《因式分解》常见题型例析
因式分解经典例题

因式分解经典例题一、提取公因式法例1:分解因式ax + ay。
解析:公因式为a,所以ax+ay = a(x + y)。
例2:分解因式3x^2-6x。
解析:公因式为3x,3x^2-6x=3x(x - 2)。
例3:分解因式5a^2b - 10ab^2。
解析:公因式为5ab,5a^2b-10ab^2=5ab(a - 2b)。
二、运用平方差公式a^2-b^2=(a + b)(a - b)分解因式例4:分解因式x^2-9。
解析:x^2-9=x^2-3^2=(x + 3)(x-3)。
例5:分解因式16y^2-25。
解析:16y^2-25=(4y)^2-5^2=(4y + 5)(4y-5)。
例6:分解因式(x + p)^2-(x + q)^2。
解析:根据平方差公式a=(x + p),b=(x+q),则(x + p)^2-(x + q)^2=[(x + p)+(x + q)][(x + p)-(x + q)]=(2x + p + q)(p - q)。
三、运用完全平方公式a^2±2ab + b^2=(a± b)^2分解因式例7:分解因式x^2+6x + 9。
解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。
例8:分解因式4y^2-20y+25。
解析:4y^2-20y + 25=(2y)^2-2×5×2y+5^2=(2y - 5)^2。
例9:分解因式x^2-4xy+4y^2。
解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。
四、综合运用多种方法分解因式例10:分解因式x^3-2x^2+x。
解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以原式=x(x - 1)^2。
例11:分解因式2x^2-8。
解析:先提取公因式2,得到2(x^2-4),再利用平方差公式x^2-4=(x + 2)(x-2),所以原式=2(x + 2)(x - 2)。
第4讲 因式分解章末重难点题型(解析版)

第4讲因式分解章末重难点题型【题型通关】【考点1 因式分解的概念】【方法点拨】掌握因式分解:(1)把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫把这个多项式分解因式.(2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式.(3)分解因式时,其结果要使每一个因式不能再分解为止.【例1】(鄞州区期中)下列由左到右边的变形中,是因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣1=x(x−1 x)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2﹣9=(x+3)(x﹣3)【分析】直接利用因式分解的意义分别判断得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,是多项式乘法,故此选项错误;B、x2﹣1=(x+1)(x﹣1),故此选项错误;C、x2﹣4+3x=(x+4)(x﹣1),故此选项错误;D、x2﹣9=(x+3)(x﹣3),故此选项正确.故选:D.【点评】此题主要考查了因式分解的意义.正确把握因式分解的定义是解题的关键.【变式1-1】(东台市期中)下列各式从左到右的变形,是因式分解的为()A.(2x﹣1)(x+3)=2x2+5x﹣3B.a4+4=(a2+2a+2)(a2﹣2a+2)C.﹣6a2b=﹣2a2•3bD.x2﹣9+6x=(x+3)(x﹣3)+6x【分析】根据因式分解的定义逐个判断即可.【解答】解:A、从左到右的变形,不属于因式分解,故本选项不符合题意;B、从左到右的变形,属于因式分解,故本选项符合题意;C、从左到右的变形,不属于因式分解,故本选项不符合题意;D、从左到右的变形,不属于因式分解,故本选项不符合题意;故选:B.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.【变式1-2】(高新区校级月考)下列变形属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x﹣1=x(1−1x)(x≠0)C.x3+2x2+1=x2(x+2)+1D.x2﹣9=(x+3)(x﹣3)【分析】根据因式分解的定义逐个判断即可.【解答】解:A.从左边到右边的变形,不属于因式分解,故本选项不符合题意;B.从左边到右边的变形,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形,不属于因式分解,故本选项不符合题意;D.从左边到右边的变形,属于因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.【变式1-3】(淮安区期中)下列各式从左到右的变形中,是因式分解的为()A.2x+4y+1=2(x+2y)+1B.(x+2)(x﹣2)=x2﹣4C.x(x﹣10)=x2﹣10x D.x2﹣4x+4=(x﹣2)2【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A不合题意;B、是整式的乘法,故B不合题意;C、是整式的乘法,故C不合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.【考点2 因式分解—提公因式法】【方法点拨】确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;【例2】(碑林区校级月考)多项式:①16x2﹣8x;②(x﹣1)2﹣4(x﹣1)+4;③(x+1)4﹣4x(x+1)2+4x2;④﹣4x2﹣1+4x分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③【分析】首先把各个多项式分解因式,即可得出答案.【解答】解:①16x2﹣8x=8x(2x﹣1);②(x﹣1)2﹣4(x﹣1)+4=(x﹣1﹣2)2=(x﹣3)2;③(x+1)4﹣4x(x+1)2+4x2=[(x+1)2﹣2x]2=(x2+1)2;④﹣4x2﹣1+4x=﹣(2x﹣1)2;∴结果中含有相同因式的是①和④;故选:C.【点评】本题考查了因式分解的方法以及公因式;熟练掌握因式分解的方法是解题的关键.【变式2-1】(唐河县期末)如果多项式−15abc+15ab2﹣a2bc的一个因式是−15ab,那么另一个因式是()A.c﹣b+5ac B.c+b﹣5ac C.c﹣b+15ac D.c+b−15ac【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解,本题提取公因式−15ab.【解答】解:−15abc+15ab2﹣a2bc=−15ab(c﹣b+5ac),故另一个因式为(c﹣b+5ac),故选:A.【点评】当一个多项式有公因式,将其分解因式时应先提取公因式,提取公因式后剩下的因式是用原多项式除以公因式所得的商得到的.【变式2-2】(﹣2)2021+(﹣2)2020的值为()A.﹣2B.﹣22020C.﹣22019D.﹣24039【分析】直接找出公因式进而提取分解因式即可.【解答】解:(﹣2)2021+(﹣2)2020=(﹣2)2020×(﹣2+1)=﹣22020.故选:B .【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.【变式2-3】(安居区期末)化简:a +1+a (a +1)+a (a +1)2+…+a (a +1)99= .【分析】原式提取公因式,计算即可得到结果.【解答】解:原式=(a +1)[1+a +a (a +1)+a (a +1)2+…+a (a +1)98]=(a +1)2[1+a +a (a +1)+a (a +1)2+…+a (a +1)97]=(a +1)3[1+a +a (a +1)+a (a +1)2+…+a (a +1)96]=…=(a +1)100.故答案为:(a +1)100.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.【考点3 因式分解—公式法】【方法点拨】概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反. ②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【例3】(乳山市期中)下列各式:①﹣x 2﹣y 2;②−14a 2b 2+1; ③a 2+ab +b 2; ④﹣x 2+2xy ﹣y 2;⑤14−mn +m 2n 2,用公式法分解因式的有( )A .2个B .3个C .4个D .5个【分析】根据每个多项式的特征,结合平方差公式、完全平方公式的结构特征,综合进行判断即可.【解答】解:①﹣x 2﹣y 2=﹣(x 2+y 2),因此①不能用公式法分解因式;②−14a 2b 2+1=1﹣(12ab )2=(1+12ab )(1−12ab ),因此②能用公式法分解因式; ③a 2+ab +b 2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x 2+2xy ﹣y 2=﹣(x 2﹣2xy +y 2)=﹣(x ﹣y )2,因此④能用公式法分解因式;⑤14−mn +m 2n 2=(12−mn )2,因此⑤能用公式法分解因式; 综上所述,能用公式法分解因式的有②④⑤,故选:B.【点评】本题考查平方差公式、完全平方公式,掌握公式的结果特征是应用的前提.【变式3-1】(鱼台县期末)已知9x2﹣mxy+16y2能运用完全平方公式分解因式,则m的值为()A.12B.±12C.24D.±24【分析】这里首末两项是3和4y个数的平方,那么中间一项为加上或减去3x和4y乘积的2倍,故:m =±24.【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±24.故选:D.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【变式3-2】(厦门期末)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a 可以是()A.2x2B.4x2C.2x D.4x【分析】直接利用完全平方公式得出答案.【解答】解:∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是:2x.故选:C.【点评】此题主要考查了公式法分解因式,正确运用完全平方公式是解题关键.【变式3-3】(北碚区期末)若4x2+kx+25=(2x+a)2,则k+a的值可以是()A.﹣25B.﹣15C.15D.20【分析】直接利用完全平方公式分解因式求出答案.【解答】解:4x2+kx+25=(2x+a)2,当a=5时,k=20,当a=﹣5时,k=﹣20,故k+a的值可以是:﹣25.故选:A.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.【考点4 因式分解(提公因式与公式法综合)】【方法点拨】先提取公因式,然后再看是不是平方差式或者完全平方式。
二次三项式的因式分解(5种题型)-2023年新八年级数学核心知识点与常见题型(沪教版)(解析版)

二次三项式的因式分解【知识梳理】二次三项式的因式分解(1)形如()2ax bx c a b c ++,,都不为零的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x , 那么二次三项式的分解公式为:2ax bx c ++()()12a x x x x =−−.,【考点剖析】 题型一:两根与二次三项式因式分解关系 例1.若方程24210y y −−=的两个根是1y =,2y =,则在实数范围内分解因式2421y y −−=____________.【答案】⎪⎪⎭⎫ ⎝⎛−−⎪⎪⎭⎫ ⎝⎛+−4514514y y . 【解析】如果一元二次方程20ax c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式2ax bx c ++可分解为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解. 【变式1】若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3−++−−x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________.【答案】2211+=x ,2122−=x .【解析】如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式的分 解公式为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查二次三项式的因式分解与相对应的一元二次方程的根的关系.题型二:不能在实数范围内因式分解的二次三项式例2.下列二次三项式在实数范围内不能因式分解的是(,,,,,,) A.2615x x +−;,,,,,,,,,,,,,,,,,,,,,B.,2373y y ++;,,,,,,,,, C.2224x x −−;,,,,,,,,,,,,,,,,,,,,,D.2245y y −+. 【答案】D ;【解析】解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为244424360b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为2416425240b ac −=−⨯⨯=−< 故此二次三项式在实数范围内不能因式分解.故答案选D.【变式1】下列二次三项式在实数范围内不能因式分解的是(,,,,,)A.1562−+x x ,,,,,B.3732++y y ,,,,,C.422−−x x ,,,,,D.22542y xy x +−【答案】D ;【解析】,解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不能因式分解. 故答案选D.【变式2】下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2411x x +−;,,B.,2373y y ++;,,,,C.,224x x −−;,,,D.,22245x xy y −+.【答案】D ;【解析】解:A 、因为24144111770b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不以因式分解. 故答案选D.【变式3】如果关于x 的二次三项式24x x m −+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值) 【答案】5;【解析】解:当241640b ac m −=−<即4m >时,关于x 的二次三项式24x x m −+在实数范围内不能因式分解,如m 取5等等.题型三:二次项系数为1的实数范围内二次三项式因式分解 例3.在实数范围内分解因式:241x x −−=______________【答案】(22x x −+−;【解析】解:原式=2445x x −+−=()222x −−=(22x x −−−.【变式1】在实数范围内分解因式:232x x −−=,,,,,,,,,,,,,,,,,,,,.【答案】x x ⎛−− ⎝⎭⎝⎭; 【解析】解:因为方程2320x x −−=的两根为x =,故232x x −−=x x ⎛ ⎝⎭⎝⎭. 【变式2】在实数范围内分解因式:243x x −−=,____________________.【答案】(22x x −−;【解析】解:解方程x2-x-3=0,得x=2±则:x2-4x-3=(22x x −−+.【变式3】在实数范围内分解因式: (1)224x x −−;(2)223x xy y −−.【答案】(1)(11x x −−,,,,(2)3322x y x y ⎛⎫⎛⎫−−− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)前两项先配成完全平方公式,然后根据平方差公式,可得答案;(2)先解方程2230x xy y −−=,然后分解因式即可. 【详解】(1)原式=(x2﹣2x+1)﹣5=(x ﹣1)22=(x ﹣1(x ﹣1;(2)∵2230x xy y −−=的解是x y =,∴原式=x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查了因式分解,利用乘法公式和求根公式是解答本题的关键. 题型四:二次项系数不为1的实数范围内二次三项式因式分解 例4.二次三项式2x 2-8x+5在实数范围内因式分解为(,,,,)A.,B.,C.,2(x+)(x-)22D.,2(x-)(x-)22【答案】D ;【解析】解:令2x2-8x+5=0,解得:x1=,x2=,则2x2-8x+5=2(x x .故选D .【变式1】在实数范围内因式分解:222x x −−=__________________.【答案】2(x x ;【解析】解:2220x x −−=的解是1x =,214x =,所以222x x −−=2(x x【变式2】在实数范围内因式分解:2221x x −−=______.【答案】2⎛ ⎝⎭⎝⎭x x ;【解析】解:22122122x x x x ⎛⎫−−=−− ⎪⎝⎭=21111222442x x ⎛⎫−⋅+−− ⎪⎝⎭=213224x ⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=221222x ⎡⎤⎫⎛⎫⎢⎥−−⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=11222x x ⎛−− ⎝⎭⎝⎭=2x x ⎛⎝⎭⎝⎭.【变式3】在实数范围内分解因式:2225x x −−=____.【答案】112()2222x x −−−+;【解析】解:2225x x −−=21112()42x x −+−=21112()22x −−=21112()24x ⎡⎤−−⎢⎥⎣⎦11=2(22x x −−,故答案为:112()()2222x x −−−+.【变式4】分解因式:2235a ab b −−.【答案】3a a ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭; 【解析】解:因为222=2543()370b b b ∆−⨯⨯−=≥,故方程22350a ab b −−=的两根为a ==,故22353a ab b a a ⎛⎫⎛⎫−−= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 题型五:实数范围内二次三项式因式分解的应用例5.如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围. 【答案】p≥﹣1且p≠0;【解析】解:∵二次三项式px2+2x ﹣1在实数范围内可以因式分解, ∴px2+2x ﹣1=0有实数解, ∴△=4+4p≥0,且p≠0, 解得:p≥﹣1且p≠0.【变式1】二次三项式2342x x k −+,当k 取何值时,(1)在实数范围内能分解; (2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?【答案】(1)32≤k ;(2)32>k ;(3)32=k ,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【解析】(1)要使二次三项式2342x x k −+在实数范围内能分解,则方程23420x x k −+=要有实数根,则需要满足()021242≥⋅−−=∆k ,解得:32≤k ;(2)要使二次三项式2342x x k −+在实数范围内不能分解,则方程23420x x k −+=没有实数根,则需要满足()021242<⋅−−=∆k ,解得:32>k ;(3)要使二次三项式2342x x k −+在实数范围内能分解成一个完全平方式,则方程23420x x k −+=有两个相等实数根,则需要满足()021242=⋅−−=∆k ,解得:32=k .此时,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【总结】当一个二次三项不能在实数范围内分解因式时,则说明该二次三项式所对应的一元二次方程在实数范围内无解,反之,则说明该二次三项式所对应的一元二次方程有实数解. 【变式2】阅读题:分解因式:223x x −−. 解:原式22113x x =++−−,,,,,,,,()2214x x =++−,,,,,,,,()214x =+− ,,,,,,,,()()1212x x =+++− ,,,,,,,,()()31x x =+−.此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +−.【答案】(2121a a ++.【分析】先配方,再根据平方差公式分解即可. 【详解】()(224412122121a a a a a +−=+−=+++【点睛】本题考查了配方法的应用,熟练掌握配方的方法是解答本题的关键.,此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.,【过关检测】一、单选题1.(2022秋·上海浦东新·八年级统考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )【答案】C【分析】利用完全平方公式把A 分解,利用十字乘法把B 分解,再分别令229=0,y y −+21=0,y −再计算根的判别式,从而可判断C ,D ,从而可得答案. 【详解】解:()22442,x x x −+=−故A 不符合题意;()()22352=32,x xy y x y x y −−+−故B 不符合题意;令229=0,y y −+则4419320,=−⨯⨯=−<,所以229y y −+在实数范围内不能分解,故C 符合题意;令21=0,y −则()2=4241160,b ac −=−⨯⨯−=>,y ∴=,12y y ∴==,21=,y y y ⎛∴− ⎝⎭⎝⎭故D 不符合题意; 故选:C【点睛】本题考查的是因式分解,一元二次方程的解法,根的判别式,掌握利用公式法解一元二次方程,进而分解因式是解题的关键.2.(2023·上海·八年级假期作业)下列关于x 的二次三项式中,一定能在实数范围内因式分解的是( ) A .21x x −+ B .21x mx −+ C .21x mx −− D .22x xy y −+【答案】C【分析】根据一定能在实数范围内因式分解可知必须满足240b ac ∆=−≥,分别进行判断即可;【详解】21x x −+的241430b ac −=−=−<,故A 错误;21x mx −+的2244b ac m −=−,可能大于0,也可能小于0,故B 错误; 21x mx −−的22440b ac m −=+>,故C 正确;22x xy y −+的22224430b ac y y y −=−=−≤,故D 错误;故选C .【点睛】本题主要考查了能在实数范围内分解因式的条件,根据题意判断出判别式的符号,认真计算,熟练掌握任何数的平方都是非负数是解题的关键.3.(2021秋·上海宝山·八年级校考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( ) A .x 2﹣3x +2 B .2x 2﹣2x +1C .2x 2﹣xy ﹣y 2D .x 2+3xy +y 2【答案】B【分析】利用十字乘法把选项A ,C 分解因式,可判断A ,C ,利用一元二次方程根的判别式计算的值,从而可判断B ,D ,从而可得答案. 【详解】解:()()23212,x x x x -+=--Q ,故A 不符合题意;令22210,x x -+=,()2=242140,\--´´=-<V ,所以2221x x −+在实数范围内不能够因式分解,故B 符合题意;()()2222,x xy y x y x y --=+-Q ,故C 不符合题意;令2230,x xy y ++=,()22234150,y y y \=-´´=³V ,所以223x xy y ++在实数范围内能够因式分解,故D 不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.【答案】C【分析】从题中可以看出多项式非一般方法可以解出,可以将式子变成关于x 的一元二次方程进行求解,之后再代入因式分解的形式中即可.【详解】解:令22230x xy y −−=,解得1x y =,2x y =,所以22232()()x xy y x y x y −−=,故选:C .【点睛】本题主要考查的是利用特殊方法进行因式分解,掌握一元二次方程的求解方法是解题的关键. 5.(2022秋·上海嘉定·八年级统考期中)在实数范围内不能分解因式的是( )【答案】C【分析】二次三项式可分解因式的前提是方程有实数根,根据方程根的判别式24b ac ∆=−与0的大小关系判断方程是否有实数根,即是否可分解因式. 【详解】A 、()()24421240∆=−−⨯⨯−=>,B 、(()2416360∆=−−⨯⨯−=>,C 、()2245112160∆=−−⨯⨯=−<,D 、()()22442360∆=−−⨯⨯−=>,只有C 选项∆小于0,,即C 选项不能分解因式,故选:C .【点睛】本题考查了二次三项式是否可因式分解,熟练运用根的判别式是解题的关键.【答案】B【分析】二次三项式能不能在实数范围内分解因式,关键是看判别式的范围.0∆≥,能分解因式;Δ0<,不能分解因式.【详解】解:A :24b ac ∆=−,()21413=−−⨯⨯,112=−,,110=−<.23x x −+不能在实数范围内分解因式.故A 错.B :24b ac ∆=−()21412m ⎛⎫=−−⨯⨯− ⎪⎝⎭220m =+>. 212x mx −−能在实数范围内分解因式.故B 正确.C :24b ac ∆=−,()2243−−=,,40−,223x −+不能在实数范围内分解因式.故C 错.D :24b ac ∆=−,()()21412m =−−⨯⨯−,18m =+,m 的值不定,18m +的符号不确定,故不能判断22x x m −−能否在实数范围内分解因式.故D 不一定.故答案为:B .【点睛】本题考查是在实数范围内分解因式,解题的关键是判别式的应用.二、填空题7.(2022秋·上海·八年级上海市民办立达中学校考阶段练习)在实数范围内因式分解:2331x x +−=__________.【答案】3x x ⎛ ⎭⎝⎝⎭ 【分析】求得方程23310x x +−=的两个根,即可求解.【详解】解:23310x x +−=3a =,3b =,1c =−,()249431210b ac ∆=−=−⨯⨯−=>,x =,136x −=,236x −=23333666633133x x x x x x ⎛⎛+−=−=+ −+− ⎝⎭⎝−+⎝⎭⎭⎝⎭,故答案为:3x x ⎛ ⎭⎝⎝⎭ 【点睛】此题考查了因式分解,涉及了公式法求解一元二次方程,解题的关键是正确求得一元二次方程的两个根.8.(2022秋·上海松江·八年级校考期中)在实数范围内因式分解:223105x xy y ++=________.【答案】)【分析】先把原式变形为()222522x xy y x +−+,可得到()2225x y x +−,再利用平方差公式进行因式分解,即可求解. 【详解】解:223105x xy y ++22251205x xy y x +−=+()222252x xy y x +−=+()2252x y x +−=))22x y ⎤⎦−+=)=.故答案为:)【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键.9.(2022秋·上海浦东新·八年级统考期中)在实数范围内分解因式:233x x−−=_____.【答案】322x x⎛−−⎝⎭⎝⎭【分析】令2330x x−−=,解得1x=,2x,把233x x−−写成因式分解的形式即可.【详解】解:令2330x x−−=,则1,3,3a b c==−=−,∵()()224341321b ac−=−−⨯⨯−=,∴x=,即1x=,2x=,则233xx x x⎛−−⎛⎝⎝=⎭⎭.故答案为:322x x⎛−−⎝⎭⎝⎭.【点睛】此题考考查了实数范围内的因式分解,正确求解一元二次方程是解题的关键.10.(2022秋·上海黄浦·八年级上海市黄浦大同初级中学校考期中)在实数范围内分解因式:231−−=xx_________________.【答案】3x x⎛⎝⎭⎝⎭【分析】先解方程2310x x−−=,求得方程的两个根,即可求解.【详解】解:2310x x−−=,∵3,,1,1a b c ==−=−,∴2411213b ac ∆=−=+=,∴x ,∴12x x =, ∴231−−=xx 3x x ⎛ ⎝⎭⎝⎭.故答案为:3x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了解一元二次方程,因式分解,正确的求得方程的两根是解题的关键.11.(2022秋·上海杨浦·八年级校考期中)在实数范围内分解因式237x x −−=_______.【答案】x x ⎛ ⎝⎭⎝⎭ 【分析】将237x x −−化成一个完全平方式与另一个数的差,再运用平方差公式分解因式.【详解】解:237x x −−22337324x x ⎛⎫=−+− ⎪⎝⎭ 233724x ⎛⎫=−− ⎪⎝⎭3322x x ⎛=−− ⎝⎭⎝⎭x x ⎛= ⎝⎭⎝⎭.故答案为:x x ⎛ ⎝⎭⎝⎭. 【点睛】本题主要考查实数范围内分解因式,其中涉及完全平方公式和平方差公式的运用. 12.(2022秋·上海·八年级上海市进才实验中学校考期中)若二次三项式234ax x ++在实数范围内能因式分解,则a 的最大整数解为______.【答案】1−【分析】由二次三项式234ax x ++在实数范围内可以因式分解,可得2340ax x ++=是一元二次方程且在实数范围内有解,再根据一元二次方程根的判别式列不等式即可得到答案.【详解】解:∵,二次三项式234ax x ++在实数范围内可以因式分解,∴2340ax x ++=是一元二次方程且在实数范围内有解,∴0a ≠,23440a ∆=−⨯⨯≥,解得,916a ≤且0a ≠,所以a 的最大整数解为1−.故答案为:1−.【点睛】本题主要考查了二次三项式在实数范围内分解因式,一元二次方程根的判别式,掌握“二次三项式在实数范围内可以因式分解的含义”是解本题的关键. 13.(2022秋·上海黄浦·八年级上海外国语大学附属大境初级中学校考期中)在实数范围内因式分解:223105x y xy ++=______.【答案】3xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为3105t t ++,令231050t t ++=,求解即可.【详解】解:令t xy =,则式子可化为23105t t ++,令231050t t ++=,3a =,10b =,5c =t ==即1t=,2t=∴22310533x y xy xy xy xy xy ⎛⎛++== ⎝⎭⎝⎭⎝⎭⎝⎭故答案为:3xy xy ⎛ ⎝⎭⎝⎭【点睛】此题考查了因式分解,涉及了一元二次方程的求解,解题的关键是正确求得一元二次方程的两个根. 14.(2022秋·上海宝山·八年级上海市泗塘中学校考期中)在实数范围内因式分解:22231xy xy −−=__________【答案】2xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为2231t t −−,令22310t t −=−,求解即可.【详解】解:令t xy =,则式子可化为2231t t −−,令22310t t −=−则2a =,3b =−,1c =−t===则1t =,2t =222312x y xy xy xy ⎛−−=⎝⎭⎝⎭故答案为:xy xy ⎛ ⎝⎭⎝⎭ 【点睛】此题考查了因式分解,涉及了换元法和一元二次方程的求解,解题的关键是正确求得方程的根.15.(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)在实数范围内因式分解:2231x x +−=_____.【答案】2x x ⎛ ⎝⎭⎝⎭【分析】结合题意,当231022x x +−=时,通过求解一元二次方程,得 231022x x x x ⎛+−==⎝⎭⎝⎭,结合22312x x x x ⎛+−= ⎝⎭⎝⎭,即可得到 答案.【详解】解:2231231222x x x x ⎛⎫+−=+− ⎪⎝⎭, 当231022x x +−=时,得x ==,∴231022x x x x ⎛+−== ⎝⎭⎝⎭,∴23122x x x x ⎛+−= ⎝⎭⎝⎭,∴22312x x x x ⎛+−= ⎝⎭⎝⎭.故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了因式分解和一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.16.(2022秋·上海金山·八年级校联考期末)在实数范围内分解因式:224x x −−=__.【答案】(11x x −−【详解】解:原式,()2215x x =−+−22(1)x =−−(11x x =−−故答案为:(11x x −+−【点睛】本题考查了因式分解,利用完全平方公式得出平方差公式是解题关键.17.(2022秋·上海·八年级校考期中)在实数范围内分解因式:2243x x −−___________.【答案】2x x ⎛ ⎝⎭⎝⎭ 【分析】根据公式法解22430x x −−=,得出22x =,再根据因式分解即可得出答案.【详解】解:由22430x x −−=,得:22x =,原式232222x x x x ⎛⎛⎫=−−= ⎪ ⎝⎭⎝⎭⎝⎭,故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了实数范围内分解因式,准确熟练地进行计算是解题的关键.18.(2022秋·上海普陀·八年级校考期中)在实数范围内分解因式:2226x xy y −−=_____________.【答案】2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【分析】先提取2,再将括号里面的式子配方,最后用平方差公式因式分解即可.【详解】解:2226x xy y −−221232x xy y ⎛⎫ ⎪⎝=−⎭− 222291923424x xy y y y ⎛⎫− ⎪⎝=−−⎭+ 22311224x y y ⎡⎤⎛⎫−⎢=⎥ ⎪⎝⎭⎢−⎥⎣⎦22322x y y ⎫=−⎪⎪⎝⎭⎡⎤⎛⎫⎢⎥− ⎪⎢⎥⎝⎭⎣⎦33222x y y x y y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭2x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.故答案为:2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【点睛】本题考查了利用公式法因式分解以及实数的概念,主要涉及完全平方公式以及平方差公式,熟记完全平方公式以及平方差公式是解题关键.三、解答题19.(2022秋·上海·八年级专题练习)在实数范围内分解因式:(1)422772x x +−;(2)4241036y y −−+.【答案】(1)())2833x +−+ (2)()(2229y y y −+【分析】(1)先利用十字相乘法分解,然后利用平方差公式法分解因式求解即可;(2)先提公因式,然后利用十字相乘法分解,然后利用平方差公式法分解因式求解即可.(1)原式()()22829x x =+−())2833x =+−+(2)原式为()4222518y y =−+−()()222292y y =−+−()(2=22+9y y y −−【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.20.(2021秋·上海·八年级校考阶段练习)在实数范围内因式分解:22327x xy y −−【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】先提公因式,再进行配方,运用平方差公式进行因式分解.【详解】解:22327x xy y −−22273()33x xy y =−− 222221173()3993x xy y y y =−+−−221223[()]33x y y =−−113()()33x y y x y y =−−3()()x y x y =. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解决本题的关键.21.(2022秋·八年级统考期中)在实数范围内因式分解:22236x xy y −−+【答案】2x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】求出关于x 的一元二次方程222360x xy y −−+=的解即可得出答案.【详解】解:解关于x 的一元二次方程222360x xy y −−+=, 得:x ==, ∴1x y=,2x y=,∴222362x xy y x y x y ⎛⎫⎛⎫−−+=− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查实数范围内分解因式,掌握“()200ax bx c a ++=≠的两个根分别为1x 、2x ,则()()212++=−−ax bx c a x x x x ”是正确解答的关键.22.(2022秋·上海青浦·八年级校考期中)在实数范围内因式分解:22323x xy y−−.【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【详解】解:22323x xy y −−=2223()3x xy y −−=22221103()399x xy y y −+−221103()39x y y ⎡⎤=−−⎢⎥⎣⎦11333x y y x y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭3x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题主要考查因式分解,熟练掌握用配方法进行因式分解是解决本题的关键.23.(2022秋·上海普陀·八年级校考期中)在实数范围内因式分解:223105x y xy ++.【答案】xy xy ⎡⎡⎣⎣.【分析】把223x y 化为222252x y x y −,则利用完全平方公式得到原式()222512xy x y =+−,然后利用平方差公式分解因式.【详解】解:原式222251052x y xy x y =++− ()22225212x y xy x y =++−()222512xy x y =+−))11xy xy ⎤⎤=++⎦⎦xy xy ⎡⎡=⎣⎣故答案为:xy xy ⎡⎡⎣⎣ 【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键. 24.(2022秋·上海·八年级上海市黄浦大同初级中学校考阶段练习)在实数范围内因式分解:2222x xy y −++【答案】24x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】列出关于x 的一元二次方程,求得方程的根,再根据方程的根写出因式分解的结果即可【详解】解:∵关于x 的一元二次方程为:22022x xy y ++=−,∵()22224422170b ac y y y ∆=−=−⨯−⨯=≥,∴x y ==, ∴1x y =,2x y=,∴22222x xy y x y x y ⎛⎫⎛⎫=− ⎪⎪ ⎪⎪⎝⎭⎝+⎭−+【点睛】本题考查了实数范围内因式分解,掌握“若一元二次方程()200ax bx c a ++=≠的两个实数根为1x ,2x ,则()()212++=−−ax bx c a x x x x ”是解决问题的关键. 25.(2022秋·上海·八年级专题练习)在实数范围内因式分解(1)2442y y +−;(2)2235x xy y −−.【答案】(1)(2121y y ++;(2)3x x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)先拆项,再根据完全平方公式变形,最后根据平方差公式分解即可;(2)首先解方程得出方程的根进而分解因式.【详解】解:(1)2442y y +−=24413y y ++−=()2213y +−=(2121y y ++;(2)令2235x xy y −−=0, ()()22254337y y y =−−⨯⨯−=△,∴x =,∴x 或x =,∴2235x xy y −−=3x y x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.。
用因式分解法求解一元二次方程 (6种题型)-2023年新九年级数学常见题型(北师大版)(解析版)

用因式分解法求解一元二次方程 (6种题型)【知识梳理】一、用因式分解法解一元二次方程的步骤 ①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程; ④解这两个一元一次方程,它们的解就是原方程的解. 二、常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【考点剖析】题型1利用提公因式法例1.解关于x 的方程(因式分解方法):(1)230x =; (2)7(3)39x x x −=−.【答案】(1)120x x ==, (2)12337x x ==,.【解析】(1)(30x x = (2)7(3)3(3)x x x −=−①0x = ②30x 7(3)3(3)0x x x −−−=∴120x x ==, (3)(73)0x x −−= ① 30x −= ②730x −=∴12337x x ==,. 【总结】本题考查了因式分解法解一元二次方程.【变式】(2023春·北京房山·八年级统考期末)方程224x x −=的解为:___________. 【答案】10x =,22x =−【分析】先移项,然后用分解因式法解方程即可.【详解】解:224x x −=,移项得:2240x x +=,分解因式得:()220x x +=,∴20x =或20x +=, 解得:10x =,22x =−. 故答案为:10x =,22x =−.【点睛】本题主要考查了一元二次方程的解法:因式分解法,是基础知识比较简单,解题的关键是分解因式.题型2利用平方差公式例2.用因式分解法解下列方程:(2x+3)2-25=0. 【答案与解析】(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0,∴ x 1=1,x 2=-4.【变式】解关于x 的一元二次方程:22(2016)(2015)1x x −+−=. 【答案】1220162015x x ==,.【解析】移项,得:22(2016)1(2015)x x −=−−,2(2016)[1(2015)][1(2015)]x x x −=+−−−, 2(2016)(2014)(2016)x x x −=−−, 2(2016)(2014)(2016)0x x x −−−−=, (2016)(40302)0x x −−=,解得:1220162015x x ==,.【总结】本题考查了一元二次方程的解法,当系数比较大时,要注意寻找规律进行变型求解.题型3利用完全平方公式例3.解下列一元二次方程:(2x+1)2+4(2x+1)+4=0; 【答案与解析】(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0. 即, ∴ . 题型4十字相乘法因式分解例4.用合适的方法解下列关于x 的方程:(1)2(1(30x x −+=; (2)2(35)5(35)40x x +−++=;【答案】(1)121x x =, (2)124133x x =−=−,;【解析】(1)2(1(30x x −+=,[(11](0x x −=,解得:121x =−=, (2)2(35)5(35)40x x +−++=351354x x +−+−(351)(354)0x x +−+−=,解得:124133x x =−=−,;【总结】本题考查了一元二次方程的解法.题型5:选择合适的方法解一元二次方程例5.解关于x 的方程(合适的方法 ): (1)2110464x x −+=; (2)22((1x +=+. 【答案】(1)1218x x ==;(2)1211x x ==−−, 【解析】(1)因式分解法 (2)直接开方法2(23)0x +=1232x x ==−21()08x −= (1x +=±+108x −= ①1x + ②(1x =−∴1218x x ==; ∴1211x x ==−−, 【总结】本题考查了特殊一元二次方程的解法,注意重根的写法! 【变式1】解关于x 的方程(合适的方法):(1)236350x x +−=; (2)2(41)10(14)240x x −+−−=. 【答案】(1)1235136x x ==−,; (2)1213144x x ==−,. 【解析】(1)因式分解法 (2)把41x −看作一个整体,因式分解 (3635)(1)0x x −+= 2(41)10(14)240x x −−−−= ①36350x −= ②10x += (4112)(412)0x x −−−+= ∴1235136x x ==−,; (413)(41)0x x −+= ① 4130x −= ②410x +=∴1213144x x ==−,. 【变式2】用适当的方法解下列方程:(1)22((1x =; (2)2x x =;(3)(3)(1)5x x +−=; (4)2()()0()b a x a c x c b a b −+−+−=≠.【答案】(1)1211x x =−=−; (2)1201x x ==,; (3)1242x x =−=,; (4)121c bx x b a−==−,.【解析】(1)(1x =± (2)20x x −=① 1x +=− ②(1x =− , (1)0x x −=,解得:1211x x =−=−; 解得:1201x x ==,; (3)整理得:2235x x +−= (4)∵a b ≠原方程是一元二次方程,2280x x +−=, 2()()0()b a x a c x c b a b −+−+−=≠, (4)(2)0x x +−=,()()1b a xc b x −−−− 解得:1242x x =−=,; [()()](1)0b a x c b x −−−−=, 解得:121c bx x b a−==−,. 【总结】本题考查了一元二次方程的解法,注意方法的恰当选择.【答案】B【分析】根据题意进行分类讨论,当0x >时,可得2450x x −−=,求出x 的值即可;当0x <时,可得2250x x −−=求出x 的值即可.【详解】解:当0x >时,则0x x >>−, ∴{}2max ,35x x x x x −==−−,即2450x x −=,解得:125,1x x ==−(不符合题意,舍去),当0x <时,则0x x −>>,∴{}2max ,35x x x x x −=−=−−,即2250x x −−=,解得:11x =,21x =综上:x 的值是5或1 故选:B .【点睛】本题主要考查了新定义下的运算和解一元二次方程,解题的关键是正确理解题目所给新定义的运算法则,熟练掌握解一元二次方程的方法和步骤.【变式】在正数范围内定义运算“※”,其规则为2a b a b =+※,则方程()15x x +=※的解是( ) A .4x =或1x = B .2x =C .1x =或4x =−D .1x =【答案】D【分析】根据规则可得:()215x x ++=,再解此方程,即可求解.【详解】解:根据题意得:()()2115x x x x +=++=※,得2340x x +−=,得()()410x x +−=,故40x +=或10x −=,解得14x =−(舍去),21x =, 所以,原方程的解为1x =, 故选:D .【点睛】本题考查了新定义,一元二次方程的解法,理解题意,得到方程并求解是解决本题的关键.【答案】3【分析】先通过因式分解法解方程260x x −−=,求出12x x ,,根据新定义的运算规则,12x x ※的值为1x 和2x 中较大的那个数,由此可解.【详解】解:方程260x x −−=,分解因式得:()()320x x −+=,解得:3x =或=2x −, 则()12323x x =−=※※或()233−=※.故答案为:3.【点睛】本题考查新定义运算和解一元二次方程,读懂题意,理解新定义的运算规则是解题的关键. 题型7:因式分解综合应用(1)问梯子的长是多少?(2)若梯子的长度保持不变,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等吗?为什么?请你利用学过的知识解答上面的问题. 【答案】(1)2.69m (2)有可能,理由见解析【分析】(1)根据梯子长度不变进而得出等式求出即可;(2)设梯子顶端从A 处下滑y 米,点B 向外也移动y 米代入(1)中方程,求出y 的值符合题意. 【详解】(1)解:设A C '的长是m x ,根据题意得出:2222A C B C BC AC ''+=+,2222(0.41)1(0.2)x x ∴++=++,解得: 2.3x =,2.69m AB ∴≈,答:梯子的长是2.69m ; (2)有可能.设梯子顶端从A 处下滑y 米,点B 向外也移动y 米,则有22(1)(2.5)7.25y y ++−=,解得:1 1.5y =或20y =(舍)∴当梯子顶端从A 处下滑1.5米时,点B 向外也移动1.5米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等.【点睛】本题考查的是勾股定理的应用,根据题意得出关于y 的一元二次方程是解答此题的关键. 【变式1】(2023·河北石家庄·统考二模)老师就式子39⨯+−,请同学们自己出问题并解答. (1)小磊的问题:若W 代表()22−,代表()31−,计算该式的值;(2)小敏的问题:若398⨯+−=□,W 代表某数的平方,代表该数与1的和的平方,求该数.【答案】(1)22 (2)0或1【分析】(1)根据代数式代入值进行计算即可; (2)设该数为a ,则()22391=8a a ⨯+−+,再进行求解即可.【详解】(1)解:由题意可得:原式()()233291=⨯−+−−()3491=⨯+−−22=;(2)解:设该数为a ,则()22391=8a a ⨯+−+,解得:10a =,21a =,∴求该数为0或1.【点睛】本题考查代数值求值、解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 【变式2】(2023·河北石家庄·校考一模)发现:存在三个连续整数使得这三个连续整数的和等于这三个连续整数的积;验证:连续整数1−,2−,3−______(填“满足”或“不满足”)这种关系; 连续整数2,3,4,______(填“满足”或“不满足”)这种关系; 延伸:设中间整数为n(1)列式表示出三个连续整数的和、积,并分别化简; (2)再写出一组符合“发现”要求的连续整数(直接写结果).【答案】验证:满足;不满足;(1)和为3n ,积为3n n −;(2)1−,0,1(答案不唯一)【分析】先分别计算123−−−和()()()123−⨯−⨯−的值,比较两组值是否相等;再分别计算234++和234⨯⨯的值,比较两组值是否相等即可;(1)设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +,将n 1−,n ,1n +三数相加得其和;将n 1−,n ,1n +三数相乘得其积;(2)令(1)中的和等于积,解方程,求得n 的值,从而可得符合要求的连续整数.【详解】验证:解:1236−−−=−,()()()1236−⨯−⨯−=− ()()()123123∴−−−=−⨯−⨯−1∴−,2−,3−满足这种关系;2349++=,23424⨯⨯=,924≠, 234234∴++≠⨯⨯,∴2,3,4不满足这种关系.延伸:设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +, (1)三个连续整数的和可表示为:()()113−+++=n n n n ,三个连续整数的积可表示为:()()311−⋅⋅+=−n n n n n ,(2)当33=−n n n 时,340−=n n ()()220∴+−=n n n解得:0n =,2n =−或2n =,∴符合要求的一组连续整数为:1−,0,1.【点睛】本题考查了探究某类数的规律性问题,其中涉及到了因式分解方法的运用,按照要求写出相关数或式子,按照规则计算,是解答本题的关键.【过关检测】一、单选题【答案】D【分析】变形后利用因式分解法解一元二次方程即可. 【详解】解:()()2131x x x −=−移项,得2(1)3(1)0x x x −−−=, 因式分解,得()()2310x x −−=,则10x −=或230x −=,解得2131,2x x ==.故选:D【点睛】此题考查了一元二次方程的解法,熟练掌握因式分解法是解题的关键. 2.(2023·全国·九年级假期作业)已知20x ax b +−=的解是11x =,24x =−,则方程()()223230x a x b +++−=的解是( )A .11x =−,2 3.5x =−B .11x =,2 3.5x =−C .11x =−,2 3.5x =D .11x =,2 3.5x =【答案】A【分析】由这两个方程结合整体思想,可得231x +=,234x +=−,解这两个一元一次方程即得方程()()223230x a x b +++−=的解.【详解】解:令23x y +=,∵方程20x ax b +−=的解是11x =,24x =−,∴方程20y ay b +−=的解是11y =,24y =−,∴对于方程方程()()223230x a x b +++−=而言,231x +=或234x +=−,解得=1x −或 3.5x =−,故选A .【点睛】本题考查了一元二次方程的解,整体思想解一元二次方程,关键是把方程()()22332340m x x +++−=中的23x +当作一个整体,则此方程与²340mx x +−=毫无二致.3.(2023·全国·九年级假期作业)方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形是周长是( ) A .12 B .15 C .12或15 D .9或15或18【答案】B【分析】利用因式分解法求出方程的解得到x 的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.【详解】解:29180x x −+=,(3)(6)0x x −−=,30x −=,60x −=,13x =,26x =,有两种情况:①三角形的三边为3,3,6,此时不符合三角形三边关系定理,②三角形的三边为3,6,6,此时符合三角形三边关系定理,此时三角形的周长为36615++=, 故选:B .【点睛】此题考查了因式分解法解一元二次方程,等腰三角形的定义,熟练掌握分解因式的方法是解本题的关键.【答案】C【分析】利用换元法求解即可.【详解】解:设33x m y +=,∵()()3333130x y x y +−++=,∴()()130m m −+=,∴10m −=或30m +=, 解得1m =或3m =−,∴331x y +=或333x y +=−,故选C .【点睛】本题主要考查了换元法解一元二次方程,熟知换元法是解题的关键.【答案】D【分析】利用因式分解法求出两个根,再从中找出较小的根即可.【详解】解:提公因式,得:331()()0442x x x −−+−=, 整理得:35()(2)044x x −−=,∴123548x x ==,, ∵3548>,∴较小的根是58,故选:D .【点睛】本题考查了因式分解法解一元二次方程,解题的关键是通过提取公因式将等号左边的式子进行因式分解.【答案】B【分析】由2212m m +=可得42210m m −+=,则有21m =,即1m =,然后问题可求解.【详解】解:∵2212m m +=,∴42210m m −+=,解得:21m =,∵0m >, ∴1m =,∴2251254m m −+=−+=;故选B .【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 7.(2023·全国·九年级假期作业)实数x 满足方程222()()20x x x x +++−=,则2x x +的值等于( ) A .2− B .1 C .2−或1 D .2或1−【答案】B【分析】运用换元法解方程,再根据根的判别式判断根的情况,由此即可求解.【详解】解:根据题意,设2x x M +=,则原式变形得220M M +−=,因式分解法解一元二次方程得,22(1)(2)0M M M M +−=−+=, ∴12M =−,21M =,当2M =−时,22x x +=−,变形得,220x x ++=,根据判别式24141270b ac ∆=−=−⨯⨯=−<,无实根;当1M =时,21x x +=,变形得,210x x +−=,根据判别式24141(1)50b ac ∆=−=−⨯⨯−=>,方程有两个实根;∴21x x +=,故选:B .【点睛】本题主要考查换元法解高次方程,掌握换元法解方程的方法,根的判别式判断根的情况等知识是解题的关键.8.(2023·全国·九年级假期作业)若关于x 的一元二次方程()230x k x k +++=的一个根是2−,则另一个根是( ) A .1 B .1−C .3−D .2【答案】A【分析】将2x =−代入方程得:()4230k k −++=,解得:2k =−,再把2k =−代入原方程求解.【详解】解:将2x =−代入方程得:()4230k k −++=,解得:2k =−,∴原方程为:220x x +−=,则()2(1)0x x +−=,解得:2x =−或1x =, ∴另一个根为1. 故选:A .【点睛】本题考查了一元二次方程的根,因式分解法解一元二次方程,属于基础题.【答案】D【分析】设221x y x −=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x −=,则原方程可变形为15y y +=,即2510y y −+=;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.10.(2023春·重庆合川·九年级重庆市合川中学校考阶段练习)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了()()12345na b n +=⋯,,,,,的展开式的系数规律(其中,字母按a 的降幂排列,b 的升幂排列).例如,在三角形中第2行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第三行的的4个数1,3,3,1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数;第4行的五个数1,4,6,4,1;恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,有如下结论:①()3322333b a b a a ab b −−+=−; ②“杨辉三角”中第9行所有数之和1024; ③“杨辉三角”中第20行第3个数为190; ④32993993991+⨯+⨯+的结果是610;⑤当代数式4328243216a a a a ++++的值是1时,实数a 的值是1−或3−,上述结论中,正确的有( )A .2个B .3个C .4个D .5个【答案】C【分析】把()3322333a b a a b ab b +=+++中b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,由此即可判断①;观察并计算可以发现第n 行所有数字之和为2n,由此即可判断②;观察并计算可以发现第n 行(n 大于2)第三个数诶为()12n n −,由此即可判断③;991a b ==,时,()326399139939999110=+++=+⨯⨯,即可判断④;当2b =时,()443228243216a a a a a +=++++,再由4328243216a a a a ++++的值为1,得到()421a +=,解方程即可判断⑤.【详解】解:∵()3322333a b a a b ab b +=+++,∴把上述式子中的b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,∴()3322333b a b a a ab b −−+=−,故①正确;第1行的所有数字之和为11122+==,第2行的所有数字之和为212124++==,第3行的所有数字之和为3133128+++==,第4行的所有数字之和为414641216++++==,……,∴可以得到规律第n 行所有数字之和为2n,∴“杨辉三角”中第9行所有数之和92512=,故②错误;第2行第三个数为()22112⨯−=, 第3行第三个数为()33132⨯−=,第4行第三个数为()44162⨯−=,第5行第三个数为()551102⨯−=,……,∴第n 行(n 大于2)第三个数为()12n n −, ∴“杨辉三角”中第20行第3个数为()202011902−=,故③正确;∵()3322333a b a a b ab b +=+++,∴当991a b ==,时,()326399139939999110=+++=+⨯⨯,故④正确;∵()4432234464a b a a b a b ab b +=++++,∴当2b =时,()443228243216a a a a a +=++++,∵4328243216a a a a ++++的值为1,∴()421a +=, ∴()221a +=,∴21a +=±, ∴1213a a =−=−,,故⑤正确;故选C .【点睛】本题主要考查了多项式乘法中得规律探索,正确理解题意找到规律是解题的关键.二、填空题11.(2023·全国·九年级假期作业)若关于x 的一元二次方程230ax bx +−=(0a ≠)有一个根为5x =,则方程()213a x bx b −+−=必有一根为______. 【答案】6x = 【分析】把()213a x bx b−+−=化为()2(1)130,a xb x −+−−=再结合题意得到15,x −=解出即可.【详解】解:()213a x bx b−+−=,()2(1)130a xb x ∴−+−−=.令1x t −=,则230,at bt +−=∵方程230ax bx +−=(0a ≠)有一个根为5x =,∴方程230at bt +−=有一根为5t =,()2(1)130a xb x ∴−+−−=有一根为15x −=,15,x ∴−=6.x ∴=故答案为: 6.x =【点睛】本题主要考查了一元二次方程的根的含义,掌握利用整体未知数求解方程的根是解此题的关键. 12.(2023·全国·九年级假期作业)一元二次方程220x x +−=的解是________. 【答案】122,1x x =−= 【分析】原方程可转化为()()210x x +−=,再化为两个一次方程即可.【详解】解:∵220x x +−=,∴()()210x x +−=,∴20x +=或10x −=, 解得122,1x x =−=.故答案为:122,1x x =−=.【点睛】本题考查的是一元二次方程的解法,熟练的掌握因式分解的方法解一元二次方程是解本题的关键. 13.(2023·全国·九年级假期作业)一元二次方程()()23121x x =−−的解是________.【答案】12531,x x ==【分析】先移项,再提取公因式分解因式,把原方程化为两个一次方程,再解一次方程即可. 【详解】∵()()23121x x =−−,∴()()231201x x −−−=.∴()()13120x x −−−⎤⎣⎦=⎡.∴10x −=或()3120x −−=,解得12531,x x ==.故答案为:12531,x x ==.【点睛】本题考查的是一元二次方程的解法,熟练的利用因式分解的方法解方程是解本题的关键. 14.(2023·河南信阳·校考三模)小明在解方程2320x x −+=时,发现用配方法和公式法计算量都比较大,因此他又想到了另外一种方法,快速解出了答案: 方法如下: 2320x x −+=2220x x x −−+= 第①步222x x x −=− 第②步()22x x x −=− 第③步1x = 第④步老师看到后,夸小明很聪明,方法很好,但是有一步做错了,请问小明出错的步骤为________(填序号). 【答案】④ 【分析】由()22x x x −=−,()()120x x −−=,解得1x =或2x =,进而判断作答即可.【详解】解:()22x x x −=−,()()120x x −−=,解得1x =或2x =,∴第④步错误, 故答案为:④.【点睛】本题考查了解一元二次方程.解题的关键在于正确的解一元二次方程.15.(2023秋·湖南常德·九年级统考期末)若()()22222340x y x y +−+−=,则22x y +=______.【答案】4【分析】设22t x y =+,则0t >,根据换元法解一元二次方程,即可求解.【详解】解:设22t x y =+,则0t >,∴原方程可以化为2340t t −−=,解得:4t =或1t =−(舍去)即22x y +=4 故答案为:4.【点睛】本题考查了换元法解一元二次方程,掌握换元法解一元二次方程是解题的关键.16.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x −−−−=,则代数式22020x x −+的值为_______.【答案】2023【分析】设2t x x =−,则原方程转化为关于t 的一元二次方程2230t t −−=,利用因式分解法解该方程即可求得t 的值;然后整体代入所求的代数式进行解答,注意判断方程的根的判别式0≥,方程有解.【详解】解:设2t x x =−,由原方程,得2230t t −−=,整理,得()()310t t −+=,所以3t =或1t =−.当3t =时,23−=x x ,则220202023x x −+=;当1t =−时,21x x −=−即210x x −+=时,()214110∆=−−⨯⨯<,方程无解,此种情形不存在.故答案是:2023.【点睛】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换.三、解答题17.(2023·江苏·九年级假期作业)用适当的方法解下列各一元二次方程: (1)(2)15x x −=;(2)23680x x +−=(用配方法); (3)2(2)10(2)210x x +−++=; (4)23520x x −+=;(5)22(2)(1)6x x ++−=. 【答案】(1)15a =,23a =−(2)11x =−,21x =−(3)15=x ,21x = (4)123x =,21x =(5)1x =,2x =【分析】(1)(4)用因式分解的十字相乘法求解比较简便;(2)先把常数项移到等号的另一边,把二次项系数化为1,配方,利用直接开平方法求解; (3)把(2)x +看成一个整体,利用因式分解的十字相乘法求解比较简便; (5)先整理方程,用公式法比较简便. 【详解】(1)解:(2)15x x −=,整理,得22150a a −−=,(5)(3)0a a ∴−+=.50a ∴−=或30a +=.15a ∴=,23a =−;(2)23680x x +−=(用配方法),移项,得2368x x +=,二次项系数化为1,得2823x x +=,配方,得211213x x ++=,211(1)3x ∴+=.1x ∴+=.11x ∴=−,21x =−;(3)2(2)10(2)210x x +−++=,[(2)7][(2)3]0x x ∴+−+−=,即(5)(1)0x x −−=.50x ∴−=或10x −=.15x ∴=,21x =;(4)23520x x −+=,(32)(1)0x x −−=,320x −=或10x −=,123x ∴=,21x =;(5)22(2)(1)6x x ++−=,方程整理,得22210x x +−=,x ===.1x ∴=,2x =. 【点睛】本题考查了解一元二次方程,掌握一元二次方程的直接开平方法、配方法、因式分解法、公式法是解决本题的关键.18.(2023·全国·九年级假期作业)已知()()22222150a b a b +++−=,求22a b +的值. 【答案】3【分析】先用换元法令22(0)a b x x +=>,再解关于x 的一元二次方程即可. 【详解】解:令22(0)a b x x +=>,则原等式可化为:(2)150x x +−=,解得:123,5x x ==−,0x >,3x ∴=,即223a b +=.22a b +的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意22a b +为非负数是本题的关键.【答案】2x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:2211x x x =+−方程两边同乘()()11x x +−, 得()12x x −=,整理得,220x x −−=,∴()()120x x +−=,解得:11x −=,22x =,检验:当=1x −时,()()110x x +−=,=1x −是增根, 当2x =时,()()1130x x +−=≠,∴原方程的解为2x =.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题关键.【答案】,21x −+【分析】先对分式进行化简,然后求出一元二次方程的解,进而代值求解即可.【详解】2222421121x x x x x x x −−−÷+−−+()()()()222121112x x x x x x x −−=−⋅++−−()21211x x x x −=−++, 2221x x x −+=+ 21x =+解方程220x x +−=得:2x =−或1x =,如果已知分式有意义,必须x 不等于2,1−,1,∵x 为方程220x x +−=的根,∴x 只能为2−,∴当2x =−时,原式2221−+==−.【点睛】本题主要考查分式的化简求值及一元二次方程的解法,解题的关键是熟练掌握各个运算方法. 21.(2023·陕西榆林·校考模拟预测)已知数字A 为负数,将其加6得到数字B ,若数字A 与数字B 的积为7,求数字A .【答案】7A =−【分析】根据题意得()67A A +=,解一元二次方程即可求解.【详解】解:由题意得6A B +=,7A B ⨯=,∴()67A A +=,∴2670A A +−=,即()()710A A +−=, 解得7A =−或1A =,∵数字A 为负数,∴7A =−.【点睛】本题考查了一元二次方程的应用,掌握“因式分解法”解一元二次方程是解题的关键.22.(2023·全国·九年级假期作业)阅读下面的材料:【答案】(1)1x =,2x =,3x ,4x =;(2)5【分析】(1)设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解关于y 的一元二次方程,然后解关于x 的一元二次方程即可求解;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解一元二次方程即可求解.【详解】(1)解:设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解得11y =,24y =,当21x x +=即210x x +−=时,解得x = ;当24x x +=即240x x +−=时,解得x ;∴原方程的解为112x −=, 212x −=, 312x −=, 412x −=;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解得15y =,2(2y =−舍去),225a b +=.【点睛】本题考查了换元法解一元二次方程,熟练掌握换元法是解题的关键.【答案】(1)1x =±(2)114x =−,21x =【分析】(1)设2x y =,则由已知方程得到:2560y y −=+,利用因式分解法求得该方程的解,然后解关于x 的一元二次方程;(2)设1x y x +=,则由已知方程得到:260y y +−=,利用因式分解法求得该方程的解,然后进行检验即可.【详解】(1)令2x y =∴2560y y −=+∴(6)(1)0y y +−=∴16y =−,21y =∴26x =−(舍去),21x =∴1x =±;(2)令1x y x += ∴610y y −+=∴260y y +−=∴(3)(2)0y y +−=∴13y =−,22y = ∴13x x +=−,12x x += ∴114x =−,21x = 经检验,114x =−,21x =为原方程的解.【点睛】本题主要考查了换元法解一元二次方程,分式方程,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.任务:(1)判断:方程2560x x −+= ______ “邻根方程”(填“是”或“不是”);(2)已知关于x 的一元二次方程()210(x m x m m +++=是常数)是“邻根方程”,求m 的值.【答案】(1)是(2)0m =或2m =【分析】(1)先利用因式分解法解一元二次方程,然后根据“邻根方程”的定义进行判断;(2)先利用因式分解法解一元二次方程得到1x m =,21x =−,再根据“邻根方程”的定义得到11m −=−或11+=−m ,然后解关于m 的方程即可.【详解】(1)解方程2560x x −+=得13x =,22x =, 3比2大1,∴方程是“邻根方程”;(2)()210x m x m +++=, ()()10x m x ∴++=, 0x m ∴+=或10x +=,1x m ∴=−,21x =−,方程()210(x m x m m +++=是常数)是“邻根方程”,11m ∴−−=−或11m −+=−,0m ∴=或2m =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.【答案】14x =,214x =m =m =代入方程得22520m m −+=,求出m 的值,再求出x 即可.m .原方程化为:22520m m −+=,解得:12m =,212m =.当2m =2,解得:14x =;当12m =12=,解得:214x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是正确理解题意,会根据题目所描述的换元法求解方程.。
专题4.5 因式分解章末八大题型总结(拔尖篇)(北师大版)(解析版)

专题4.5因式分解章末八大题型总结(拔尖篇)【北师大版】【题型1利用整体思想分解因式】 (1)【题型2利用拆项法分解因式】 (6)【题型3利用添项法分解因式】 (8)【题型4利用因式分解的结果求参数】 (10)【题型5利用因式分解进行有理数的简算】 (12)【题型6利用因式分解探究三角形形状】 (14)【题型7与因式分解有关的探究题】 (16)【题型8因式分解的应用】 (22)【题型1利用整体思想分解因式】【例1】(2024八年级下·山东东营·期中)[阅读材料]因式分解:+2+2++1.解:将“+”看成整体,令+=,则原式=2+2+1=+12.再将“A”还原,原式=++12.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.[问题解决](1)因式分解:1+4−+4−2;(2)因式分解:2−62−6+18+81;(3)证明:若n为正整数,则代数式+1+22+3+1的值一定是某个整数的平方.【答案】(1)1+2−22(2)−34(3)见解析【分析】(1)用换元法设−=,将原式化为1+4+42,再利用完全平方公式得出1+22,再将A还原即可;(2)设2−6=,则原式=+92后,再将B还原后,最后再利用完全平方公式即可;(3)先计算+1+2=2+3+2,再利用完全平方公式即可.【详解】(1)解:令−=,原式=1+4+42=1+22=1+2−22;(2)令2−6=,则2−62−6+18+81=+18+81=2+18+81=+92=2−6+92=−34;(3)+1+22+3+1=2+3+22+3+1=2+32+22+3+1=2+3+12,∵n为正整数,∴2+3+1正整数.∴+1+22+3+1=2+3+12,即代数式+1+22+3+1的值一定是某个整数的平方.【点睛】本题考查换元法、提公因式法、公式法分解因式,理解“换元法”的意义,掌握完全平方公式的结构特征是正确解答的关键.【变式1-1】(2024八年级下·山西运城·期中)(1)2+2−+22;(2)−−2−+1.【答案】(1)3(+p(−p;(2)(−−1)2.【分析】(1)设=2+s=+2,先利用平方差公式进行因式分解,再将s换回去,计算整式的加减即可得;(2)设=−,先计算整式的乘法,再利用完全平方公式进行因式分解,然后将换回去即可得.【详解】解:(1)设=2+s=+2,则原式=2−2=(+p(−p,将s换回去得:原式=(2+++2p2+−(+2p,=(3+3p(−p,=3(+p(−p;(2)设=−,则原式=−2+1,=2−2+1,=(−1)2,将换回去得:原式=(−−1)2.【点睛】本题考查了因式分解,熟练掌握因式分解的方法和“整体思想”是解题关键.【变式1-2】(2024八年级下·福建漳州·期中)(1)因式分解:2−4+12−4+7+9;(2)因式分解:+−2B+−2+B−12;(3)求证:多项式+1+2+3+6+2的值一定是非负数.【答案】(1)(1)−24(2)−121−2(3)见解析【详解】(1)解:解法一:设2−4=,则原式=+1+7+9=2+8+16=+42=2−4+42=−24;方法二:设2+1=,−4=,则原式=+++6+9=+2+6++9=++32=2+1−4+32=2−4+42=−24;(2)解:设+=,B=,则原式=−2−2+−12=2−2B−2+4+2−2+1=2−2B−2+−12=2−2+1++12=−−12=+−B−12=−121−2;(3)解:+1+2+3+6+2=2+7+62+5+6+2,设2+6=,=,则原式=+7+5+2=2+12B+362=+62=2+6+62,∵2+6+62≥0,∴+1+2+3+6+2≥0,∴多项式+1+2+3+6+2的值一定是非负数.【点睛】本题主要考查了因式分解,正确理解题意是解题的关键.【变式1-3】(2024八年级下·河南洛阳·期中)整体思想是数学解题中常见的一种思想方法.下面是对多项式(2+2p(2+2+2)+1进行因式分解的解题思路:将“2+2”看成一个整体,令2+2=,则原式=o+2)+1=2+2+1=(+1)2.再将“x”还原为“2+2”即可.解题过程如下:解:设2+2=,则原式=+2+1(第一步)=2+2+1(第二步)=(+1)2(第三步)=2+2+12(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式2−42−4+8+16进行因式分解;(2)请你模仿以上方法尝试计算:(1−2−3−⋯−2023)×(2+3+⋯+2024)−(1−2−3−⋯−2024)×(2+3+⋯+2023).【答案】(1)①该同学没有完成因式分解;最后的结果为(+1)4;②(−2)4(2)2024【分析】本题考查公式法分解因式,理解整体思想是解决问题的前提,掌握完全平方公式的结构特征和必要的恒等变形是正确解答的关键.(1)①根据因式分解的意义进行判断,再利用完全平方公式分解因式即可;②利用换元法进行因式分解即可;(2)设=1−2−3−⋯−2023,=2+3+⋯+2024,则原式=B−(−2024)(−2024),整体代入计算即可.【详解】(1)①该同学没有完成因式分解;设2+2=,则原式=+2+1(第一步)=2+2+1(第二步)=(+1)2(第三步)=2+2+12(第四步)=(+1)22=(+1)4.∴最后的结果为(+1)4.②设2−4=,原式=o+8)+16=2+8+16.=(+4)2=2−4+42=(−2)4;(2)设=1−2−3−⋯−2023,=2+3+⋯+2024,则1−2−3−⋯−2023−2024=−2024,2+3+⋯+2023=−2024,+=1+2024=2025,原式=B−(−2024)(−2024)=B−B+2024(+p−20242=2024×2025−20242=2024×(2024+1)−20242=20242+2024−20242=2024.【题型2利用拆项法分解因式】【例2】(2024八年级下·山东济宁·期中)观察下面因式分解的过程:4+3+22+3−3=4+3−2+32+3−3=22+−1+32+−1=2+32+−1上面因式分解过程的第一步把22拆成了−2+32,这种因式分解的方法称为拆项法.请用上面的方法完成下列题目:(1)2−2+2+6−8;(2)4−232+1.【答案】(1)+−2−+4(2)2+1+52+1−5【分析】本题考查因式分解,理解题中拆项法是解答的关键.(1)将−8拆成1−9,然后重新组合,利用完全平方公式和平方差公式分解因式即可;(2)将−232拆成22−252,然后重新组合,利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:2−2+2+6−8=2−2+2+6+1−9=2+2+1−2−6+9=+12−−32=+1+−3+1−+3=+−2−+4;(2)解:4−232+1=4+22−252+1=4+22+1−252=2+12−52=2+1+52+1−5.【变式2-1】(2024八年级下·陕西榆林·期中)(1)分解因式:2−6+5;(2)分解因式:2+4B−52.【答案】(1)−1−5(2)+5−【分析】(1)将5拆解成9−4,再根据完全平方公式得−32−22,然后利用平方差公式进一步分解.(2)将−52拆解成42−92,再根据完全平方公式得+22−92,然后利用平方差公式进一步分解.【详解】(1)原式=2−6+9−4=−32−22=−3−2−3+2=−1−5(2)原式=2+4B+42−92=+22−92=+2+3+2−3=+5−【点睛】本题考查了因式分解的应用,解题时要注意在变形的过程中不要改变式子的值.【变式2-2】(2024八年级下·黑龙江鸡西·期中)(1)分解因式:x2﹣6x﹣7;(2)分解因式:a2+4ab﹣5b2【答案】(1)(x+1)(x-7);(2)(a+5b)(a-b)【分析】(1)仿照例题方法分解因式即可;(2)仿照例题方法分解因式即可;【详解】解:(1)x2﹣6x﹣7=x2﹣6x+9-16=(x-3)2-42=(x-3+4)(x-3-4)=(x+1)(x-7);(2)a2+4ab﹣5b2=a2+4ab+4b2﹣9b2=(a+2b)2-(3b)2=(a+2b+3b)(a+2b-3b)=(a+5b)(a-b).【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,理解题中的分解因式方法并能灵活运用是解答的关键.【变式2-3】(2024八年级下·上海嘉定·期中)把多项式4+322+44分解因式.【答案】2+22+B2+22−B【分析】把原式中的第二项的系数3变为4−1,化简后三项结合构成完全平方式,剩下的一项写成平方形式,然后再利用平方差公式即可分解因式.【详解】解:4+322+44=4+422+44−22=2+222−B2=2+22+B2+22−B.【题型3利用添项法分解因式】【例3】(2024八年级下·山西·期中)阅读与思考任务:(1)请根据以上阅读材料补充完整对3+3因式分解的过程.(2)已知a+b=2,ab=-4,求3+3的值.【答案】(1)+2−B+2(2)3+3=32【分析】(1)在题干的基础上再提取公因式+,整理即可;(2)由(1)可知求出2−B+2的值即可求出3+3的值.将2−B+2变形为+2−3B,再代入+和B的值即得出2−B+2的值,由此即得出结果.【详解】(1)3+3=3+2−2+3=3+2−2−3=+⋅2−+⋅−=+⋅2−−.=+2−B+2;(2)∵2−B+2=+2−3B=22−3×−4=16∴3+3=+2−B+2=2×16=32.【点睛】本题考查因式分解,代数式求值.读懂题干,理解题意,掌握因式分解的方法是解题关键.【变式3-1】(2024八年级·全国·合肥期中)将下列式子因式分解:4+44【答案】(x2+2y2+2xy)(x2+2y2﹣2xy)【分析】运用添项法因式分解,根据完全平方公式和平方差公式进行因式分解;【详解】解:x4+4y4=x4+4x2y2+4y2﹣4x2y2,=(x2+2y2)2﹣4x2y2,=(x2+2y2+2xy)(x2+2y2﹣2xy);【点睛】本题考查了添项法因式分解,理解完全平方公式和平方差公式是解答关键.【变式3-2】(2024八年级下·甘肃兰州·期中)分解因式:−2−2−4−3.【答案】++1−−3【详解】解:2−2−2−4−3=2−2+1−1−2−4−4−3+4=−12−+22=−1++2−1−−2=++1−−3.【点睛】本题主要考查了分解因式,熟知乘法公式分解因式是解题的关键.【变式3-3】(2022·广西柳州·八年级期中)分解多项式5−1的结果是.【答案】−14+3+2++1【分析】直接根据添项方法进行因式分解即可.【详解】解:5−1=5−4+4−3+3−2+2−+−1=4−1+3−1+2−1+−1+−1=−14+3+2++1,故答案为:−14+3+2++1【点睛】本题考查添项法对多项式进行因式分解,解题的关键是熟练运用提公因式法,也考查了学生的观察能力和整体思想.【题型4利用因式分解的结果求参数】【例4】(2024八年级下·浙江宁波·期中)因为2+2−3=+3−1,这说明多项式2+2−3有一个因式为−1,我们把=1代入此多项式发现=1能使多项式2+2−3的值为0.利用上述阅读材料求解:(1)若+3是多项式2+B+12的一个因式,求的值;(2)若−3和−4是多项式3+B2+12+的两个因式,试求,的值.(3)在(2)的条件下,把多项式3+B2+12+因式分解.【答案】(1)=7(2)=−7,=0(3)o−3)(−4)【分析】(1)将=−3代入多项式并使多项式等于0,求;(2)将=3和=4分别代入多项式并使多项式等于0,解二元一次方程组,求,;(3)将(2)中解得的,的值代入多项式,然后进行因式分解即可.【详解】(1)解:∵+3是多项式2+B+12的一个因式,∴当=−3时,2+B+12=9−3+12=0,解得=7;(2)∵(−3)和(−4)是多项式3+B2+12+的两个因式,∴33+×32+12×3+=043+×42+12×4+=0,解得=−7=0.∴=−7,=0.(3)解:由(2)得3+B2+12+即为3−72+12,∴3−72+12=o2−7+12)=o−3)(−4).【点睛】本题考查因式分解的创新应用,熟练掌握因式分解的原理是解题的关键.【变式4-1】(2024八年级下·安徽合肥·期中)已知关于的二次三项式2−B+可分解为+2−3,则3−的值为.【答案】9【分析】把+2−3展开,求出、的值,计算即可.【详解】解:∵+2−3=2+2−3−6=2−−6,∴2−B+=2−−6,∴=1,=−6,∴3−=3×1−−6=3+6=9,故答案为:9.【点睛】本题考查了整式的乘法和因式分解,解题关键是熟练运用整式乘法法则进行计算.【变式4-2】(2023八年级下·江苏·专题练习)已知多项式4+B+能分解为(2+B+p(2+2−3),则=,=.【答案】−2;7.【分析】把2+B+2+2−3展开,找到所有z和y的项的系数,令它们的系数分别为0,列式求解即可.【详解】解:∵2+B+2+2−3=4+B3+B2+23+2B2+2B−32−3B−3=4++23++2−32+2−3−3=4+B+.∴展开式乘积中不含3、2项,∴+2=0+2−3=0,解得:=−2=7.故答案为:−2,7.【点睛】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.【变式4-3】(2024八年级下·江苏苏州·期中)已知多项式2+B+36能分解为两个整系数一次式的乘积,则k的值有()个.A.10B.8C.5D.4【答案】A【分析】设2+B+36能分解成++,根据整式的乘法化简,得到+=s B=36,根据s为整数求解即可.【详解】设2+B+36=++=2+++B,则+=s B=36∴=1=36,=2=18,=3=12,=4=9,=6=6,=−1=−36,=−2=−18,=−3=−12,=−4=−9,=−6=−6∴=+=37,20,15,13,12,−37,−20,−15,−13,−12,共10个故选A【点睛】本题考查了因式分解,整式的乘法,掌握之间的关系是解题的关键.【题型5利用因式分解进行有理数的简算】【例5】(2024八年级下·上海青浦·【答案】2021.【分析】此题考查了因式分解的应用,先设2020=,然后通过十字相乘法因式分解进行解答即可,解题的关键是熟练掌握十字相乘法因式分解的应用.【详解】解:设2020=,则原式===+1,∴原式=2020+1=2021.【变式5-1】(2024八年级下·重庆·期中)简便计算:(1)9999×10001−100002;(2)999992+199999.【答案】(1)−1(2)10000000000【分析】本题考查了因式分解的应用,平方差公式.(1)利用平方差公式进行计算,即可解答;(2)利用因式分解进行计算,即可解答.【详解】(1)解:原式=10000−1×10000+1−100002=100002−12−100002=−1;(2)解:原式=999992+99999+100000=99999×99999+1+100000=99999×100000+100000=100000×99999+1=100000×100000=10000000000.【变式5-2】(2024八年级下·山东烟台·期中)下列算式不正确的是()A.999×1001=1000−1×1000+1=10002−1B.802−160×78+782=80−782 C.257−512=514−512=51252−1D.1992=200−12=2002−1【答案】D【分析】本题主要考查了运用平方差公式和完全平方公式进行简便运算,灵活运用平方差公式和完全平方公式是解答本题额关键.【详解】解:A、999×1001=1000−1×1000+1=10002−1,选项正确,不符合题意;B、802−160×78+782=80−782,选项正确,不符合题意;C、257−512=514−512=51252−1,选项正确,不符合题意;D、1992=200−12=2002−2×200×1+1,选项错误,符合题意.故选:D.【变式5-3】(2024八年级下·四川遂宁·期中)已知=999999,=1110990,那么、的大小关系为()A.>B.<C.=D.不确定【答案】B【分析】本题考查了因式分解的应用,以及积的乘方逆用,根据作差法比较两个数的大小即可.【详解】解:−=999999−1110990=999−1110×99999=999−11×999999=999×1−11999=−10×999999<0,∴<.故选:B.【题型6利用因式分解探究三角形形状】(2024八年级下·山东泰安·阶段练习)已知s s为三角形三边,且满足2+2+2−B−B−B=0.【例6】试说明该三角形是等边三角形.【答案】见解析【分析】可将题目所给的关于、、的等量关系式进行适当变形,转换为几个完全平方式,然后根据非负数的性质求出、、三边的数量关系,进而可判断出△B的形状.【详解】解:∵2+2+2−B−B−B=0,∴22+22+22−2B−2B−2B=0,∴(2−2B+2)+(2−2B+2)+(2−2B+2)=0,∴(−p2+(−p2+(−p2=0,∴−=0,−=0,−=0,∴==,∴△B为等边三角形.【点睛】本题考查了配方法的应用,关键是对要求的式子进行变形和因式分解,将已知的等式转化为偶次方的和,根据非负数的性质解答.【变式6-1】(2024八年级下·福建福州·期中)已知△B的三边a,b,c满足−+−=0,则△B 是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【分析】本题考查了因式分解的应用,等腰三角形的定义,解题的关键是能够对题目提供的式子进行因式分解.先提取公因式,得到−−=0,进而得出−=0或−=0,即可判断△B的形状.【详解】解:∵−+−=0,∴−−−=−−=0,∴−=0或−=0,∴=或=,∴△B的形状为等腰三角形,故选:B.【变式6-2】(2024八年级下·四川内江·阶段练习)若a、b、c是△B的三边,且满足2+B−B−B=0,2+B−B−B=0,则△B的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【答案】D【分析】根据2+B−B−B=0,2+B−B−B=0,分别提取公因式即可得到(+p(−p=0,(+p(−p=0,再根据+≠0,+≠0,得到−=0,−=0,据此即可判定该三角形的形状.【详解】解:∵2+B−B−B=0,2+B−B−B=0,∴(+p(−p=0,(+p(−p=0,又∵、b、c是△B的三边,∴+≠0,+≠0,∴−=0,−=0,∴=,=,∴==,∴该三角形是等边三角形,故选:D.【点睛】本题考查了因式分解的应用,解题的关键是能够对题目提供的式子进行因式分解【变式6-3】(2024八年级下·重庆北碚·期中)已知△B三边长、、满足32+2B=32+2B,试判定△B的形状.【答案】△B为等腰三角形.【分析】根据分组分解法对式子进行因式分解,即可判断.此题考查了因式分解的应用、等腰三角形的定义等知识,利用因式分解对原式进行变形是解题的关键.【详解】解:∵32+2B=32+2B,∴32+2B−32−2B=0,∴3+−+2−=0,∴−3+3+2=0∵a,b,c是△B的三边长,∴3+3+2≠0,∴−=0∴=∴△B为等腰三角形.【题型7与因式分解有关的探究题】【例7】(2024八年级下·山东淄博·期中)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,两个正整数为它的“智慧分解”.例如,因为16=52−32,所以16就是一个智慧数,而5和3则是16的智慧分解.那么究竟哪些数为智慧数?第2022个智慧数是否存在,若存在,又是哪个数?为此,小明和小颖展开了如下探究.小颖的方法是通过计算,一个个罗列出来:3=22−12,5=32−22,7=42−32,9=52−42,…小明认为小颖的方法太麻烦,他想到:设两个数分别为+1,,其中≥1,且为整数.则(+1)2−2=(+1+p(+1−p=2+1.(1)根据上述探究,可以得出:除1外,所有都是智慧数,并请直接写出11,15的智慧分解;(2)继续探究,他们发现8=32−12,12=42−22,所以8和12均是智慧数,由此,他们猜想:4o≥2,且为整数)均为智慧数请证明他们的猜想;(3)根据以上所有探究,请直接写出第2023个智慧数,以及它的智慧分解.【答案】(1)奇数,11的智慧分解:5、6,15的智慧分解:7、8(2)见解析(3)第2023个智慧数是2700,2700=6762﹣6742=(676+674)(676﹣674)【分析】(1)由小明的探究可得,2+1(≥1,且为整数)是除1外,所有的奇数.根据探究可求得11、15的智慧分解;(2)借助小明的探究思路,可证猜想;(3)根据探究,前四个正整数只有3是智慧数,后面的正整数每连续四个中就有三个是智慧数,由此可得第2023个智慧数.【详解】(1)解:∵(+1)2−2=(+1+p(+1−p=2+1(≥1,且为整数),∴智慧数是除1外所有的奇数,(5+1)2−52=62−52=(6+5)(6−5)=11,(7+1)2−72=82−72=(8+7)(8−7)=15,故答案为:奇数,11的智慧分解:5、6,15的智慧分解:7、8;(2)证明:设≥2,且为整数,∵8=32−12=(2+1)2−(2−1)2=(2+1+2−1)(2+1−2+1),12=42−22=(3+1)2−(3−1)2=(3+1+3−1)(3+1−3+1),∴(+1)2−(−1)2=(+1+−1)(+1−+1)=4,∴除4外,所有能被4整除的偶数都是智慧数.∴4o≥2且为整数)均为智慧数;(3)解:据探究得,智慧数是奇数时≥1,且为整数,智慧数是4的倍数时,≥2且为整数,∴正整数中前四个正整数只有3为智慧数,此后每连续四个数中有三个智慧数,(2023−1)÷3=674,4×(674+1)=2700,∴第2023个智慧数是2700,∵2700能被4整除,∴2700=6762−6742=(676+674)(676−674).【点睛】本题考查了对因式分解的推理,掌握对因式分解的反推是本题的关键.【变式7-1】(2024八年级下·吉林长春·期中)探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:2+6+9=__________;2−4+4=________;42−20+25=________;(2)探究发现:观察以上三个多项式的系数,我们发现:62=4×1×9;(−4)2=4×1×4;(−20)2=4×4×25;归纳猜想:若多项式B2+B+o>0,>0)是完全平方式,猜想:系数a,b,c之间存在的关系式为_____________________.(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论.(4)解决问题:若多项式(+1)2−(2+6)+(+6)是一个完全平方式,利用你猜想的结论求出n的值.【答案】(1)+32;−22;2−52(2)2=4B(3)见解析(4)=3【分析】(1)可用完全平方公式进行分解因式;(2)根据问题情境,式子中的系数关系,可猜想2=4B;(3)可用完全平方公式进行验证;(4)多项式ax2+bx+c(a>0)是完全平方式,则系数a,b,c存在的关系为b2=4ac,可列[−(2n+6)]2=4(n+1)(n+6),进而求出n的值.【详解】(1)解:2+6+9=+32;2−4+4=−22;42−20+25=2−52.故答案为:+32;−22;2−52.(2)由情境中给的式子系数关系,可归纳猜想:2=4B.故答案为:2=4B.(3)验证结论:可用x2+4x+4,验证:∵b2=42=16,4ac=4×1×4=16,∴2=4B.(4)根据题意可得:−2+62=4+1+642+24+36=42+7+642+24+36=42+28+244=12=3【点睛】本题主要考查了学生的归纳总结能力和完全平方公式的综合应用,以及对因式分解的理解和应用,综合性较强.【变式7-2】(2024八年级下·湖南长沙·期中)阅读理解并填空:(1)为了求代数式2+2+3的值,我们必须知道x的值.若=1,则这个代数式的值为________﹔若=2,则这个代数式的值为_______;……可见,这个代数式的值因x的取值不同而变化,尽管如此,我们还是有办法来考虑这个代数式的值的范围.(2)把一个多项式进行部分因式分解可以解决求代数式的最大(或最小)值问题.例如:2+2+3=2+2+1+2=+12+2,因为+12是非负数,所以这个代数式的最小值是______,此时相应的x的值是______.(3)求代数式−2−6+12的最大值,并写出相应的x的值.(4)试探究关于x、y的代数式52−4B+2+6+25是否有最小值,若存在,求出最小值及此时x、y的值;若不存在,请说明理由.【答案】(1)6,11(2)2,−1(3)代数式−2−6+12的最大值是21,相应的x的值是−3(4)代数式52−4B+2+6+25有最小值是16,相应的=−3,=−6【分析】(1)把=1和=2分别代入代数式2+2+3中,再进行计算即可得出答案;(2)根据非负数的性质即可得出答案;(3)根据完全平方公式把给出的式子进行整理,即可得出答案;(4)先把代数式化成完全平方的形式,再根据非负数的性质求出最小值及此时x、y的值.【详解】(1)解:把=1代入2+2+3中,得:12+2+3=6;若=2,则这个代数式的值为22+2×2+3=11;故答案为:6,11;(2)解:根据题意可得:2+2+3=2+2+1+2=+12+2,∵+12是非负数,∴这个代数式2+2+3的最小值是2,相应的x的值是−1;故答案为:2,−1;(3)解:根据题意得:∴−2−6+12=−+32+21,∴代数式−2−6+12的最大值是21,相应的x的值是−3;(4)解:代数式52−4B+2+6+25有最小值是16,相应的=−3,=−6,理由如下:52−4B+2+6+25=42−4B+2+2+6+9+16=2−2++32+16,∵2−2及+32都是非负数,当2−=0,+3=0时,代数式有最小值是16,相应的=−3,=−6.【点睛】此题考查了因式分解的应用,用到的知识点是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的性质进行解答.【变式7-3】(2024八年级下·黑龙江哈尔滨·期中)在学习《因式分解》)时,邹老师给同学们发了很多硬纸片(×的正方形A,×的正方形B,×的长方形C.(1)在探究中,小明用1张A和1张C组成如图1所示的长方形可以说明2+B可以分解为______;(2)继续探究中,小明用1张A,2张B和3张C再次拼得一个长方形,请在框1中画出示意图,并将长方形面积表达式的因式分解结果写在横线上(3)尝试应用:请你仿照小明同学的探究方法,尝试用1张A,4张B和若干张C拼成一个长方形或者正方形,请你设计两种不同的拼法,在框2和框3中分别画出示意图,并在相应的横线上写出所拼长方形的面积表达式及因式分解的结果.【答案】(1)o+p;(2)2+3B+22=(+2p(+p;(3)2+5B+42=(+4p(+p或2+4B+42=(+2p2.【分析】(1)根据这个图形的面积有直接求和间接求两种方法,即可写出分解因式的结果.(2)先画出图形,再根据面积法写出分解因式的结果.(3)先画出图形,再根据面积法写出分解因式的结果.【详解】(1)由图知长方形的面积还可表示为o+p,因此2+B可以分解为o+p.故答案为:o+p(2)如图1张A,2张B和3张C可拼成一个长方形,由此得2+3B+22=(+2p(+p.故答案为:(+2p(+p.(3)如图,用1张A,4张B,5张C可拼成一个长方形,由此可得2+5B+42=(+4p(+p.如图,用1张A,4张B,4张C可拼成一个正方形,由此可得2+4B+42=(+2p2.故答案为:2+5B+42=(+4p(+p或2+4B+42=(+2p2.【点睛】本题考查了因式分解的应用,利用面积法写出一个多项式因式分解的结果,能够正确的列出等式是解题的关键.【题型8因式分解的应用】【例8】(2024八年级下·湖北恩施·期中)在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式4−4,因式分解的结果是−+2+2,若取= 9,=9,则各个因式的值是:−=0,+=18,2+2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式3−B2,取=52,=28,用上述方法产生的密码不可能是()A.528024B.522824C.248052D.522480【答案】B【分析】本题主要考查提公因式法分解因式、平方差公式分解因式,熟记公式结构是解题的关键.先提公因式,然后根据平方差公式因式分解,进而代入字母的值即可求解.【详解】解:∵3−B2=2−2=+−,∵=52,=28,则各个因式的值为=52,+=80,−=24,∴产生的密码不可能是522824,故选:B.【变式8-1】(2024八年级下·湖南湘西·期中)如图,某养鸡场老板准备用20米的篱笆围成一个边长为、的长方形场地,已知2+B2=240,则这个长方形场地的面积为()平方米.A.32B.24C.16D.12【答案】B【分析】本题考查了因式分解的应用.由题意得+=10,再由已知变形得到B=24,即可求解.【详解】解:由题意得+=202=10(米),2+B2=240,∴B+=240,解得B=24,∴个长方形场地的面积为24平方米.故选:B.【变式8-2】(2024八年级下·吉林·期中)如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为vm的大正方形,2块是边长为vm的小正方形,5块长是vm,宽为vm的相同的小长方形,且>(1)观察图形,可以发现代数式22+5B+22可以因式分解为;(2)若图中阴影部分的面积为34cm2,大长方形纸板的周长为30cm.①求+的值;②求图中空白部分的面积.【答案】(1)+2+2(2)①5;②20cm2【分析】本题考查了因式分解的应用.(1)题目中给的代数式是图形的面积,因式分解恰好是长方形形长与宽的乘积从而得出答案;(2)①根据长方形的周长是23+3=30即可得出+的值;②由图可得空白部分的面积是5B,故我们可以根据第一步中求出的+的值,以及阴影部分的面积,即可推出空白部分的面积.【详解】(1)解:通过观察图形可以得出图形的面积是:22+5B+22cm2,长方形的长是2+cm,宽是+2cm,由此可得:22+5B+22=+2+2,故答案为:+2+2;(2)解:①根据长方形的周长为30cm,可得:22+++2=30,23+3=30,6+=30,+=5.答:+的值为5.②空白部分的面积为5Bcm2,根据②得:+=5,∵阴影部分的面积为34cm2,且阴影部分的面积表示为22+22,故2+2=17,∵+2−2B=2+2,∴52−2B=17,∴B=4,∴5B=20.答:空白部分的面积为20cm2.【变式8-3】(2024八年级下·福建泉州·期中)【实践探究】小青同学在学习“因式分解”时,用如图1所示编号为①②③④的四种长方体各若干块,进行实践探究:(1)现取其中两个拼成如图2所示的大长方体,请根据体积的不同表示方法,写出一个代数恒等式:;(2)【问题解决】若要用这四种长方体拼成一个棱长为+2的正方体,其中②号长方体和③号长方体各需要多少个?试通过计算说明理由;(3)【拓展延伸】如图3,在一个棱长为的正方体中挖出一个棱长为的正方体,请根据体积的不同表示方法,直接写出3−3因式分解的结果,并利用此结果解决问题:已知与2分别是两个大小不同正方体的棱长,且3−83=−24−4B,当−2为整数时,求B的值.【答案】(1)+·b=B2+3;(2)②号长方体需要6个,③号长方体需要12个,+23=3+32·2+3b22+23=3+62+12B2+83,(3)B=0.3.【分析】(1)根据图2立方体的体积求法即可;(2)根据题中的给定的长方体组合把+23计算即可;(3)先把3−3因式分解,然后据此分解3−83=3−23=−22+2B+22=−22+2B+42=−24−4B即可;此题考查了因式分解的应用,解题的关键是利用几何体的体积进行因式分解及数形结合思想的应用.【详解】(1)根据题意可知:+·b=B2+3,故答案为:+·b=B2+3;(2)②号长方体需要6个,③号长方体需要12个,+23=3+32·2+3b22+23=3+62+12B2+83;(3)由题意得:3−3=−2+B+2,由上可知:3−83=3−23=−22+2B+22=−22+2B+42=−24−4B,∴−22+2B+42−4+4B=0,整理得:−22+6B+42−4=0,∵且与2两个大小不同正方体的棱长,∴−2≠0,∴2+6B+42−4=0,则−22=4−10B,∵−2为整数,则4−10B为平方数,∴4−10B=1,∴B=0.3.。
因式分解50题(配完整解析)

因式分解50题(配完整解析)考点卡片一.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.二.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.22平方差公式:a ﹣b =(a +b )(a ﹣b );222完全平方公式:a ±2ab +b =(a ±b );2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.三.因式分解-分组分解法1、分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.2、对于常见的四项式,一般的分组分解有两种形式:①二二分法,②三一分法.例如:①ax +ay +bx +by =x (a +b )+y (a +b )=(a +b )(x +y )22②2xy ﹣x +1﹣y 22=﹣(x ﹣2xy +y )+12=1﹣(x ﹣y )=(1+x ﹣y )(1﹣x +y )四.因式分解-十字相乘法等借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.2①x +(p +q )x +pq 型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p +q )x +pq =(x +p )(x +q )2②ax +bx +c (a ≠0)型的式子的因式分解这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一2次项b ,那么可以直接写成结果:ax +bx +c =(a 1x +c 1)(a 2x +c 2).五.实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x ﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解2x 2﹣2=x 2﹣(2)2=(x+2)(x-2)一.填空题(共5小题)1.因式分解:-2x 2+2x =.2.因式分解:a 3+2a =.3.分解因式:8x 2-8xy +2y 2=.4.分解因式:ab 2+a 2b =.5.因式分解2x 2y -8y =.二.解答题(共45小题)6.分解因式(1)n 2(m -2)-n (2-m )(2)(a 2+4b 2)2-16a 2b 2.7.因式分解(1)(2a +b )2-(a +2b )2(2)16x 4-8x 2y 2+y 48.已知m -2n =-2,求下列多项式的值:(1)5m -10n +10m 2(2)+n 2-mn -3.49.因式分解:(x 2-3)2+2(3-x 2)+1.10.因式分解:m 2(m -4)2+8m (m -4)+16.11.分解因式:4(a +2)2-9(a -1)2.12.(x 2+4)2-16x 2.13.因式分解:(x -6x )+18(x -6x )+81.14.分解因式:(1)x 4-2x 2+1;(2)a 4-8a 2b 2+16b 4;(3)(a 2+4)2-16a 2;(4)(m 2-4m )2+8(m 2-4m )+16.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )217.分解因式:(x +3)2-(x -3)2.18.(x -5y )2-(x +5y )219.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 221.分解因式:(1)-3x 2+6xy -3y 2;222222222(2)(a +b )(a -b )+4(b -1).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 223.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+927.把下列各式因式分解:(1)12x 4-6x 3-168x 2(2)a 5(2-3a )+2a 3(3a -2)2+a (2-3a )3(3)abc (a 3+b 3+c 3+2abc )+(a 3b 3+b 3c 3+c 3a 3)28.分解因式(1)16-a 4(2)y 3-6xy 2+9x 2y(3)(m +n )2-4m (m +n )+4m 2(4)9-a 2+4ab -4b 229.因式分解(1)-a 2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;124242(4)(x -4x +1)(x +3x +1)+10x 4;31.分解因式:(1)12abc -2bc 2(2)2a 3-12a 2+18a (3)9a (x -y )+3b (x -y )(4)(x +y )2+2(x +y )+1(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .(6)(a+b)(a-b)+4(b-1)32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b235.把下列多项式分解因式:(1)27xy2-3x121x+xy+y22222(3)a-b-1+2b(4)x2+3x-436.因式分解:(1)x2-xy-12y2;(2)(2)a2-6a+9-b237.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(5)p2-5p-36(6)x5-x3(7)(x-1)(x-2)-6(8)a2-2ab+b2-c238.把下列各式分解因式:(1)4x3-31x+15;(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;(3)x5+x+1;(4)x3+5x2+3x-9;(5)2a4-a3-6a2-a+2.39.分解因式(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m40.分解因式:(x 2+x +1)(x 2+x +2)-12.41.分解因式:(x 2+4x +8)2+3x (x 2+4x +8)+2x 2.42.分解因式:(1)2a (y -z )-3b (z -y );(2)-x 2+4xy -4y 2;(3)x 2-2(在实数范围内分解因式);(4)4-12(x -y )+9(x -y )2.43.阅读下面的问题,然后回答,分解因式:x 2+2x -3,解:原式=x 2+2x +1-1-3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x 2-4x +3(2)4x 2+12x -7.44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:22x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a+2a)(x+a-2a)=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2-8a+15;(2)若a+b=6,ab=4,求:①a2+b2;②a4+b4的值;(3)已知x是实数,试比较x2-6x+11与-x2+6x-10的大小,说明理由.11146.小亮在对a4+分解因式时,步骤如下:a4+=a4+a2+-a2(添加a2与-a2,前444三项可利用完全平方公式)1=(a2+)2-a2(写成完全平方式与最后一项又符合平方差公式)211=(a2+a+)(a2-a+).22请你利用上述方法分解因式4x4+1.47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.因式分解50题(配完整解析)参考答案与试题解析一.填空题(共5小题)1.因式分解:-2x2+2x=-2x(x-1).【解答】解:-2x2+2x=-2x(x-1),故答案为:-2x(x-1).2.因式分解:a3+2a=a(a2+2).【解答】解:a3+2a=a(a2+2),故答案为a(a2+2).3.分解因式:8x2-8xy+2y2=2(2x-y)2.【解答】解:原式=2(4x2-4xy+y2)=2(2x-y)2.故答案为:2(2x-y)2.4.分解因式:ab2+a2b=ab(a+b).【解答】解:原式=ab(a+b).故答案是:ab(a+b).5.因式分解2x2y-8y=2y(x+2)(x-2).【解答】解:2x2y-8y=2y(x2-4)=2y(x+2)(x-2)故答案为:2y(x+2)(x-2).二.解答题(共45小题)6.分解因式(1)n2(m-2)-n(2-m)(2)(a2+4b2)2-16a2b2.【解答】解:(1)原式=n(m-2)(n+1);(2)原式=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.7.因式分解(1)(2a+b)2-(a+2b)2(2)16x4-8x2y2+y4【解答】解:(1)(2a+b)2-(a+2b)2=(2a+b-a-2b)(2a+b+a+2b)=3(a-b)(a+b);(2)16x4-8x2y2+y4=(4x2-y2)2=(2x+y)2(2x-y)2.8.已知m-2n=-2,求下列多项式的值:(1)5m-10n+10m2(2)+n2-mn-3.4【解答】解:(1)m-2n=-2,∴原式=5(m-2n)+10=-10+10=0;m-2n=-2,(2)11∴原式=(m2+4n2-4mn)=(m-2n)2-3=1-3=-2.449.因式分解:(x2-3)2+2(3-x2)+1.【解答】解:(x2-3)2+2(3-x2)+1=(x2-3)2-2(x2-3)+1=(x2-3-1)2=(x2-4)2=(x+2)2(x-2)2.10.因式分解:m2(m-4)2+8m(m-4)+16.【解答】解:原式=[m(m-4)]2+2⨯m(m-4)⨯4+42=[m(m-4)+4]2=(m2-4m+4)2=[(m-2)2]2=(m-4)4.11.分解因式:4(a+2)2-9(a-1)2.【解答】解:4(a+2)2-9(a-1)2=[2(a+2)-3(a-1)][2(a+2)+3(a-1)]=(7-a)(5a+1).12.(x2+4)2-16x2.【解答】解:(x2+4)2-16x2=(x2+4-4x)(x2+4+4x)=(x-2)2(x+2)2.13.因式分解:(x-6x)+18(x-6x)+81.222【解答】解:(x-6x)+18(x-6x)+81222=(x2-6x+9)2=(x-3)4.14.分解因式:(1)x4-2x2+1;(2)a4-8a2b2+16b4;(3)(a2+4)2-16a2;(4)(m2-4m)2+8(m2-4m)+16.【解答】解:(1)原式=(x2-1)2=[(x+1)(x-1)]2=(x+1)2(x-1)2;(2)原式=(a2-4b2)2=[(a+2b)(a-2b)]2=(a+2b)2(a-2b)2;(3)原式=(a2+4-4a)(a2+4+4a)=(a-2)2(a+2)2;(4)原式=(m2-4m+4)2=[(m -2)2]2=(m -2)4.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.【解答】解:(1)x -4xy +4y =(x -2y );(2)4a -12ab +9b =(2a -3b );(3)a b +2ab +1=(ab +1).16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )2【解答】解:(1)(2x -y +z )(2x -y -z )222222222222222=(2x -y )2-z 2=4x 2+y 2-4xy -z 2;(2)25(a +b )2-16(a -b )2=[5(a +b )-4(a -b )][5(a +b )+4(a -b )]=(a +9b )(9a +b ).17.分解因式:(x +3)2-(x -3)2.【解答】解:(x +3)2-(x -3)2=(x +3-x +3)(x +3+x -3)=12x .18.(x -5y )2-(x +5y )2【解答】解:(x -5y )2-(x +5y )2=(x -5y +x +5y )(x -5y -x -5y )=-20xy .19.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.【解答】解:(1)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(2)(3m +2n )2-(2m +3n )2=[(3m +2n )-(2m +3n )][(3m +2n )+(2m +3n )]=(m -n )(5m +5n )=5(m -n )(m +n ).20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 2【解答】解:(1)原式=(a -b )(x -y +x +y )=2x (a -b ).(2)原式=5m (2x -y +n )(2x -y -n ).21.分解因式:(1)-3x 2+6xy -3y 2;(2)(a +b )(a -b )+4(b -1).【解答】解:(1)-3x 2+6xy -3y 2=-3(x 2-2xy +y 2)=-3(x -y )2;(2)(a +b )(a -b )+4(b -1)=a 2-b 2+4b -4=a 2-(b -2)2=(a +b -2)(a -b +2).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 2【解答】解:(1)原式=9a 2(x -y )-4b 2(x -y )=(x -y )(3a +2b )(3a -2b );(2)原式=-(4a 2-4ab +b 2)=-(2a -b )2.23.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.【解答】解:(1)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2);(2)ax 2-4axy +4ay 2=a (x 2-4xy +4y )=a (x -2y )2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )【解答】解:(1)原式=-a (25x 2-10x +1)=-a (5x -1)2;(2)原式=4x 2(a -b )-y 2(a -b )=(a -b )(2x +y )(2x -y ).25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)【解答】解:(1)原式=5(x 2+2x +1)=5(x +1)2;(2)原式=a 2-16+3a +6=a 2+3a -10=(a -2)(a +5).26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+9【解答】解:(1)9m 2-25n 2=(3m +5n )(3m -5n );(2)m 2-mn +n 2141=(m-n)2;2(3)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2;(4)(y2-1)2+6(1-y2)+9=[(1-y2)+3]2=(1-y2+3)2.=(4-y2)2=(2+y)2(2-y)2.27.把下列各式因式分解:(1)12x4-6x3-168x2(2)a5(2-3a)+2a3(3a-2)2+a(2-3a)3(3)abc(a3+b3+c3+2abc)+(a3b3+b3c3+c3a3)【解答】解:(1)原式=6x2(2x2-x-28)=6x2(2x+7)(x-4);(2)原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3=a(2-3a)[a4+2a2(2-3a)+(2-3a)2]=a(2-3a)(a2+2-3a)2=a(2-3a)(a-1)2(a-2)2;(3)原式=a4bc+a3(b3+c3)+2a2b2c2+abc(b3+c3)+b3c3=bc(a4+2a2bc+b2c2)+a(b3+c3)(a2+bc)=bc(a2+bc)2+a(b3+c3)(a2+bc)=(a2+bc)[bc(a2+bc)+a(b3+c3)]=(a2+bc)[(bca2+ab3)+(b2c2+ac3)]=(a2+bc)[ab(ca+b2)+c2(b2+ac)]=(a2+bc)(b2+ac)(c2+ab).28.分解因式(1)16-a4(2)y3-6xy2+9x2y(3)(m+n)2-4m(m+n)+4m2(4)9-a2+4ab-4b2【解答】解:(1)原式=(4+a2)(4-a2)=(4+a2)(2+a2)(2-a2);(2)原式=y(y2-6xy+9x2)=y(y-3x)2;(3)原式=(m+n-2m)2=(n-m)2;(4)原式=9-(a-2b)2=(3-a+2b)(3+a-2b).29.因式分解(1)-a2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.【解答】解:(1)-a 2-a =-a (a +1)(2)(x +y )(5m +3n )2-(x +y )(m -n )2=(x +y )(5m +3n +m -n )(5m +3n -m +n )=(x +y )(6m +2n )(4m +4n )=8(x +y )(3m +n )(m +n )(3)(a 2+6a )2+18(a 2+6a )+81=(a 2+6a +9)2=(a +3)4(4)x 2-4x -y 2+4=(x -2)2-y 2=(x -2+y )(x -2-y )30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;12(4)(x 4-4x 2+1)(x 4+3x 2+1)+10x 4;【解答】解:(1)令a 2+1=b ,则原式=(b +a )(b -6a )+12a 2(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .=b 2-5ab -6a 2+12a 2=b 2-5ab +6a 2=(b -2a )(b -3a )=(a 2+1-2a )(a 2+1-3a )=(a -1)2(a 2-3a +1);(2)原式=[(2a +5)(a -3)][(a +3)(2a -7)]-91=(2a 2-a -15)(2a 2-a -21)-91=(2a 2-a )2-36(2a 2-a )+224=(2a 2-a -28)(2a 2-a -8)=(a -4)(2a +7)(2a 2-a -8);(3)设x +y =a ,xy =b ,则原式=b (b +1)+(b +3)-2(a +)-(a -1)212=(b 2+2b +1)-a 2=(b +1+a )(b +1-a )=(xy +1+x +y )(xy +1-x -y );(4)令x 4+1=a ,则原式=(a -4x 2)(a +3x 2)+10x 4=a 2-x 2a -2x 4=(a -2x 2)(a +x 2)=(x 4+1-2x 2)(x 4+1+x 2)=(x +1)2(x -1)2(x 2+x +1)(x 2-x +1);(5)原式=(2x3-x2z)+(-4x2y+2xyz)+(2xy2-y2z) =x2(2x-z)-2xy(2x-z)+y2(2x-z)=(2x-z)(x2-2xy+y2)=(2x-z)(x-y)2.31.分解因式:(1)12abc-2bc2(2)2a3-12a2+18a(3)9a(x-y)+3b(x-y)(4)(x+y)2+2(x+y)+1(5)x2-1+y2-2xy(6)(a+b)(a-b)+4(b-1)【解答】解:(1)12abc-2bc2=2bc(6a-c);(2)2a3-12a2+18a=2a(a2-6a+9)=2a(a-3)2;(3)9a(x-y)+3b(x-y)=3(x-y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2;(5)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(6)(a+b)(a-b)+4(b-1)=a2-b2+4b-4=a2-(b-2)2=(a-b+2)(a+b-2).32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.【解答】解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a+2)(a-2);(2)16(a-b)2-9(a+b)2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]=(4a-4b+3a+3b)(4a-4b-3a-3b)=(7a-b)(a-7b);(3)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(4)(m+n)2-2(m2-n2)+(m-n)2=[(m+n)-(m-n)]2=(m+n-m+n)2=(2n)2=4n2;(5)x2-5x+6=(x-2)(x-3);(6)x2-5x-6=(x-6)(x+1);(7)x2+5x-6=(x+6)(x-1);(8)x2+5x+6=(x+2)(x+3).33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.【解答】解:(1)-3x3-6x2y-3xy2;=-3x(x2+2xy+y2)=-3x(x+y)2;(2)(a2+9)2-36a2=(a2+9+6a)(a2+9-6a)=(a+3)2(a-3)2;(3)25m2-(4m-3n)2=(5m)2-(4m-3n)2,=(5m+4m-3n)(5m-4m+3n)=3(3m-n)(m+3n);(4)(x2-2x)2-2(x2-2x)-3=(x2-2x-3)(x2-2x+1)=(x-3)(x+1)(x-1)2.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b2【解答】解:(1)x2-5x-6=(x-3)(x+2);(2)9a2(x-y)+4b2(y-x)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);=y2-(x2-6x+9)=y2-(x-3)2=(y+x-3)(y-x+3);(4)(a2+4b2)2-16a2b2=(a2+4b2+4ab)(a2+4b2-4ab) =(a+2b)2(a-2b)2.35.把下列多项式分解因式:(1)27xy2-3x(2)12x2+xy+12y2(3)a2-b2-1+2b(4)x2+3x-4【解答】解:(1)27xy2-3x =3x(9y2-1)=3x(3y+1)(3y-1);(2)12x2+xy+12y2=1(x2+2xy+y2 2)=1(x+y)22;(3)a2-b2-1+2b=a2-(b2-2b+1)=a2-(b-1)2=(a+b-1)(a-b+1);(4)x2+3x-4=(x+4)(x-1).36.因式分解:(1)x2-xy-12y2;(2)a2-6a+9-b2【解答】解:(1)x2-xy-12y2,=(x+3y)(x-4y);(2)a2-6a+9-b2,=(a-3)2-b2,=(a-3+b)(a-3-b).37.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(6)x 5-x 3(7)(x -1)(x -2)-6(8)a 2-2ab +b 2-c 2【解答】解:(1)8a 3b 2-12ab 3c =4ab 2(2a 2-3bc );(2)-3ma 3+6ma 2-12ma =-3ma (a 2-2a +4)=-3ma (a -2)2;(3)2(x -y )2-x (x -y )=(x -y )(2x -2y -x )=(x -y )(x -2y );(4)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(5)p 2-5p -36=(p -9)(p +4);(6)x 5-x 3=x 3(x 2-1)=x 3(x +1)(x -1);(7)(x -1)(x -2)-6=x 2-3x +2-6=(x -4)(x +1);(8)a 2-2ab +b 2-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).38.把下列各式分解因式:(1)4x 3-31x +15;(2)2a 2b 2+2a 2c 2+2b 2c 2-a 4-b 4-c 4;(3)x 5+x +1;(4)x 3+5x 2+3x -9;(5)2a 4-a 3-6a 2-a +2.【解答;(;(5522232】解:(1)4x 3-31x +15=4x 3-x -30x +15=x (2x +1)(2x -1)-15(2x -1)=(2x -1)(2x 2+x -15)=(2x -1)(2x -5)(x +3)2)2a b +2a c +2b c -a -b -c =4a b -(a +b +c +2a b -2a c -2b c )=(2ab )-(a +b -c )=(2ab +a +b -c )(2ab -a -b +c )=(a +b +c )(a +b -c )(c +a -b )(c -a +b )32222)3x +x +1=x -x +x +x +1=x (x -1)+(x +x +1)=x (x -1)(x +x +1)+(x +x +1)=(x +x +1)(x -x 2+1);(;(4)x 3+5x 2+3x -9=(x 3-x 2)+(6x 2-6x )+(9x -9)=x 2(x -1)+6x (x -1)+9(x -1)=(x -1)(x +3)25)2a -a -6a -a +2=a (2a -1)-(2a -1)(3a +2)=(2a -1)(a -3a -2)=(2a -1)(a +a -a -a -2a -2)=(2a -1)[a (a +1)-a (a +1)-2(a +1)]=(2a -1)(a +1)(a 2-a -2)=(a +1)(a -2)(2a -1).39.分解因式(1)20a 3x -45ay 2x(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m【解答】解:(1)原式=5ax (4a 2-9y 2)=5ax (2a +3y )(2a -3y );(2)原式=(1+3x )(1-3x );(3)原式=(2x )2-12x +9=(2x -3)2;(4)原式=(2xy-1)2;(5)原式=(p+4)(p-9);(6)原式=(y-3)(y-4);(7)原式=3(x2-2x+1)=3(x-1)2;(8)原式=-a(a2-2a+1)=-a(a-1)2;(9)原式=m(m2-m-20)=m(m+4)(m-5).40.分解因式:(x2+x+1)(x2+x+2)-12.【解答】解:设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x-1)(x+2)(x2+x+5)41.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.【解答】解:设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).42.分解因式:(1)2a(y-z)-3b(z-y);(2)-x2+4xy-4y2;(3)x2-2(在实数范围内分解因式);(4)4-12(x-y)+9(x-y)2.【解答】解:(1)原式=2a(y-z)+3b(y-z)=(y-z)(2a+3b);(2)原式=-(x2-4xy+4y2)=-(x-2y)2;(3)原式=(x+2)(x-2);(4)原式=[3(x-y)-2]2=(3x-3y-2)2.43.阅读下面的问题,然后回答,分解因式:x2+2x-3,解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2-4x+3(2)4x2+12x-7.【解答】解:(1)x2-4x+3=x2-4x+4-4+3=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2)4x 2+12x -7=4x 2+12x +9-9-7=(2x +3)2-16=(2x +3+4)(2x +3-4)=(2x +7)(2x -1)44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.【解答】解:(1)(2)设x -2x =y原式=y (y +2)+1222(x 2-4x +4)2=(x -2)4,∴该同学因式分解的结果不彻底.=y 2+2y +1=(y +1)2=(x 2-2x +1)2=(x -1)4.故答案为:不彻底.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:x 2+2ax -3a 2=(x 2+2ax +a 2)-a 2-3a 2=(x +a )2-4a 2=(x +a +2a )(x +a -2a )=(x +3a )(x -a )像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a 2-8a +15;(2)若a +b =6,ab =4,求:①a 2+b 2;②a 4+b 4的值;(3)已知x 是实数,试比较x 2-6x +11与-x 2+6x -10的大小,说明理由.【解答】解:(1)a 2-8a +15=(a 2-8a +16)-1=(a -4)2-12=(a -3)(a -5);(2)a +b =6,ab =4,a2+b2=(a+b)2-2ab=36-8=28.a4+b4=(a2+b2)2-2a2b2=282-2⨯16=752.(3)x2-6x+11=(x-3)2+22,-x2+6x-10=-(x-3)2-1-1,∴x2-6x+11>-x2+6x-10.46.小亮在对a4+1114分解因式时,步骤如下:a4+4=a4+a2+4-a2三项可利用完全平方公式)=(a2+12)2-a2(写成完全平方式与最后一项又符合平方差公式)=(a2+a+12)(a2-a+12).请你利用上述方法分解因式4x4+1.【解答】解:4x4+1=4x4+4x2+1-4x2=(2x2+1)2-4x2=(2x2+2x+1)(2x2-2x+1).47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.【解答】解:(1)x2+3x+2=(x+1)(x+2);(2)x2-3x+2=(x-1)(x-2);(3)x2+2x-3=(x+3)(x-1);(4)x2-2x-3=(x-3)(x+1);(5)x2+5x+6=(x+3)(x+2);(6)x2-5x-6=(x-6)(x+1);(7)x2+x-6=(x+3)(x-2);a2与-a2,前(添加(8)x2-x-6=(x-3)(x+2);(9)x2-5x-36=(x-9)(x+4);(10)x2+3x-18=(x+6)(x-3);(11)2x2-3x+1=(2x-1)(x-1);(12)6x2+5x-6=(2x+3)(3x-2).48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.【解答】解:(x+1)(x+3)(x+6)(x+8)+9=[(x+1)(x+8)][(x+3)(x+6)]+9=(x2+9x+8)(x2+9x+18)+9=(x2+9x)2+26(x2+9x)+153=(x2+9x+9)(x2+9x+17).49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.【解答】解:(1)x4-7x2+6=(x2-1)(x2-6)=(x+1)(x-1)(x+6)(x-6);(2)x4-5x2-36=(x2-9)(x2+4)=(x+3)(x-3)(x2+4)(3)4x4-65x2y2+16y4=(2x2-4y2)2-49x2y2=(2x2-4y2+7xy)(2x2-4y2-7xy)=(2x-1)(2x+1)(1-4y)(1+4y);(4)a6-7a3b3-8b6=(a3-8b3)(a3+b3)=(a-2b)(a2+2ab+b2)(a+b)(a2-ab+b2)=(a-2b)(a+b)3(a2-ab+b2);(5)6a4-5a3-4a3=6a4-9a3=3a3(2a-3);(6)4a6-37a4b2+9a2b4=a2(4a4-37a2b2+9b4)=a2(4a4-12a2b2+9b4-25a2b2)=a2[(2a2-3b2)2-25a2b2]=a2(2a+1)(2a-1)(1-3b)(1+3b).50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.【解答】解:(1)原式=[(x+y)2-4][(x+y)2+5]=(x+y+2)(x+y-2)(x2+y2+2xy+5);(2)原式=(x2-2x)2-11(x2-2x)+24=(x2-2x-3)(x2-2x-8)=(x-3)(x+1)(x-4)(x+2);(3)原式=(x+1)(x+3)(x-5)(x-7)-105=(x2-4x-5)(x2-4x-21)-105=(x2-4x)2-26(x2-4x)=(x2-4x)(x2-4x-26)=x(x-4)(x2-4x-26)(4)原式=(x2-6-5x)(x2-6+x)=(x-6)(x+1)(x-2)(x+3).第21页(共21页)。
因式分解精选例题(附答案)

因式分解 例题解说及练习【例题优选】:(1) 5x 2 y 15x 3 y 2 20x 2 y 3评析:先查各项系数(其余字母临时不看) ,确立 5,15,20 的最大公因数是 5,确立系数是 5 ,再查各项能否都有字母 X ,各项都有时,再确立 X 的最低次幂是几,至此确认提取 X 2,同法确立提 Y ,最后确立提公因式 5X 2Y 。
提取公因式后,再算出括号内各项。
解: 5x 2 y15x 3 y 2 20x 2 y 3=5x 2y(1 3xy4y 2 )(2)3x 2 y 12x 2 yz 9x 3 y 2评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为 3,且同样字母最低次的项是 X 2Y解:3x 2 y 12 x 2 yz 9x 3 y 2= (9x 3 y 212x = 3(3x 3 y 2 4x22yz 3x 2 y)yz x 2 y)=3x 2 y(3xy 42 1)( 3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中, y-x 和 x-y 都能够做为公因式,但应防止负号过多的状况出现,所以应提取 y-x解:原式 =(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4)(4) 把32x 3 y 4 2x 3分解因式评析:这个多项式有公因式 2x 3,应先提取公因式,节余的多项式16y 4-1 具备平方差公式的形式解: 32x 3y42x3=2x 3 (16y 4 1)=2x 3 (4 y 2 1)(4 y 2 1) =2 x3 (2y 1)( 2y 1)( 4y 21)(5)(5) 把 x 7 y 2xy 8 分解因式评析:第一提取公因式xy 2,剩下的多项式x 6-y6能够看作( x 3 ) 2( y 3 ) 2 用平方差公式分解,最后再运用立方和立方差公式分解。
串讲03 因式分解(9个常考点 5种重难点题型 2个易错)七年级数学上学期期中考点(沪教版2024)

请你选择一种方法因式分解:
mx - my + nx - ny ;
【解】 mx - my + nx - ny =( mx - my )+( nx - ny )
= m ( x - y )+ n ( x - y )=( x - y )( m + n ).
(1)3.2×202.4+4.7×202.4+2.1×202.4;
【解】 原式=202.4×(3.2+4.7+2.1)
=202.4×10=2 024.
(2)36.8×
+20.2×
【解】 原式=
=
×55=13.
-2×来自.×(36.8+20.2-2)
题型二:变形后利用提公因式法分解因式计算
B. 都是乘法运算
C. ①是因式分解,②是乘法运算
D. ①是乘法运算,②是因式分解
考点2 公因式的定义
4. [2023·永州]2 a2与4 ab 的公因式为
2a
5. 8 xmyn-1-12 x3 myn 各项的公因式是( D
A. xmyn
B. xmyn-1
C. 4 xmyn
D. 4 xmyn-1
2x3–2x2y+8y–8x
解
6k2+9km – 6mn–4kn
=2(x3–x2y+4y–4x)
=(6k2+9km) – (6mn+4kn)
=2[(x3–x2y) +(4y–4x)]
=3k(2k+3m) –2n (3m+2k)
=2[x2(x-y)-4(x-y)]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因式分解》常见题型例析
因式分解是中学数学的重要内容之一,是学习分式、根式、和一元二次方程的重要基础,是解决许多数学问题的重要“工具”,也是各级考试的一个热点,现将关于这部分知识的常见题型介绍如下。
题型一:分解因式的意义
例1 下列从左到右的变形是分解因式的是( )
(A )(x -4)(x+4)=x 2-16 (B)x 2-y 2+2=(x+y)(x -y)+2
(C)2ab+2ac=2a(b+c) (D)(x -1)(x -2)=(x -2)(x -1). 练习:下面由左边到右边的变形中,是分解因式的是( ).
(A)a(x -y)=ax -ay (B)x 2-2x+4=(x -1)2+3
(C)8x 2-4x=4x·2x (D)y 2-y+41=(y -2
1)2
题型二、直接提公因式分解
例2 分解因式2a(b -c)-3c(b -c).
练习:分解因式: (2x -3y)(a+b)+(a+b)(3x -2y).
题型三、直接利用公式因式分解
例3、分解因式:a 2-1=_______. 练习:分解因式:224x y =________. 题型四、提公因式后再用公式
例4、把a 3-ab 2分解因式的正确结果是( )
A 、(a+ab)(a -ab)
B 、a (a 2-b 2)
C 、a(a+b)(a -b)
D 、a(a -b)2
练习∶分解因式:244x y xy y -+=_________.
题型五、利用因式分解进行数字计算
例5、计算:2-22-23-……-218-219+220,
练习:算式22222222+++可化为( )
A .42
B .28
C .82
D .162
题型六、利用因式分解求值
例6、若非零实数a 、b 满足4a 2+b 2=4ab ,则b a
=___________. 练习:已知:x 2+4y 2-4x -4y+5=0,求:x -y 的值。
例7、已知:x+y=1,求222
121y xy x ++的值。
练习:已知a+b=13,ab=40,求a 2b+ab 2的值。
例8、已知:多项式222541y mxy x ++是一个完全平方式,求m 的值。
练习:已知:x 2+2(m -3)x+16是一个完全平方式,求m 的值。
题型七、利用因式分解求解整除问题
例9、设n 为整数.求证:(2n+1)2-25能被4整除。
练习:证明:817-279-913能被45整除。
(提示:原式=(34)7-
(33)9-(32)13=326(32-3-1)=45×324)。
题型八、利用因式分解求解矩形、正方形问题
例10、已知矩形的面积为6m 2+60m+150(m>0),长与宽的比为3:2,求这个矩形的周长。
练习:已知:一正方形的面积为:9x 2+12xy+4y 2,且x>0,y>0,求该正方形的周长。
1.3a4b2与-12a3b5的公因式是_________.
2.把下列多项式进行因式分解
(1)9x2-6xy+3x;(2)-10x2y-5xy2+15xy;
(3)a(m-n)-b(n-m).
3.因式分解:
m2;(2)(a+b)2-1;(3)a2-6a+9;
(1)16-1
25
(4)1
x2+2xy+2y2.
2
4.下列由左边到右边的变形,属于因式分解的是()
A.(x+2)(x-2)=x2-4 B.x2-2x+1=x(x-2)+1
C.a2-b2=(a+b)(a-b) D.ma+mb+na+nb=m(a+b)+n
(a+b)
5.因式分解:
(1)3mx2+6mxy+3my2;(2)x4-18x2y2+81y4;
(3)a4-16;(4)4m2-3n(4m-3n).6.因式分解:
(1)(x+y)2-14(x+y)+49;
(2)x(x-y)-y(y-x);
(3)4m2-3n(4m-3n).
7.分解因式:
(1)4a2-b2+6a-3b;(2)x2-y2-z2-2yz.8.已知:a-b=3,b+c=-5,求代数式ac-bc+a2-ab的值.
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。