汉诺塔问题
河内塔实验报告绪论(3篇)

第1篇一、引言河内塔实验,又称为汉诺塔问题,是认知心理学中一个经典的实验,起源于古印度的一个传说。
该传说讲述了神勃拉玛在贝拿勒斯的圣庙中留下了一根金刚石的棒,上面套着64个金环,最大的一个在底下,其余的一个比一个小,依次叠上去。
庙里的僧侣们必须将所有的金环从这根棒上移到另一根棒上,规定只能使用中间的一根棒作为帮助,每次只能搬一个圆盘,且大的不能放在小的上面。
当所有的金环全部移完时,就是世界末日到来的时候。
河内塔实验不仅是一个数学问题,更是一个心理学问题,它涉及到人类的问题解决策略、思维过程以及认知能力。
自20世纪50年代认知心理学兴起以来,河内塔实验被广泛应用于心理学、教育学、计算机科学等领域。
本文旨在通过对河内塔实验的综述,探讨其理论背景、实验方法、结果分析以及应用价值,以期为我国心理学研究和教育实践提供有益的借鉴。
二、河内塔实验的理论背景1. 问题解决理论河内塔实验是问题解决理论的一个典型案例。
问题解决是指个体在面对问题时,运用已有的知识和技能,通过一系列的认知活动,找到解决问题的方案。
河内塔实验通过模拟现实生活中的问题解决过程,有助于揭示人类问题解决的心理机制。
2. 认知心理学河内塔实验是认知心理学的一个重要实验,它揭示了人类在解决问题过程中的认知过程。
认知心理学认为,人类解决问题是通过信息加工、记忆、思维等心理过程实现的。
河内塔实验通过观察被试在解决问题过程中的心理活动,有助于了解人类认知能力的局限性。
3. 计算机科学河内塔实验在计算机科学领域也有着广泛的应用。
它为计算机算法的研究提供了启示,有助于设计出更高效、更智能的计算机程序。
三、河内塔实验的方法1. 实验对象河内塔实验的被试通常为不同年龄、性别、教育背景的个体。
实验过程中,要求被试完成从柱子1将所有圆盘移到柱子3的任务。
2. 实验材料河内塔实验的主要材料为三根柱子(柱子1、2、3)和一系列大小不同的圆盘。
圆盘的大小依次递增,构成金字塔状。
42问题数学介绍

42问题数学介绍
42问题是一个经典的数学问题,也被称为汉诺塔问题。
它是一个递归问题,涉及到三个柱子和一些不同大小的盘子。
目标是将所有的盘子从一个柱子移动到另一个柱子,每次只能移动一个盘子,并且大的盘子不能放在小的盘子上面。
这个问题可以用递归或分治的方法来解决。
基本思路是将问题分解为更小的子问题,直到子问题足够简单,可以直接解决。
然后通过解决这些子问题,逐步解决原始问题。
对于42问题,具体步骤如下:
1. 将所有盘子从起始柱子移动到中间柱子。
2. 将起始柱子上的盘子移动到目标柱子。
3. 将中间柱子上的盘子移动到目标柱子。
这个过程可以通过递归来实现。
在每一步中,可以进一步分解问题,直到每个子问题只包含一个盘子。
这样就可以直接解决子问题,然后逐步解决原始问题。
汉诺塔问题的解法也可以应用于其他类似的问题,例如棋盘上方的格子问题、三角形分割问题等。
通过理解汉诺塔问题的解决方法,可以更好地解决其他类似的问题。
汉诺塔的递归算法

汉诺塔的递归算法1. 汉诺塔问题简介汉诺塔是一种经典的递归问题,常用于理解和展示递归算法的思想。
该问题由法国数学家爱德华·卢卡斯于19世纪初提出,得名于印度传说中一个传说故事。
现代汉诺塔问题由3个塔座和一些盘子组成,目标是将所有盘子从一个塔座上移动到另一个塔座上,遵循以下规则:1.一次只能移动一个盘子;2.大盘子不能放在小盘子上面。
2. 汉诺塔问题的递归解法汉诺塔问题的递归解法是一种简洁、优雅且高效的解决方案。
递归算法是一种将大问题划分为更小子问题的方法,通过递归地解决子问题来解决整个问题。
2.1. 基本思想以三个塔座A、B、C为例,假设有n个盘子需要从A移动到C。
递归算法的基本思想如下:1.将n个盘子分成两部分:最底下的一个盘子和上面的n-1个盘子;2.将上面的n-1个盘子从塔座A移动到塔座B,目标塔座为C;3.将最底下的一个盘子从塔座A移动到塔座C;4.将塔座B上的n-1个盘子移动到塔座C,目标塔座为A。
2.2. 递归实现递归解决汉诺塔问题的关键在于理解递归的调用和返回过程。
具体的递归实现如下:def hanoi(n, a, b, c):# n表示盘子的数量,a、b、c表示3个塔座if n == 1:print("Move disk from", a, "to", c)else:hanoi(n-1, a, c, b)print("Move disk from", a, "to", c)hanoi(n-1, b, a, c)# 调用递归函数hanoi(3, 'A', 'B', 'C')上述代码中,当n等于1时,直接将盘子从塔座A移动到塔座C。
否则,递归地将上面的n-1个盘子从塔座A移动到塔座B,然后将最底下的一个盘子从A移动到C,最后再将塔座B上的n-1个盘子移动到塔座C。
汉诺塔原理

汉诺塔原理汉诺塔(Tower of Hanoi)是一个经典的数学问题,它源自印度的一个古老传说。
传说中,在贝拿勒斯(Benares)的圣庙里,一块黄铜板上插着三根宝石针。
初始时,所有的圆盘都放在一根针上,小的在上,大的在下。
这些圆盘按从小到大的次序排列。
有一个僧侣的职责是把这些圆盘从一个针移到另一个针上。
在移动过程中,可以借助第三根针,但有一个条件,就是在小的圆盘上不能放大的圆盘。
当所有的圆盘都从一根针上移到另一根针上时,这个世界就将毁灭。
汉诺塔问题的数学模型是,设有n个圆盘和三根柱子(我们称之为A、B、C),开始时所有的圆盘都叠在柱子A上,按照大小顺序从上到下叠放。
要求把所有的圆盘从柱子A移动到柱子C上,期间可以借助柱子B,但有一个限制条件,任何时刻都不能把一个大的圆盘放在一个小的圆盘上面。
汉诺塔问题的解法是一个典型的递归算法。
整个移动过程可以分解为三个步骤:1. 把n-1个圆盘从柱子A经过柱子C移动到柱子B上;2. 把第n个圆盘从柱子A移动到柱子C上;3. 把n-1个圆盘从柱子B经过柱子A移动到柱子C上。
这个过程可以用递归的方式来描述。
当我们解决n-1个圆盘的问题时,可以再次把它分解为n-2个圆盘的问题,直到最后只剩下一个圆盘的问题,这就是递归的思想。
递归算法虽然简洁,但是在实际应用中需要注意避免出现栈溢出的情况。
除了递归算法外,汉诺塔问题还有非递归的解法。
可以利用栈来模拟递归的过程,将每一步的移动操作保存在栈中,依次执行,直到所有的圆盘都移动到目标柱子上。
汉诺塔问题不仅是一个数学问题,更是一个思维训练的好题目。
它可以锻炼人的逻辑思维能力和动手能力。
在计算机科学中,递归算法是一种非常重要的思想,很多经典的算法问题都可以用递归的方式来解决。
总之,汉诺塔问题是一个古老而经典的数学问题,它不仅有着深奥的数学原理,更能锻炼人的思维能力。
通过研究汉诺塔问题,我们可以更好地理解递归算法的原理,提高自己的编程能力和解决问题的能力。
《Hanoi塔问题》课件

在游戏设计和人工智能领域,Hanoi塔问题可以作为解决游戏策略和决策问题的 模型。例如在围棋、象棋等游戏中,可以利用Hanoi塔问题的解法来设计更强大 的游戏AI。
PART 04
Hanoi塔问题的扩展和变 种
REPORTING
带限制的Hanoi塔问题
总结词
带限制的Hanoi塔问题是指在移动盘 子时,需要满足一些特定的限制条件 。
分治策略解法的优点是能够将问题分 解为更小的子问题,降低问题的复杂 度。但缺点是需要仔细设计子问题的 分解方式和合并方式,以确保能够正 确地解决问题。
PART 03
Hanoi塔问题的应用
REPORTING
在计算机科学中的应用
算法设计
Hanoi塔问题可以作为解决复杂算法问题的模型,例如在解决图论、动态规划 等算法问题时,可以利用Hanoi塔问题的特性来设计更高效的算法。
决。
在Hanoi塔问题中,递归解法的基本思 路是将问题分解为三个子问题:将n个 盘,最后将第n个盘子从
A柱移动到B柱。
递归解法的优点是思路简单明了,易于 理解。但缺点是对于大规模问题,递归 解法的时间复杂度较高,容易造成栈溢
出。
动态规划解法
动态规划解法是一种通过将问题分解为子问题并存储子问题的解来避免重复计算的方法。
数学模型的应用
汉诺塔问题可以通过数学模型进行描述和解决,如使用递归公式或动态规划方法。理解如何将实际问题转化为数 学模型,并运用数学工具进行分析和解决,是数学应用的重要能力。
对解决问题的方法论的启示
解决问题的思维方式
汉诺塔问题提供了一种独特的思维方式,即通过不断将问题分解为更小的子问题来解决。这种思维方 式有助于我们在面对复杂问题时,能够更加清晰地理解和分析问题,从而找到有效的解决方案。
数据结构汉诺塔递归算法

数据结构汉诺塔递归算法1. 什么是汉诺塔问题汉诺塔(Hanoi)是由法国数学家爱德华·卢卡斯(Édouard Lucas)在19世纪初提出的一个经典数学问题。
问题的描述如下:假设有3个柱子(标记为A、B、C),其中柱子A上有n个不同大小的圆盘,按照从上到下的顺序由小到大放置。
现在要将这n个圆盘按照相同的顺序移动到柱子C 上,期间可以借助柱子B。
在移动时,要遵循以下规则:1.每次只能移动一个圆盘;2.每个圆盘只能放置在比它大的圆盘上面;3.只能借助柱子B进行中转。
汉诺塔问题的目标是找到一种最优策略,使得完成移动所需的步骤最少。
2. 汉诺塔问题的递归解法汉诺塔问题的递归解法非常简洁和优雅。
下面就来详细介绍递归解法的思路和步骤。
2.1. 基本思路我们先来思考一个简化版的问题:将柱子A上的n个圆盘移动到柱子B上。
为了实现这个目标,可以进行如下步骤:1.将A柱上的n-1个圆盘通过借助柱子B移动到柱子C上;2.将A柱上的第n个圆盘直接移动到柱子B上;3.将柱子C上的n-1个圆盘通过借助柱子A移动到柱子B上。
根据上述思路,我们可以发现一个递归的规律:将n个圆盘从A柱移动到B柱,可以分解为两个子问题,即将n-1个圆盘从A柱移动到C柱,和将n-1个圆盘从C柱移动到B柱。
2.2. 递归实现根据以上思路,我们可以编写一个递归函数来实现汉诺塔问题的解决。
def hanoi(n, A, B, C):if n == 1:print(f"Move disk {n} from {A} to {B}")else:hanoi(n-1, A, C, B)print(f"Move disk {n} from {A} to {B}")hanoi(n-1, C, B, A)这个递归函数接受4个参数:n 表示圆盘的数量,A、B、C 表示3根柱子的名称。
当 n 为 1 时,直接将圆盘从 A 移动到 B。
汉诺塔问题数学解法
汉诺塔问题数学解法汉诺塔问题是一个经典的数学难题,也是计算机科学中的常见算法题目。
在这个问题中,我们需要将三个塔座上的圆盘按照一定规则从一座塔移动到另一座塔,只能每次移动一个圆盘,并且在移动过程中始终保持大圆盘在小圆盘下面。
为了解决汉诺塔问题,我们首先需要了解递归的概念。
递归是一种问题解决方法,其中问题被分解为更小的子问题,直到最小的问题可以直接解决。
在汉诺塔问题中,我们可以使用递归来实现移动圆盘的步骤。
设有三个塔座,分别为A、B、C,并且初始时所有的圆盘都在A 塔上,我们的目标是将所有的圆盘移动到C塔上。
为了方便讨论,我们将最小的圆盘称为第1号圆盘,次小的圆盘称为第2号圆盘,以此类推,最大的圆盘称为第n号圆盘。
解决汉诺塔问题的数学解法如下:1. 当只有一个圆盘时,直接将它从A塔移动到C塔,移动结束。
2. 当有两个或以上的圆盘时,可以按照以下步骤进行移动:(1) 先将上面n-1个圆盘从A塔移动到B塔(借助C塔)。
(2) 将第n号圆盘从A塔移动到C塔。
(3) 最后将n-1个圆盘从B塔移动到C塔(借助A塔)。
通过以上步骤,我们可以将n个圆盘从A塔移动到C塔,完成整个汉诺塔问题的解。
这个数学解法的正确性可以通过递归的思想来解释。
当有n个圆盘时,我们需要借助第三个塔座将前n-1个圆盘移动到B塔上,然后将第n号圆盘移动到C塔上,最后再将n-1个圆盘从B塔移动到C塔上。
这个过程可以看作是一个递归过程,我们首先需要将前n-1个圆盘从A 塔移动到B塔上,然后再将第n号圆盘从A塔移动到C塔上,最后再将n-1个圆盘从B塔移动到C塔上。
通过不断缩小问题规模,我们最终可以将整个汉诺塔问题解决。
总结起来,汉诺塔问题是一个经典的数学难题,解决这个问题可以使用递归的数学解法。
通过将问题分解为更小的子问题,我们可以将n 个圆盘从一座塔移动到另一座塔上。
这个数学解法的正确性可以通过递归的思想来解释。
希望通过以上的介绍,您对汉诺塔问题的数学解法有了更深入的理解。
深入浅出学算法021-汉诺塔问题
深入浅出学算法021-汉诺塔问题汉诺塔问题是一个传统的数学问题,也是一个经典的递归问题。
它是基于以下几个规则:1. 有三根柱子,分别是A、B、C,开始时A柱上有n个从小到大叠放的圆盘。
2. 每次只能移动一个圆盘。
3. 大圆盘不能放在小圆盘上面。
目标是将A柱上的圆盘全部移动到C柱上,可以利用B柱作为辅助。
解决这个问题的一种方法是使用递归。
下面是求解汉诺塔问题的算法步骤:1. 如果只有一个圆盘,直接从A柱移动到C柱。
2. 如果有n个圆盘,可以将问题分解为三个步骤:- 将n-1个圆盘从A柱移动到B柱,可以借助C柱作为辅助。
- 将最大的圆盘从A柱移动到C柱。
- 将n-1个圆盘从B柱移动到C柱,可以借助A柱作为辅助。
递归地应用这个步骤,就可以解决任意数量的圆盘移动问题。
下面是用Python实现汉诺塔问题的代码:```pythondef hanoi(n, A, B, C):if n == 1:print("Move disk", n, "from", A, "to", C)else:hanoi(n-1, A, C, B)print("Move disk", n, "from", A, "to", C)hanoi(n-1, B, A, C)n = int(input("Enter the number of disks: "))hanoi(n, 'A', 'B', 'C')```以上代码中,`hanoi`函数接受四个参数:n表示圆盘的数量,A、B、C分别表示三根柱子的名称。
函数根据递归算法进行移动,并输出每一步的操作。
运行程序,输入圆盘的数量,即可看到详细的移动步骤。
汉若塔实验报告
一、实验背景汉诺塔问题(Hanoi Tower Problem)是一个经典的递归问题,最早由法国数学家亨利·埃德蒙·卢卡斯(Edouard Lucas)在1883年提出。
该问题涉及三个柱子和一系列大小不同的盘子,初始时所有盘子按照从小到大的顺序叠放在一个柱子上。
问题的目标是按照以下规则将所有盘子移动到另一个柱子上:每次只能移动一个盘子,且在移动过程中,大盘子不能放在小盘子上面。
汉诺塔问题不仅是一个数学问题,也是一个计算机科学问题。
它在算法设计、递归算法分析等领域有着重要的应用价值。
通过解决汉诺塔问题,可以加深对递归算法的理解,同时也能够锻炼逻辑思维和问题解决能力。
二、实验目的1. 理解汉诺塔问题的基本原理和解决方法。
2. 掌握递归算法的设计和应用。
3. 分析汉诺塔问题的复杂度,为实际应用提供参考。
三、实验内容1. 实验环境:Windows操作系统,Python编程语言。
2. 实验步骤:(1)设计一个汉诺塔问题的递归算法。
(2)编写程序实现该算法。
(3)测试算法在不同盘子数量下的运行情况。
(4)分析算法的复杂度。
3. 实验程序:```pythondef hanoi(n, source, target, auxiliary):if n == 1:print(f"Move disk 1 from {source} to {target}")returnhanoi(n-1, source, auxiliary, target)print(f"Move disk {n} from {source} to {target}") hanoi(n-1, auxiliary, target, source)# 测试程序hanoi(3, 'A', 'C', 'B')```4. 实验结果:(1)当盘子数量为3时,程序输出以下移动序列:```Move disk 1 from A to CMove disk 2 from A to BMove disk 1 from C to BMove disk 3 from A to CMove disk 1 from B to AMove disk 2 from B to CMove disk 1 from A to C```(2)当盘子数量为4时,程序输出以下移动序列:```Move disk 1 from A to CMove disk 2 from A to BMove disk 1 from C to BMove disk 3 from A to CMove disk 1 from B to AMove disk 2 from B to CMove disk 1 from A to CMove disk 4 from A to BMove disk 1 from C to BMove disk 2 from C to AMove disk 1 from B to AMove disk 3 from C to BMove disk 1 from A to CMove disk 2 from A to BMove disk 1 from C to BMove disk 4 from B to CMove disk 1 from B to AMove disk 2 from A to CMove disk 1 from A to C```四、实验分析1. 算法复杂度:汉诺塔问题的递归算法具有指数级的复杂度,其时间复杂度为O(2^n),其中n为盘子的数量。
汉诺塔问题的详解课件
03 汉诺塔问题的变 种和扩展
多层汉诺塔问题
01
02
03
定义
多层汉诺塔问题是指将多 层的盘子从一个柱子移动 到另一个柱子,同时满足 汉诺塔问题的规则。
难度
随着盘子层数的增加,解 决问题的难度呈指数级增 长。
子从中间柱子移动到目标柱子。
递归解法的优点是思路简单明了,易于 理解。但是,对于较大的n值,递归解 法的时间复杂度较高,容易造成栈溢出
。
分治策略
分治策略是解决汉诺塔问题的另一种方法。它将问题分解为若干个子问题,分别求解这些子 问题,然后将子问题的解合并起来得到原问题的解。
分治策略的基本思路是将汉诺塔问题分解为三个阶段:预处理阶段、递归转移阶段和合并阶 段。预处理阶段将n-1个盘子从起始柱子移动到中间柱子,递归转移阶段将第n个盘子从起 始柱子移动到目标柱子,合并阶段将n-1个盘子从中间柱子移动到目标柱子。
制作汉诺塔问题的动画演示
除了使用Python或数学软件进行可视化演示外,还可以使 用动画制作软件来制作汉诺塔问题的动画演示。这些软件 提供了丰富的动画效果和编辑工具,可以创建生动有趣的 演示。
在动画演示中,可以使用不同的颜色和形状来表示不同的 柱子和盘子。通过添加音效和文字说明,可以增强演示的 视觉效果和互动性。最终的动画演示可以保存为视频文件 ,并在任何支持视频播放的设备上播放。
使用Python的图形库,如matplotlib或tkinter,可以创建汉诺塔的动态演示。 通过在屏幕上绘制柱子和盘子,并模拟移动过程,可以直观地展示汉诺塔问题的 解决方案。
Python代码可以编写一个函数来模拟移动盘子的过程,并在屏幕上实时更新盘 子的位置。通过递归调用该函数,可以逐步展示移动盘子的步骤,直到所有盘子 被成功移动到目标柱子上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX大学信息学院
课程设计报告
教师签名:xxxxx
题目1实验报告
1.数据结构定义
因为该算法需要用到循环队列、堆和线性表,因此采用以下数据类型:
typedef struct
{
QElemType *base; // 初始化的动态分配存储空间
int front; // 头指针,若队列不空,指向队列头元素
int rear; // 尾指针,若队列不空,指向队列尾元素的下一个位置
}SqQueue;//循环队列
typedef struct
{
int *elem;
int length;
int listsize;
}SqList;//堆排序
2.算法说明
void HeapAdjust(int flag,SqList &H,int s,int m)
void HeapSort(int flag,SqList &H)//对H进行堆排序;
Status InitQueue(SqQueue &Q)//构造一个空队列Q,该队列预定义大小为MAXQSIZE;
Status EnQueue(SqQueue &Q,QElemType e) //插入元素e为Q的新的队尾元素;
Status DeQueue(SqQueue &Q, QElemType &e) // 若队列不空, 则删除Q的队头元素, 用e 返回其值, 并返回OK; 否则返回ERROR;
Status GetHead(SqQueue Q, QElemType &e)// 若队列不空,则用e返回队头元素,并返回OK,否则返回ERROR;
Status QueueLength(SqQueue Q) // 返回Q的元素个数;
Status QueueTraverse(SqQueue Q)// 若队列不空,则从队头到队尾依次输出各个队列元素,并返回OK;否则返回ERROR.
3.用户使用说明
运行程序,根据屏幕上的文字提示一步步操作。
4.个人测试结果(截图)
部分测试结果截图
题目2实验报告
用堆栈实现汉诺塔问题的非递归求解抽象数据类型栈(stack)的定义:栈是限定仅在表尾进行插入或删除操作的线性表。
栈又称为后进先出的线性表(简称LIFO结构),对栈来说,表尾端称为栈顶(top),相应的,表头端称为栈底(bottom),不含元素的空表称为空栈。
栈有两种存储表示方法:顺序栈和链栈,本次实验采用栈的顺序存储结构。
n阶汉诺塔问题的描述:假设有3个分别命名为X,Y和Z的塔座,在塔座X上插有n 个直径大小各不相同、依小到大编号为1,2,…,n的圆盘。
现要求将X塔座上的n个圆盘移至Z塔座上并仍按同样顺序叠排,圆盘移动时必须遵循下列规则:
(1)每次只能移动一个圆盘;
(2)圆盘可以插在X、Y和Z中的任一塔座上;
(3)任何时刻都不能将一个较大的圆盘压在较小的圆盘之上。
该道题可以用递归的的方法解决,算法思想如下:
假如只有一个圆盘,即n=1,只需将编号为1的圆盘从X移到Z;
假如n>1,移动的过程可分解为三个步骤:第一步把X上的n-1个圆盘移到Y上,Z 作辅助塔;第二步把X上的一个圆盘移到Z上;第三步把Y上的n-1个圆盘移到Z上,X作辅助塔;其中第一步和第三步是类同的。
C代码的实现如下:
if(n==1)
move(x,z);
else
{
hanoi(n-1,x,z,y);
move(first,third);
hanoi(n-1,y,x,z);
}
下面给出用堆栈实现汉诺塔的非递归解法:
void hanoi(st ta[], long max)//移动汉诺塔的主要函数
{
int k = 0;
int i = 0;
int ch;
while (k < max)
{//按顺时针方向把圆盘1从现在的柱子移动到下一根柱子
ch = ta[i%3].Pop();
ta[(i+1)%3].Push(ch);
cout << ++k << ": " << ta[i%3].name <<
"--->" << ta[(i+1)%3].name << endl;
i++;//把另外两根柱子上可以移动的圆盘移动到新的柱子上
if (k < max)
{//把非空柱子上的圆盘移动到空柱子上,当两根柱子都为空时,移动较小圆盘if (ta[(i+1)%3].Top() == 0 ||
ta[(i-1)%3].Top() > 0 &&
ta[(i+1)%3].Top() > ta[(i-1)%3].Top())
{
ch = ta[(i-1)%3].Pop();
ta[(i+1)%3].Push(ch);
cout << ++k << ": " << ta[(i-1)%3].name
<< "--->" << ta[(i+1)%3].name << endl;
}
else
{
ch = ta[(i+1)%3].Pop();
ta[(i-1)%3].Push(ch);
cout << ++k << ": " << ta[(i+1)%3].name
<< "--->" << ta[(i-1)%3].name << endl;
}
}
}
}
为了保证递归函数正确执行,系统需设立一个“递归工作栈”作为整个递归函数运行期间使用的数据存储区。
每一层递归所需信息构成一个“工作记录”,其中包括所有的实在参数、所有的局部变量以及上一层的返回地址。
每进入一层递归,就产生一个新的工作记录压入栈顶。
每退出一层递归,就从栈顶弹出一个工作记录,则当前执行层的工作记录必是递归工作栈栈顶的工作记录,称这个记录为“活动记录”,并称指示活动记录的栈顶指针为“当前活动指针”。
递归函数结构清晰,程序易懂,而且它的正确性容易得到证明,因此,利用允许递归调用的语言进行程序设计时,给用户编制程序和调试程序带来了很大方便。
不过因为对这样一类递归问题编程时,不需要用户而由系统来管理递归工作栈,不便于用户理解栈的工作原理,也增加了系统的负担,因为递归算法语句虽少,但需要大量的栈空间,运行效率不高;用非递归的方法解决汉诺塔的问题,仅用少量的存储空间克服了递归算法的不足,兼顾了时间与空间的复杂度,提供了解决汉诺塔问题的新方法,缺点是理解起来可能比较困难,可读性也不是很好。
部分测试结果截图:。