第二章 单自由度系统的自由振动
机械振动学_第二章单自由度振动系统

第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。
(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。
此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。
[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。
[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。
忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。
把它们看成是只有惯性而无弹性的集中质点。
于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。
在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。
阻尼器由一个油缸和活塞、油液组成。
汽车轮悬置系统等等。
[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。
所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。
以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。
在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。
有时在振动系统中还作用有一个持续作用的激振力P。
应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。
(牛顿运动定律)(达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零) (动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。
2-单自由度自由振动

第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
31
给出初始条件:t=0时 x x0 , x v0
则可确定系数B和D B v0 ( 2 1)n x0 2n 2 1
D v0 ( 2 1)n x0 2n 2 1
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
不大,特别是当阻尼很小(<<1)时,可
以忽略阻尼对振动频率和周期的影响。
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
40
2.6 对数衰减率
振幅衰减的快慢程度可用相邻振幅 的比值来表示,称为衰减率或减幅率或 减缩率;也可以用衰减率的自然对数来 表示,称为对数衰减率。
第2章 单自由度系统自由振动
第2章 单自由度系统自由振动
2.3 能量法
22
P15例2-3-2 利用能量法求纯滚动圆盘 系统作微幅振动的固有频率。
第2章 单自由度系统自由振动
2.3 能量法
23
2.4 瑞利法
一般不考虑弹性元件的质量对振动系统的 影响,若这些质量不可忽略的时候,“瑞利法” 的思想,是将这些弹性元件所具有的多个集中 质量或分布质量简化到系统的集中质量上去, 从而变成典型的单自由度振动系统。
T 2 n
周期是系统振动一次所需要的时间,单位 为秒(s)。
周期的倒数称为频率,是系统每秒钟振动 的次数,单位为1/秒(1/s)或赫兹(Hz)。记作 f
f 1 n T 2
第2章 单自由度系统自由振动
2.2 自由振动系统
13
固有频率n和频率 f 只相差常数2,因
此经常通称为固有频率。是振动分析中极
已知质量为m,弹簧的刚 度系数为k。取质量的静平衡 位置为坐标原点,当重物偏离 x 时,利用牛顿定律可得到运 动微分方程:
第二章 单自由度系统振动的理论及应用

M t
则得
2 .. n 0
通解为:
A sin(n t 0 )
代入:
将振动的初始条件t= 0 , 0 , . 0.
A
.0 2 0 2 n
2
n 0 0 arctan . 0
例: 已知:质量为m=0.5kg的物体沿光滑斜面无初速度滑下。 当物块下落高度h=0.1m时,撞于无质量的弹簧上, 并与弹簧不再分离,弹簧刚度系数k=0.8kN/m。 倾角 30 求:此系统振动的固有频率和振幅并给出物块的运动方程。
计算固有频率的能量法
无阻尼自由振动系统没有能量的损失,振动将永远持续下去. 在振动过程中,系统的动能与弹簧的势能不断转换,但总的机械能 守恒.因此,可以利用能量守恒原理计算系统的固有频率. 如图所示无阻尼振动系统 当系统作自由振动时,运动规律为:
x A sin(0t )
速度为:
dx v 0 A cos(0t ) dt
称为单自由度线性纵向振动系统的运动微分方程式,又称单 自由度有粘性阻尼的受迫振动方程.
可分为如下几种情况进行研究:
(1)当c=0,F(t)=0时, 该方程为单自由度无阻尼自由振动方程.
(2)当F(t)=0时, mx cx kx 0 该方程为单自由度有拈性阻尼的自由振动方程.
.. .
mx .. kx 0
由机械能守恒定律有
Tmax Vmax
即
1 1 2 2 J 0 Φ ( k1l 2 k 2d 2 )Φ 2 2 2
解得固有频率
0
k1 l 2 k 2 d 2 J
例: 已知:如图表示一质量为m,半径为r的圆柱体,在一半 径为R的圆弧槽上作无滑动的滚动。 求:圆柱体在平衡位置附近作微小振动的固有频率。
第2章单自由度的自由系统

以具体振动系统的能量表达式代人上式,化简后 即可得出描述振动系统自由振动的微分方程。
如果取平衡位置为势能零点,根据自由振动 的特点,系统在平衡位置时,系统的势能为零, 其动能的极大值Tmax就是全部机械能,而在振 动系统的极端位置时,系统的动能为零,其势能 的极大值Umax等于其全部的机械能。由机械能 守恒定律,有
式中,k为梁的弹簧刚度,对于简支梁带有中间集中 质量时
下面证明一个等截面悬臂梁(如图)在自由端的
等效质量为
。假定梁自由振动时的振动形式
则系统的最大动能为
系统的最大势能为
则得固有频率ωn同前。
例2.2-2细杆OA可绕水平轴O转动,如图所示,
在静平衡时成水平。杆端锤的质量为m,杆与弹
簧的质量均可略去不计,求自由振动的微分方程
及周期。
解:在杆有微小偏角φ时,
弹簧的伸长以及锤的位移与
速度可以近似地表示为aφ,
lφ与 。故振动系统的动能
与势能可以表示为
因为mg=kδs,上式仍可简化为
。
可见前面关于物体沿光滑平面运动的讨论,同样适
用于对物体沿铅垂方向的振动,只要取物体的静平
衡位置为坐标原点。
从弹簧的静变形可以方便地计算出振动系统
的固有频率。
因为由式
得
又
则
例2.1-1 均匀悬臂梁长为l,弯曲刚度为EJ,重量 不计,自由端附有重为P=mg的物体,如图所示。 试写出物体的振动微分方程,并求出频率。
只要振动系统的自由振动是简谐振动,则由该 方程可以直接得出系统的固有频率。不需要列出振 动微分方程。
例2.2-1有一个重量为W,半径为r的实心圆柱体, 在半径为R的圆柱形面上无滑动地滚动,如图所 示。假设该滚动的圆柱体进行简谐运动,试求它 绕平衡位置作微小摆动时的固有频率ωn。
单自由度系统(自由振动)

第二章 单自由度系统的自由振动本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。
§2-1 无阻尼系统的自由振动无阻尼单自由度系统的动力学模型如图1.1所示。
设质量为m ,单位是kg 。
弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。
弹簧在自由状态位置如图中虚线所示。
当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形∆:,同时也产生弹簧恢复力K ∆,当其等于重力W 时,则处于静平衡位置,即 W=K ⋅∆若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。
首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。
现设质量m 向下运动到x ,此时弹簧恢复力为K(∆+x),显然大于重力W ,由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx xm (1-1-1 令mkp =2(1-1-2)单自由度无阻尼系统自由振动运动方程为02=+x p x(1-1-3)设方程的特解为 ste x =将上式代入(1-1-3)处特征方程及特征根为ips p s ±==+2,1220则(1-1-3)的通解为ptD pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4)C 、D 为任意积分常数,由运动的初始条件确定,设t=0时00,x xx x == (1-1-5)()x m x k W F=+∆-=∑量位静平衡位置 一自由度弹簧—质量系统 ∆==k mgW xx)则pt pxpt x x sin cos 00 += (1-1-6)经三角变换,又可表示为)sin(α+=pt A x(1-1-7)其中 001220,x px tg p x x A -=⎪⎪⎭⎫ ⎝⎛+=α (1-1-8) 自由振动的振幅A 和初相位角α与系统的参数和初始条件有关。
第二章(第2,3节)单自由度系统的自由振动

2
R r 2 2
圆柱体的势能为相对于最低位置O的重力势能。 若选圆柱体中心C在运动过程中的最低点为零势能 点,则系统的势能为 2 U W ( R r )( 1 cos ) 2W ( R r ) sin
2
2.2 能量法
例题:用能量法求解系统的振动微分方程与固有频率(例2.2-1)
2.2 能量法
例题:用能量法求解系统的振动微分方程与固有频率(例2.2-1)
例2.2-1 有一个重量为W,半径为r的实心圆柱体, 在半径为R的圆柱形面上无滑动地滚动,如图2.2-1所示。 假设该滚动的圆柱体进行简谐运动,试求它绕平衡位置作 微小摆动时的固有频率n。 解:圆柱体在摆动时 有两种运动:移动和滚动。 设坐标如图2.2-1示。 摆动时圆柱体中心C点的速度 及圆柱体的角速度分别为
1 k 1 k1 1 k2 1 kn
图 2.3-2
k
i 1
n
1
i
(2.3-2)
2.3 等效刚度系数
串、并联弹簧的等效刚度的计算
图2.3-2(b)是两个并联弹簧,刚度系 数分别为k1和k2。两个弹簧所受的力分别 为k1xB、k2xB 根据静力平衡条件得: F k 1 x B k 2 x B
2.3 等效刚度系数
串、并联弹簧的等效刚度的计算
图2.3-2(a)是两个串联弹簧,刚度系数分 别为k1和k2。B点的位移及等效刚度系数为
xB F k1 F k2
k
F xB
k1k 2 k1 k 2
串联弹簧的作用使系统中的弹簧刚度降低。
如果有n个弹簧串联,刚度系数分别为k1, k2, …, kn,则等效刚度系数k应满足关系式
第二章单自由度系统的自由振动
可见动张力几乎是静张力的一半,由于
v kA k v km wn
因而为了降低动张力,应该降低系统的刚度
15
例2.2 图示的直升机桨 叶经实验测出其质量 为m,质心C距铰中心 O距离为l。现给予桨 叶初始扰动,使其微 幅摆动,用秒表测得 多次摆动循环所用的 时间,除以循环次数 获得近似的固有周期, 试求桨叶绕垂直铰O的 转动惯量。
第二章 单自由度系统的自由振动
以弹簧质量系统为力学模型,讨论单自由度 无阻尼系统的固有振动和自由振动, • 固有振动的表现形式为简谐振动,其固有频率 的计算方法有静变形法、能量法、瑞利法以及 等效刚度、等效质量法 • 有阻尼的系统根据阻尼的大小分为过阻尼、临 界阻尼及欠阻尼三种状态
1
单自由度系统的自由振动
一、自由振动的概念:
以弹簧质量系统为力学模型
2
运动过程中,总指向物体平衡位置的力称为恢复力。 物体受到初干扰后,仅在系统的恢复力作用下在其平衡位 置附近的振动称为无阻尼自由振动。 质量—弹簧系统: 令x为位移,以质量块的静平衡位置 为坐标原点,当系统受干扰时,有:
m mg k (s x) x
O l C mg
16
解:取图示坐标系,将直升机桨叶视为一物 理摆,根据绕固定铰的动量矩定理得到其 摆动微分方程
J 0 mgl sin
O l C mg
sin
n
mgl , J0
J0 mgl 0
J0 Tn 2 mgl
mgl J0 2 Tn2 4
m Tn 2 n k 2
固有周期
k / m g / s
10
固有频率及固有周期
k g wn m s
对于不易得到刚度或质量的系统, 若能测出静变形,可用上式计算固有频率。
振动理论及工程应用2 第二章 单自由度系统的振动
刚度系数k。
先将刚度系数k2换算至质量m所在处C的等效刚度系数k。
设在C处作用一力F,按静力平衡的
关系,作用在B处的力为 Fa
C
b
此力使B 弹簧 k2 产生 变形,
而此变形使C点发生的变形为
c
a Fa 2 b k2b2
得到作用在C处而与k2弹簧等效的刚度系数
k F
c
k2
C1 x0
C2
v0 pn
x
x0
cos
pnt
v0 pn
sin
pnt
另一种形式
x Asin( pnt )
初
振幅
相 两种形式描述的物
A
x02
(
v0 pn
)2
位 块振动,称为无阻 角 尼自由振动,简称
自由振动。
arctg(
pn x0 v0
)
无阻尼的自由振动是以其静平衡位置为振动中心的 简谐振动
b2 a2
k F
c
k2
b2 a2
与弹簧k1串联
C
得系统的等效刚度系数
k
k1k 2
b2 a2
k1k 2 b 2
k1
k2
b2 a2
a 2k1 b2k2
物块的自由振动频率为
pn
k b
k1k2
m
m(a2k1 b2k2 )
弹性梁的等效刚度
例 一个质量为m的物块从 h 的高 处自由落下,与一根抗弯刚度为EI、 长为的简支梁作塑性碰撞,不计梁 的质量,求该系统自由振动的频率、 振幅和最大挠度。
系统振动的周期 T 2π 2π m
第二章 单自由度系统
M x + c x + kx = meω 2 sin ω t
方程稳态响应可表示为:
M m
x ( t ) = X s in ( ω t )
式中:
m 2 eγ meω M X= = (k ω2M )2 + ω2c2 (1 γ 2 )2 + (2ξγ )2
2
系统的放大因子为:
MX γ2 = me (1 γ 2 ) 2 + (2ξγ ) 2
单自由系统
M
自由振动微分方程
m x + c x + kx = 0
K
无阻尼自由振动方程:
2 x+ ωn x = 0
Hale Waihona Puke C方程解:A=
x x + ωn
2 0 2 0
2
x = A sin (ωn t + ψ )
固有圆频率: 固有圆频率:
ψ = arctan
ω n x0
x0
固有频率: 固有频率:
式中,等效静位移 X 0 = F k 频率比 γ = ω / ωn 振幅放大因子 M = X =
X0
1 (1 γ 2 ) 2 + (2ξγ ) 2
简谐激励下的强迫振动
M= X 1 = X0 (1 γ 2 ) 2 + (2ξγ ) 2
γ = ω / ωn
等效静位移
X0 = F k
简谐激励下的强迫振动
隔振
T 令 TF = TD = TR ,R 叫做传递系数,随 ξ 和 γ 的变化曲线如下图.
位移传递系数 TD和力传递系数 TF 的表达式是完全相同的.
隔振
由图可得到两点结论: 1)无论阻尼比为多少, 只有在 γ > 2 时才有隔振 效果; 2)对于某个给定的 γ > 2 值,当阻尼比减小时,传 递系数也减小.
第二章单自由度系统自由振动)
(1)等效刚度
通常用能量法求复杂系统的等效刚度,即按实际系统要转化的弹簧 的弹性势能与等效系统弹簧势能相等的原则来求系统的等效刚度。
1、单自由度系统及其振动微分方程建立 (1)单自由度振动系统
(2)单自由度系统振动方程的建立方法 ①牛顿第二定律或达朗贝尔原理
f m&x& f m&x& 0 M J&& M J&& 0
例题2-1 (教材例题2.10) 建立如图所示振动系统的振动微分方程。
ml&x&
若动能达到最大Tm ax时取势能为0,则动能为0时,势能必取得最大值U m ax
Tm
ax=U
m
,可由此得到固有频率
ax
例题:求圆轴圆盘扭振系统的振动固有频率
T 1 m(l)2
2
U 1 k(a)2
2
d [1 m(l)2 1 k(a)2 ] 0
dt 2
2
可得 + k ( a )2 0
例题2-3
meq J m1r 2 m2 R2 keq (k1 k3 )r 2 (k2 k4 )R2
例题2-4 (教材例题2.4)
例题2-5 (教材例题2.5)
me
m
L
3
mA
J
mvb2 a2
1 3
msb2
例题2-6 (教材例题2.3、2.6) 求轴向轴转化的单轴系的等效刚度和等效旋转质量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
I
在圆盘的静平衡位置上任意选一根半径作 为角位移的起点位置
由牛顿第二定律:
I&& k 0
&& 02 0
扭振固有频率
0
k I
第二章 单自由度系统的自由振动
由上例可看出,除了选择了坐标不同之外,角振动与直线振动的数学描述 完全相同。如果在弹簧质量系统中将 m、k 称为广义质量及广义刚度,则弹 簧质量系统的有关结论完全适用于角振动。以后不加特别声明时,弹簧质 量系统是广义的 。
对时间求导 取平衡位置为势能零点,根据自由振动的特点,系统在平衡位置时,系统的势能 为零,其动能的极大值就是全部机械能;而在振动系统的极端位置时,系统的动 能为零,其势能的极大值等于全部的机械能,即有:
例题讲解3 均匀悬臂梁长为 l, 弯曲刚度为EJ,重量不计, 自由端附有重为P=mg的物体,如图所示。试 写出物体的振动微分方程,并求出频率。 梁的自由端将有静挠度: 物体的振动微分方程为:
8
第二章 单自由度系统的自由振动
例题讲解3 重物落下,与简支梁做完全非弹性碰撞
梁长 L,抗弯刚度 EJ m
h
第二章 单自由度系统的自由振动
2.1 简谐振动
由牛顿定律,有 设系统固有频率为 二阶常系数线性齐次常微分方程
通解形式为
1
第二章 单自由度系统的自由振动
根据三角关系式
改 写
由此可以知道:该系统以 固有频率作简谐振动。
振动周期:
振动频率:
2
第二章 单自由度系统的自由振动
设在初始时刻t=0,物体有初位移
弹簧原长位置
m&x& kx 0
m
0
静平衡位置
k
I&& k 0
0 k I
0 k m k
x
I
第二章 单自由度系统的自由振动
例题讲解4:复摆 刚体质量 m
a
0
重心 C
对悬点的转动惯量 I 0
I0
C
mg
求: 复摆在平衡位置附近做微振动时的微分方程和固有频率
第二章 单自由度系统的自由振动
解: 由牛顿定律 :
3
第二章 单自由度系统的自由振动
例题讲解1
当振动系统为静平衡时 , 弹簧在重力mg的作用下将有静伸长
物体的运动微分方程为:
s
mg k
mx mg k(s x)
mx kx 0
则有:
0
k m
g
s
对于不易得到 m 和 k 的系统,若能测出静变形 s ,则用该式计算是较为方便的。
4
第二章 单自由度系统的自由振动
重物匀速下降时处于静平衡位置,若 将坐标原点取在绳被卡住瞬时重物所 在位置
则 t=0 时,有: x0 0 x0 v
振动解:
x
t
x0
cos
0t
x&0
0
sin
0t
v
k
静平衡位置
W
W
x
x
t
v
0
sin
0t
1.28
sin
19.6t
(cm)
6
第二章 单自由度系统的自由振动
振动解:
x(t)
v
0
s in(0t )
弹簧原长位置
m&x& kx 0
m
0
静平衡位置
k
I&& k 0
0 k I
0 k m k
x
I
第二章 单自由度系统的自由振动
从前面两种形式的振动看到,单自由度无阻尼系统总包含着惯性元件和弹 性元件两种基本元件,惯性元件是感受加速度的元件,它表现为系统的质 量或转动惯量,而弹性元件是产生使系统恢复原来状态的恢复力的元件, 它表现为具有刚度或扭转刚度度的弹性体。同一个系统中,若惯性增加, 则使固有频率降低,而若刚度增加,则固有频率增大 。
l/2
0
l/2
求: 梁的自由振动频率和最大挠度
第二章 单自由度系统的自由振动
解: 取平衡位置 以梁承受重物时的静平衡位 置为坐标原点建立坐标系
静变形 由材料力学 : mgl3
48EJ
m h
l/2
0
l/2
x
静平衡位置
自由振动频率为 : 0
g
48EJ ml 3
• 第二章 单自由度系统的自由振动
I0&& mga sin 0
因为微振动: sin
则有 : I0 mga 0
固有频率 :0 mga / I0
a
0
I0
C
mg
若已测出物体的固有频率 心的转动惯量:
0
,则可求出
I
0
,再由移轴定理,可得物质绕质
Ic I0 ma2
实验确定复杂形状物体的转动惯量的一个方法
第二章 单自由度系统的自由振动
70 rad s
振动初始条件:
kx0 mg sin 300
运动方程: x t 0.1cos 70t cm
x
300
考虑方向
x0 0.1 (cm) 初始速度: x0 0
第二章 单自由度系统的自由振动
2.2 能量法
对于能量无耗散的振动系统,在自由振动时系统的机械能守恒。令T和U分别代表 振动系统的动能与势能,则有:
1.28
sin(19.6t)
( cm)
绳中的最大张力等于静张力与因振动引起的动张力 之和 :
Tmax
Ts
kA
W
k
v
0
1.47 105 0.74 105
v W
2.21105 (N )
(动张力几乎是静张力的一半)
请思考:为了减少振动引起的动张力,应当采取什么措施?
7
第二章 单自由度系统的自由振动
例题讲解2:提升机系统
重物重 量 W 1.47105 N
钢丝绳的弹簧刚度
k 5.78104 N / cm
重物以 v 15m / min 的速度均匀下降
求,绳的上端突然被卡住时: 1. 重物的振动频率; 2. 钢丝绳中的最大张力。
v W
5
第二章 单自由度系统的自由振动 Nhomakorabea解:
振动频率 0
k m
gk 19.6rad / s W
撞击时刻为零时刻,则 t=0 时,有:
x0 x0 2gh
则自由振动振幅为 :
m h
l/2
0
l/2
静平衡位置
A
x02
x&0
0
2
2 2h
x
梁的最大扰度:
max A
x(t)
x0
cos(0t)
x0
0
sin(0t)
第二章 单自由度系统的自由振动
例:圆盘转动
圆盘转动惯量 I
k为轴的扭转刚度,定义为使得圆盘产生单
例题讲解5:弹簧-质量系统沿光滑斜面做自由振动
30o
斜面倾角 质量 m =1 kg 弹簧刚度 k=49 N/cm 开始时弹簧无伸长,且速度为零
k
300
重力角速度取 9.8
求: 系统的运动方程
第二章 单自由度系统的自由振动
解:
以静平衡位置为坐标原点建立 坐标系
k 0
振动固有频率:
0 k m
49102 /1
,与初速度
,将其代入上述方程可得:
简谐振动的振幅与初相角随初始条件的不同而改变,但振动频率和周期则取决于振 动系统参数,与初始条件无关。
无阻尼的质量弹簧系统受到初始扰动后,其自由振动是以 为振动频率的简谐振0
动,并且永无休止。
初始条件:
x0 2, x0 0
固有频率从左到右:
0 , 20 , 30