半导体的基础知识学习资料

合集下载

半导体的基本知识

半导体的基本知识

第1章 半导体的基本知识1.1 半导体及PN 结半导体器件是20世纪中期开始发展起来的,具有体积小、重量轻、使用寿命长、可靠性高、输入功率小和功率转换效率高等优点,因而在现代电子技术中得到广泛的应用。

半导体器件是构成电子电路的基础。

半导体器件和电阻、电容、电感等器件连接起来,可以组成各种电子电路。

顾名思义,半导体器件都是由半导体材料制成的,就必须对半导体材料的特点有一定的了解。

1.1.1 半导体的基本特性在自然界中存在着许多不同的物质,根据其导电性能的不同大体可分为导体、绝缘体和半导体三大类。

通常将很容易导电、电阻率小于410-Ω•cm 的物质,称为导体,例如铜、铝、银等金属材料;将很难导电、电阻率大于1010Ω•cm 的物质,称为绝缘体,例如塑料、橡胶、陶瓷等材料;将导电能力介于导体和绝缘体之间、电阻率在410-Ω•cm ~1010Ω•cm 范围内的物质,称为半导体。

常用的半导体材料是硅(Si)和锗(Ge)。

用半导体材料制作电子元器件,不是因为它的导电能力介于导体和绝缘体之间,而是由于其导电能力会随着温度的变化、光照或掺入杂质的多少发生显著的变化,这就是半导体不同于导体的特殊性质。

1、热敏性所谓热敏性就是半导体的导电能力随着温度的升高而迅速增加。

半导体的电阻率对温度的变化十分敏感。

例如纯净的锗从20℃升高到30℃时,它的电阻率几乎减小为原来的1/2。

而一般的金属导体的电阻率则变化较小,比如铜,当温度同样升高10℃时,它的电阻率几乎不变。

2、光敏性半导体的导电能力随光照的变化有显著改变的特性叫做光敏性。

一种硫化铜薄膜在暗处其电阻为几十兆欧姆,受光照后,电阻可以下降到几十千欧姆,只有原来的1%。

自动控制中用的光电二极管和光敏电阻,就是利用光敏特性制成的。

而金属导体在阳光下或在暗处其电阻率一般没有什么变化。

3、杂敏性所谓杂敏性就是半导体的导电能力因掺入适量杂质而发生很大的变化。

在半导体硅中,只要掺入亿分之一的硼,电阻率就会下降到原来的几万分之—。

半导体知识点总结大全

半导体知识点总结大全

半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。

它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。

本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。

一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。

原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。

2. 能带:在固体中,原子之间的电子形成了能带。

能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。

3. 半导体中的能带:半导体材料中,能带又分为价带和导带。

价带中的电子是成对出现的,导带中的电子可以自由运动。

(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。

典型的本征半导体有硅(Si)和锗(Ge)。

2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。

常见的杂质有磷(P)、硼(B)等。

(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。

P型半导体中导电的主要载流子是空穴。

2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。

N型半导体中导电的主要载流子是自由电子。

3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。

4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。

二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。

2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。

3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。

半导体基础知识

半导体基础知识

设VCC = 5V 加到A,B的 VIH=3V
VIL=0V 二极管导通时 VDF=0.7V
A BY 0V 0V 0V 0V 3V 2.3V 3V 0V 2.3V 3V 3V 2.3V
规定2.3V以上为1 0V以下为0
A BY 0 00 0 11 1 01 1 11
二极管构成的门电路的缺点
• 电平有偏移 • 带负载能力差
第三章 门电路
3.1 概述 • 门电路:实现基本运算、复合运算的单元电路,如
与门、与非门、或门 ······
门电路中以高/低电平表 示逻辑状态的1/0
获得高、低电平的基本原理
高/低电平都允许有 一定的变化范围
正逻辑:高电平表示1,低电平表示0 负逻辑:高电平表示0,低电平表示1
3.2半导体二极管门电路
T1 , T2同时导通
若T1 , T2参数完全对称,VI
1 2
VDD时,VO
1 2 VDD
三、输入噪声容限
在VI 偏离VIH 和VIL的一定范围内,VO 基本不变; 在输出变化允许范围内,允许输入的变化范围称为输入噪声容限
VNH VOH(min) VIH (min) VNL VIL(max) VOL(max)
• 硅管,0.5 ~ 0.7V • 锗管,0.2 ~ 0.3V
• 近似认为:
• VBE < VON iB = 0 • VBE ≥ VON iB 的大小由外电路电压,电阻决定
iB
VBB VBE Rb
三极管的输出特性
• 固定一个IB值,即得一条曲线, 在VCE > 0.7V以后,基本为水平直线
iC f (VCE )
iC f (VCE )
三、双极型三极管的基本开关电路

半导体基础知识

半导体基础知识

第一章、半导体器件
1、为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其掺杂,改善导电性能?
制成本征半导体是为了讲自然界中的半导体材料进行提纯,然后人工掺杂,通过控制掺杂的浓度就可以控制半导体的导电性,以达到人们的需求
2、为什么半导体器件的温度稳定性差?是多子还是少子是影响温度稳定性的主要因素?
导致半导体性能温度稳定性差的主要原因有二:β
(1)禁带宽度与温度有关(一般,随着温度的升高而变窄);(2)少数载流子浓度与温度有关(随着温度的升高而指数式增加)。

多子。

3、为什么半导体器件有最高工作频率?
这是因为半导体器件的主要组成单元是PN结,PN结的显著特征是单向导电性,因为PN结的反向截止区是由耗尽层变宽导致截止,而这个过程是需要一定的时间的,如果频率太高导致时间周期小于截止时间就可能造成PN结失去单向导电性,导致半导体器件不能正常工作,所以半导体器件有最高工作频率的限制。

4、整流,是指将交流电变换为直流电称为AC/DC变换,这正变换的功率流向是由电源传向负载,称之为整流。

5、为什么基极开路集电极回路会有穿透电流?
虽然集电结是反偏的,虽然基极是开路的,但是,晶体管芯,是块半导体材料。

半导体材料,又不是绝缘体,加上电压,就有微弱的电流,这很正常。

从集电区向基区出现的“反向饱和电流Icbo”,在基极没有出路,就流向发射极了。

这一流动,就形成了一个Ib。

这个Ib,就引出了一个贝塔倍的Ic; 这个Ib和Ic之和,就是穿透电流Iceo,等于(1+贝塔)Icbo。

6、
展开。

半导体器件的基础知识

半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。

半导体的基础知识

半导体的基础知识

I
内电场 外电场
R
E 外电场与内电场的方向相反,内电场变弱,结果使空 间电荷区(PN结)变窄。
(2)反向截止
① 定义: P区接电源负极,N区接电源正极,则为 加反向电压,称反向偏置,简称反偏。如图所示。 ② 电路图 耗尽层 P区 N区
内电场 外电场
R
E 外电场与内电场的方向相同,内电场变弱,结果使空 间电荷区(PN结)变宽。
(2)负载电压的平均值
数学理论证明,一个周期内,半波整流电路输出电压的平 1 均值是交流电压 即峰值的
UO
2 E2

0.45E2
(6-1)
(3)负载电流的平均值
Uo E2 IL 0.45 RL RL
(6-2)
(4)整流元件的选择
流过整流二极管VD的平均电流: I D I L
T
负载
e1
e2
RL
U0
图6—2单相半波整流电路
(1)工作原理
设变压器副边感应交流电压为 E2 为交流电压的有效值 e2 2 E 2 sin t A、在交流电压的正半周(0-π ),输出电压极性a端为 正、b端为负,如图6—3(a)所示,二极管VD正偏导通, 负载RL上获得的电压为 U o e2
2、二极管的伏安特性
iD/mA 1)二极管伏安特性曲线 20 AB段:正向导通区 接 近 直 线
15
10 OC段:反向截止区 5
B
O
C -40 -30 -20 -10 -10
A 0.8 u / V D
0.2 0.4 0.6 OA段:死区
D
CD段:反向击穿 区
-20
-30
-40
相关题:121、245

半导体基础知识

半导体基础知识
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
结电容: C j Cb Cd
清华大学 华成英 hchya@
§2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管
导通电压
0.6~0.8V 0.1~0.3V
反向饱 和电流
开启 电压
温度的 电压当量
开启电压
0.5V 0.1V
反向饱和电流
1µA以下 几十µA
从二极管的伏安特性可以反映出: 1. 单向导电性 u i IS (eU T 1) 正向特性为
指数曲线
若正向电压 UT,则i ISe u
u UT
3、本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电 子和带正电的空穴均参与导电, 且运动方向相反。由于载流子数 目很少,故导电性很差。 温度升高,热运动加剧,载 流子浓度增大,导电性增强。 热力学温度0K时不导电。 两种载流子
二、杂质半导体
1. N型半导体
多数载流子 杂质半导体主要靠多数载流 子导电。掺入杂质越多,多子 浓度越高,导电性越强,实现 导电性可控。
一、二极管的组成
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u )
i IS (e
u UT
1)
(常温下 UT 26m ) V
材料
硅Si 锗Ge

半导体器件基础知识

半导体器件基础知识

半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。

半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。

用于制作半导体元件的材料通常用硅或锗材料。

(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。

掺入杂质后的半导体称为杂质半导体。

根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。

(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。

它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。

2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。

称这时的PN结处于导通状态。

当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。

称这时的PN结处于截止状态。

当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。

这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。

3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。

导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。

二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。

其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。

以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模 拟电子技术
(1) PN结加正向电压时的导电情况
PN结加正向电压时的导电情况如图1.7所示。外加的源自向电压有一部分降落在PN结区,
方向与PN结内电场方向
相反,削弱了内电场。
于是,内电场对多子扩散
运动的阻碍减弱,扩散
电流加大。扩散电流远
大于漂移电流,可忽略 漂移电流的影响,PN结 呈现低阻性。
图1.7 PN结加正向电压 时的导电情况
★N型半导体中自由电子是多数载流子, 主要由杂质原子提供;
空穴是少数载流子, 由热激发产生。
提供自由电子的五价杂质原子因失去一个电子带正电 荷而成为正离子,因此五价杂质原子也称为施主杂质。N 型半导体的结构示意图如图1. 4所示。
模 拟电子技术
2.P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓、铟等形成 了P型半导体,也称为空穴型半导体。
1.N型半导体
2.P型半导体
在本征半导体中掺入某些微量元素作为杂 质,可使半导体的导电性发生显著变化。掺入 的杂质主要是三价或五价元素。掺入杂质的本 征半导体称为杂质半导体。
模 拟电子技术
1.N型半导体
在本征半导体中掺入五价杂质元素,例如磷、砷、锑等 ,可形成 N型半导体,也称电子型半导体。
因五价杂质原子中只有四个价电子能与周围四个半导体 原子中的价电子形成共价键,而图多1.余4 N的型一半个导体价结电构子示因意无图共价 键束缚而很容易挣脱原子核的束缚成为自由电子。
这种结构的立体和平面示意图见图1.1。
(c)
(a) 硅晶体的空间排列 (b) 共价键结构平面示意图
图1.1 硅原子空间排列及共价键结构平面示意图
模 拟电子技术
2、电子空穴对
当导体处于热力学温度0K时,导体中没有 自由电子。当温度升高或受到光的照射时,价 电子能量增高,有的价电子可以挣脱原子核的 束缚,而参与导电,成为自由电子。
PN 结形成 的过程可参阅图1.6。
图1. 6 PN结的形成过程
(动画1-3)
模 拟电子技术
2.PN结的单向导电性
PN结具有单向导电性,若外加电压使电流从P 区流到N区, PN结呈低阻性,所以电流大;反之 是高阻性,电流小。
如果外加电压使PN结中: P区的电位高于N区的电位,称为加正向电压 ,简称正偏; P区的电位低于N区的电位,称为加反向电压, 简称反偏。
因浓度差
在交界处电子和空穴相符合形
多子的扩散运动 成由杂质离子形成空间电荷区
空间电荷区形成内电场
内电场促使少子漂移 内电场阻止多子扩散
模 拟电子技术
最后,多子的扩散和少子的漂移达到动态平衡。在 P型半导体和N型 半导体结合面, 由离子薄层形成 的空间电荷区称 为PN结。在空间 电荷区,由于缺 少多子,所以也 称为耗尽层。
模 拟电子技术
一、本征半导体
1、本征半导体的共价键结构
2、电子空穴对
3、空穴的移动
本征半导体——化学成分纯净的半导体。 制造半导体器件的半导体材料的纯度要达到 99.9999999%,常称为“九个9”。 它在物理结构上呈单晶体形态。
模 拟电子技术
1、本征半导体的共价键结构
硅和锗是四价元素,在原子最外层轨道上的四个电 子称为价电子。它们分别与周围的四个原子的价电子形 成共价键。共价键中的价电子为这些原子所共有,并为 它们所束缚,在空间形成排列有序的晶体(单晶体)。
模 拟电子技术
3、 空穴的移动
自由电子的定向 运动形成了电子电流 ,空穴的定向运动也 可形成空穴电流,它 们的方向相反。只不 过空穴的运动是靠相 邻共价键中的价电子 依次充填空穴来实现 的 。 见 图 1.3 的 动 画 演示。
图1.3 空穴在晶格中的移动
(动画1-2)
模 拟电子技术
二、杂质半导体
因三价杂质原子在与硅原子形成共价键时,缺少一个价电 子而在共价键中留下一个空穴。
★P型半导体中空穴是多数图载1.流5 子P型,半主导要体的由结掺构杂示形意图成; 电子是少数载流子,由热激发形成。
空穴很容易俘获电子,使杂质原子因得到一个电子成 为负离子。三价杂质 因而也称为受主杂质。P型半导体的 结构示意图如图1. 5所示。
这一现象称为本征激发,也称热激发。
自由电子产生的同时,在其原来的共价键中 就出现了一个空位,原子的电中性被破坏,呈 现出正电性,其正电量与电子的负电量相等, 人们常称呈现正电性的这个空位为空穴。
模 拟电子技术
图1.2 本征激发和复合的过程(动画1-1)
可见因热激发而出现的自由电子和空穴是同时 成对出现的,称为电子空穴对。游离的部分自由电 子也可能回到空穴中去,称为复合,如图1.2所示 。本征激发和复合在一定温度下会达到动态平衡。
模 拟电子技术
第1讲
1.1 半导体的基础知识
教学目标
知识目标: 1.了解半导体的分类; 2.掌握P、N型半导体的性质; 3.重点掌握PN结的性质。
能力目标:会检测PN结的性质。
教学重点 教学难点
PN结的性质 PN结的形成原理
模 拟电子技术
半导体的基础知识
一、本征半导体 二、杂质半导体 三、PN结
模 拟电子技术
半导体的基础知识
根据物体导电能力(电阻率)的不同,物体分为导 体、绝缘体和半导体。
半导体是导电能力介于导体和绝缘体之间的物体。 半导体的电阻率为10-3~109 cm。典型的半导体 有硅Si和锗Ge以及砷化镓GaAs等。
半导体的特性: 光敏特性(用于制作光敏电阻、二极管、三极管等) 热敏特性(用于制作电阻) 掺杂特性(用于制作半导体器件)。
图1.5 P型半导体的结构示意图
模 拟电子技术
3.杂质对半导体导电性的影响
掺入杂 质对本征半导体的导电性有很大 的影响,一些典型的数据如下: 1 T=300 K室温下,本征硅的电子和空穴浓度:
n = p =1.4×1110/cm3 2 掺杂后 N 型半导体中的自由电子浓度:
n=5×1116/cm3 3 本征硅的原子浓度: 4.96×1022/cm3
以上三个浓度基本上依次相差106/cm3 。
模 拟电子技术
三、PN结
1.PN结的形成 2.PN结的单向导电性 3.PN结的电容效应 4.PN结的击穿特性
模 拟电子技术
1.PN结的形成
在一块本征半导体的两侧通过扩散不同的杂质,
分别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:
相关文档
最新文档