线改为背后接线,采用插接方式连接,会极大方便不同类型,不同功能电能表之间的互换.同时,还能提高防窃电和误接线能力.i12=0.0047+0.0031.+0.0030=O.00638.3合成标准不确定度的计算=硒一o.8U(C)=0.0188×0.302=0.006mg/L4扩展不确定度的计算取包含因子k=2(近似95%置信概率)则U=0.006X2=0.012mg/L六价铬删量302mg/1,不J经过计算得到六价铬的测量结果为0.,不J确定度为..叭2mk=2:!!!!___。
二苯碳酰二肼分光光度法测定水中六价铬方法的分析

稀释到标线.显色剂(I型)根据《水和 废水监测分析方法》第四版,注入量为 2mL,并摇匀;在5至10min之后。在 540nm的波长处。利用30mm比色皿, 以水当做参比。测量器吸光度;将所测出 的吸光度进行空白校准后,绘制出吸光度
进而影响了试剂品质,使其变为红色,对 水样的测试结果产生巨大的影响。目前我 国国内分析纯药品就可以满足日常检测的
有二苯碳酰二肼的显色剂(1型)贮存棕 色瓶中并放在冰箱冷藏保存,使用前应事 先检查显色剂颜色。如果颜色变深应停止 使用,需要重新进行配制。所有能使用到 的玻璃仪器(包括采样用的)不得用重铬
关键词:二苯碳酰二肼分光光度法;六价铬;分析
在水环境中六价铬是重要的污染物, 利用二苯碳酰二肼分光光度法测定水中六 价铬时,具备简单易操作,灵敏度高.干 扰因素少等诸多优点。因此,在水环境测 定六价铬得到广泛应用。
一、原理分析 在酸性溶液之中,二苯碳酰二肼在 六价铬强氧化的作用下形成二苯缩二氨基 脲。该物质又会和三价铬(六价铬的还原 产物)发生络合反应。然后形成紫红色络 合物,受一定浓度的影响,六价铬的含量 与这种络合物的色度呈现线性关系,即吸 光度与浓度二者之间的关系与朗伯一比尔 定律相符合,最大吸收率保持在540nm 波长处,达到测定水样中六价铬的目的。 二、六价铬校准曲线和有证密码样 测定 1六价铬标准曲线
前沿理论与策略
区域治理
二苯碳酰二肼分光光度法测定水中六价铬方法的分析
杨艳丽
云南省昆明市官渡区环境保护监测站,云南 昆明 650200
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十八二苯碳酰二肼分光光度法测定六价铬
1、实验目的
① 练习使用721分光光度计。
② 配制标准色列并测定地表水中六价格。
2﹑实验原理
在酸性溶液中,六价铬遇二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,摩尔吸光系数为4×104。
本方法适用于地面水和工业废水中六价铬的测定。
3﹑药品与仪器
3.1 实验药品:
①铬标准储备液:称取于120℃干燥2hr的重铬酸钾(K2Cr2O7,优级纯)
0.2829g,用水溶解后,移入1000mL容量瓶中,用水稀释至标线,摇匀。
每毫升溶液含0.100mg六价铬,即100ppm。
②铬标准使用液:吸取5.00mL铬标准储备液,置于500mL容量瓶中,用水稀释至标线,摇匀。
每毫升溶液含1.00μg六价铬,即1ppm。
使用时当天配制。
③显色剂:称取二苯碳酰二肼(C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀。
处于棕色瓶置于冰箱中保存。
色变深后不能使用。
④1+1硫酸
⑤1+1磷酸
3.2 实验仪器
①721型分光光度计
②50mL比色管
③1cm或3cm比色皿
4﹑实验步骤
4.1 标准曲线的绘制
向一系列50mL比色管中分别加入0、0.20、0.50、1.00、2.00、4.00、
6.00、8.00、10.00mL铬标准使用液,用水稀释至标线。
加入1+1硫酸溶液
0.5mL,1+1磷酸溶液0.5mL,摇匀,加入2mL显色剂,摇匀。
5—10min之后,于540nm波长处,用3cm比色皿,以水为参比,测定吸光度,绘制标准曲线。
4.2 样品测定
取适量(含六价铬少于50μg)无色透明水样,置于50mL比色管中,用水稀释至标线。
以下步骤同标准曲线绘制。
5、注意事项
①当水样混浊或有色时,应进行预处理。
②所有玻璃仪器(包括采样瓶),不能用重铬酸钾洗液洗涤,可用硝酸—硫酸混合液或洗涤液洗涤。
洗涤后要冲洗干净。
玻璃器皿内要求光洁,防止铬被吸附。
6﹑数据处理
式中:m—由标准曲线查得的六价铬,μg;V—水样的体积,mL。
数据列表表示如下:
6.1 标准曲线的绘制
6.2 样品测定。