九年级数学上册 4.5 相似三角形的性质及其应用教案(1)(新版)浙教版

合集下载

浙教版数学九年级上册4.5《相似三角形的性质及应用》说课稿

浙教版数学九年级上册4.5《相似三角形的性质及应用》说课稿

浙教版数学九年级上册4.5《相似三角形的性质及应用》说课稿一. 教材分析《相似三角形的性质及应用》是浙教版数学九年级上册第四章第五节的内容。

本节内容是在学生已经掌握了相似三角形的定义、性质的基础上,进一步探讨相似三角形的性质及应用。

通过本节的学习,使学生能够理解和掌握相似三角形的性质,并能够运用相似三角形的性质解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的定义和性质有一定的了解。

但是,学生对相似三角形的性质及应用的理解和运用还存在一定的困难。

因此,在教学过程中,教师需要引导学生通过观察、思考、交流等方式,进一步理解和掌握相似三角形的性质,并能够运用相似三角形的性质解决实际问题。

三. 说教学目标1.知识与技能目标:理解和掌握相似三角形的性质,能够运用相似三角形的性质解决一些实际问题。

2.过程与方法目标:通过观察、思考、交流等方式,培养学生的观察能力、思考能力和交流能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和毅力,使学生体验到数学在生活中的应用。

四. 说教学重难点1.教学重点:相似三角形的性质及应用。

2.教学难点:相似三角形的性质的推导和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生通过观察、思考、交流等方式,理解和掌握相似三角形的性质。

2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,帮助学生直观地理解和掌握相似三角形的性质。

六. 说教学过程1.导入:通过复习相似三角形的定义和性质,引导学生进入本节内容的学习。

2.探究:提出问题,引导学生观察、思考、交流,探究相似三角形的性质。

3.讲解:讲解相似三角形的性质及应用,引导学生理解和掌握相似三角形的性质。

4.练习:布置一些相关的练习题,让学生巩固所学的内容。

5.总结:对本节内容进行总结,强调相似三角形的性质及应用。

七. 说板书设计板书设计如下:相似三角形的性质及应用•对应边成比例•对应角相等•解决实际问题•证明相似三角形八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和练习成绩来进行。

九年级数学上册第4章相似三角形4.5相似三角形的性质及其应用教案(新版)浙教版

九年级数学上册第4章相似三角形4.5相似三角形的性质及其应用教案(新版)浙教版

4.5相似三角形的性质及其应用教材分析本节课是初中浙教版九年级上册“相似形”这章的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。

它是全等三角形性质的拓展,也是研究相似多边形的基础,这些性质是解决有关实际问题的重要工具。

教学目标【知识与能力目标】经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似三角形的性质。

利用相似三角形的性质解决一些实际问题.【过程与方法目标】培养学生的探索精神和合作意识;通过运用相似三角形的性质,增强学生的应用意识.在探索过程中发展学生类比的数学思想及全面思考的思维品质.【情感态度价值观目标】在探索过程中发展学生积极的情感、态度、价值观,体现解决问题策略的多样性.教学重难点【教学重点】相似三角形的性质定理.【教学难点】相似三角形性质定理的应用.课前准备教师准备:课件、多媒体;学生准备:课本,练习本,三角板;教学过程一、导入新课在前面我们学习了相似三角形的定义和判定条件,知道相似三角形的对应角相等,对应边成比例。

那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将研究相似三角形的其他性质.二、新课学习在生活中,我们经常利用相似的知识解决建筑类问题.如图,小王依据图纸上的△ABC,以1:2的比例建造了模型房梁△A /B /C /,CD 和C /D /分别是它们的立柱。

(1) 试写出△ABC 与△A /B /C /的对应边之间的关系,对应角之间的关系。

(2) △ACD 与△A /C /D /相似吗?为什么?如果相似,指出它们的相似比。

(3) 如果CD=1.5cm ,那么模型房的房梁立柱有多高?(4) 据此,你可以发现相似三角形怎样的性质? [生]解:(1)B A AB ''=C B BC ''=C A AC ''=21 /A A ∠=∠/,B B ∠=∠///,B C A ACB ∠=∠(2)△ACD ∽△A ′C ′D ′∵////,B A D C AB CD ⊥⊥∴0///90,=∠=∠C D A ADC∵/A A ∠=∠∴△ACD ∽△A ′C ′D ′(两个角分别相等的两个三角形相似) ∴//C A AC =//D A AD =//D C CD =21 (3)∵D C CD ''=21,CD=1.5cm ∴C /D /=3cm(4)相似三角形对应高的比等于相似比目的:通过学生熟悉的建筑模型房入手,激发学生学习兴趣,层层设问,引发学生思维层层递进,从相似三角形的最基本性质展开研究.使学生明确相似比与对应高的比的关系.效果:通过层层设问,引导学生剥开问题的表面看到了相似三角形的性质:对应高的比等于相似比.第二环节:类比探究相似三角形对应中线的比、对应角平分线的比过渡语:刚才我们利用相似的判定与基本性质得到了相似三角形中一种特殊线段的关系,即对应高的比等于相似比,相似三角形中除了高是特殊线段,还有哪些特殊线段?它们也具有特殊关系吗?下面让我们一起探究:内容:探究活动二:(投影片)如图:已知△ABC ∽△A ′B ′C ′,相似比为k ,AD 平分∠B AC ,A /D /平分∠B /A /C /;E 、E /分别为BC 、B /C /的中点。

初中数学初三数学上册《相似三角形的性质及其应用》教案、教学设计

初中数学初三数学上册《相似三角形的性质及其应用》教案、教学设计
2.提问:“同学们,你们观察到了这些图形有什么共同特点吗?”让学生尝试用自己的语言描述相似图形的特点。
3.引导学生回顾已学的全等三角形的性质和判定方法,为新课的学习做好铺垫。
4.揭示本节课的主题——相似三角形的性质及其应用,激发学生的学习兴趣。
(二)讲授新知
在这一环节中,我将系统地讲授相似三角形的性质和判定方法:
-以小组为单位,共同完成一道具有挑战性的相似三角形综合应用题,要求小组成员分工合作,共同讨论解题策略。
-每个小组将解题过程和答案进行整理,并在下一节课上进行汇报,分享学习成果。
4.思考与反思:
-结合本节课的学习,反思自己在解决相似三角形问题时遇到的困难和挑战,分析原因,并总结经验教训。
-撰写一篇学习心得,谈谈自己对相似三角形性质及其应用的认识和理解。
4.学会运用相似三角形的性质解决与实际生活相关的问题,如测量物体的高度、求解线段长度等。
(二)过程与方法
1.通过自主探究、合作交流等形式,引导学生主动发现相似三角形的性质及其应用。
2.培养学生运用几何直观和逻辑推理解决问题的能力,提高学生的几何思维能力。
3.引导学生运用类比、归纳等方法,从特殊到一般,发现几何图形的性质,培养学生发现问题和解决问题的能力。
5.预习与拓展:
-预习下一节课要学习的相似多边形的性质及其应用,为新课的学习做好准备。
-探索相似三角形与其他数学分支(如代数、平面几何等)的联系,拓展知识面。
3.培养学生的几何直观和逻辑推理能力,提高学生解决几何问题的策略和方法。
4.激发学生的学习兴趣,增强学生对数学学科的情感态度,提升学生的数学素养。
(二)教学设想
1.创设情境,引入新课
-通过展示实际生活中的相似图形,如建筑物的立面图、摄影中的缩放效果等,引起学生对相似三角形性质的兴趣。

浙教版数学九年级上册《相似三角形的性质及其应用》教学设计

浙教版数学九年级上册《相似三角形的性质及其应用》教学设计

浙教版数学九年级上册《相似三角形的性质及其应用》教学设计一. 教材分析浙教版数学九年级上册《相似三角形的性质及其应用》是本学期的重点内容,主要让学生了解相似三角形的性质,并能运用相似三角形的性质解决一些实际问题。

本节课的内容对于学生来说比较抽象,需要通过实例让学生感知相似三角形的性质,从而达到理解并掌握知识的目的。

二. 学情分析九年级的学生已经有了一定的数学基础,对于图形和几何有一定的认识。

但是,对于相似三角形的性质及其应用,还需要通过实例和活动来引导学生理解和掌握。

同时,学生需要培养观察、思考、解决问题的能力,提高他们的逻辑思维和空间想象力。

三. 教学目标1.理解相似三角形的性质,并掌握相似三角形的判定方法。

2.能够运用相似三角形的性质解决一些实际问题。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.重点:相似三角形的性质及其应用。

2.难点:相似三角形的判定方法,以及如何运用相似三角形的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生观察、思考、解决问题。

2.运用多媒体辅助教学,通过动画和实例,让学生更直观地理解相似三角形的性质。

3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.多媒体教学设备。

2.相似三角形的相关实例和图片。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如建筑设计、地图绘制等,引导学生思考这些实例中是否存在相似三角形。

让学生认识到相似三角形在生活中的重要性。

2.呈现(10分钟)利用多媒体展示相似三角形的定义和性质,让学生直观地感受相似三角形的特点。

同时,通过动画演示相似三角形的判定方法,让学生理解和掌握。

3.操练(10分钟)让学生分组讨论,每组找一个实例,运用相似三角形的性质进行解答。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)出示一组练习题,让学生独立完成。

题目难度逐步提高,让学生在解决问题中巩固相似三角形的性质。

九年级数学上册《相似三角形的性质及应用》教案、教学设计

九年级数学上册《相似三角形的性质及应用》教案、教学设计
3.培养学生的空间想象力和创新意识,激发学生对几何学的热爱。
4.培养学生严谨、踏实的学术态度,使其养成良好的学习习惯。
5.通过相似三角形的学习,引导学生体会几何图形的和谐美,提高学生的审美情趣。
二、学情分析
九年级的学生已经具备了一定的几何基础,对三角形的性质、全等三角形的判定和应用有较为深入的了解。在此基础上,学习相似三角形的性质及应用,对学生来说是一个新的挑战。此时,学生正处于抽象逻辑思维逐渐成熟的阶段,对几何图形的观察、分析和解决问题的能力有待提高。因此,在教学过程中,要关注以下几点:
3.实践应用题:鼓励学生从生活中发现相似三角形的应用,拍摄照片或画图,并简要说明相似三角形在其中的作用。例如,建筑物的立面图、桥梁的支撑结构等。这样的作业既有助于学生将所学知识应用于实际,又能激发学生的学习兴趣。
4.小组合作题:布置一道小组合作题目,要求学生在课后分组讨论,共同完成。题目可以涉及相似三角形在实际问题中的应用,如测量距离、计算面积等。通过合作完成作业,培养学生的团队协作能力和沟通表达能力。
5.思考题:提出一些富有挑战性的问题,引导学生深入思考相似三角形的性质及应用。例如:“在相似三角形中,如何求解一个未知角的度数?”这类题目可以激发学生的探究欲望,提高学生的自主学习能力。
作业布置要求:
1.学生在完成作业时,要注意书写规范,保持解答过程的简洁和清晰。
2.鼓励学生在解题过程中尝试不同的方法,培养解题的灵活性和创新意识。
1.学生对相似三角形的概念和性质可能存在理解困难,需要教师耐心引导,通过具体实例和图形演示,帮助学生建立清晰的认识。
2.学生在解决相似三角形相关问题时的思路可能不够开阔,需要教师设计多样化的练习题,引导学生从不同角度思考问题,提高解题技巧。

浙教版数学九年级上册_《相似三角形的性质及其应用(1)》精品教案

浙教版数学九年级上册_《相似三角形的性质及其应用(1)》精品教案

4.5相似三角形的性质及其应用(一)1.掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”和“三角形的重心每分一条中线成1∶2的两条线段”的两个性质.2.会运用上述两个性质解决简单的几何问题.重点:学习“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”关于线段的性质和“三角形的重心每分一条中线成1∶2的两条线段”的重要定理.难点:相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.一、新课导入类比联想老师提问:相似三角形除了对应角相等、对应边等比例外,还有没有其他性质呢?学生进行小组讨论和思考.老师提示:全等三角形除对应角、对应边相等外.其它元素如对应高、对应中线、对应角平分线也相等.那么相似三角形的对应高、对应中线、对应角平分线是相等还是什么关系?学生和老师一起猜测:猜测(1):相似三角形的对应高、对应中线、对应角平分线相等.猜测(2):相似三角形的对应高、对应中线、对应角平分线成比例.二、新知学习(一)探究1两个三角形相似,除了对应边成比例,对应角相等之外,还可得到许多有用的结论,如图,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中,AD,A′D′分别为BC,B′C′边上的高,那么, AD和A′D′之间有什么关系?【证明】∵△ABC∽△A′B′C′,∴∠B=B′,又∵AD⊥BC,A′D′⊥B′C′,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′.∴ABA′B′=ADA′D′=k.结论1:相似三角形的对应高成比例.(二)探究2已知△ABC∽△A′B′C′,AE、A′E′分别是△ABC和△A′B′C′边上的中线,且AB∶A′B′=k,那么AE与A′E′怎样的关系?此证明可以让学生进行解答.【证明】∵△ABC∽△A′B′C′,∴∠B=∠B′,∴ABA′B′=BCB′C′=k,∵AE,A′E′分别是△ABC和△A′B′C′边上的中线,∴BC=2BE,B′C′=2B′E′,∴ABA′B′=BCB′C′=BEB′E′=k.∴△ABE∽△A′B′E′,∴AB A′B′=AE A′E′=k. 结论2:相似三角形对应中线的比等于相似比.(三)探究3已知△ABC∽△A′B′C′,AF 、A′F′分别是△ABC 和△A′B′C′的角平分线,那么AF 与A′F′怎样的关系?此证明可以让学生进行解答.【证明】∵△ABC∽△A′B′C′,∴∠BAC =∠B′A′C′,∠B =∠B′,又∵AF、A′F′分别是△ABC 和△A′B′C′的角平分线∴∠BAC =2∠BAF,∠B ′A ′C ′=2∠B′A′F′.∴∠BAF =∠B′A′F′,∴△ABF ∽△A ′B ′F ′,∴AB A′B′=AF A′F′=k. 结论3:相似三角形对应角平分线的比等于相似比.(四)小结相似三角形的对应高、对应中线、对应角平分线成比例.(五)重心 1.概念:三角形三条中线的交点叫做三角形的重心.(回顾:三角形的三条中线的交点在三角形的内部)2.重心的定理:三角形的重心分每一条中线成1∶2的两条线段.3.定理证明过程:已知,如图,BD ,CE 是△ABC 的两条中线,P 是它们的中点.求证:DP BP =EP CP =12.证明:如图,连结DE.∵BD,CE是△ABC的两条中线,∴DE=12 BC,∵∠EDB=∠DBC,∠DEC=∠ECB.∴△DEP∽△BCP.∴DPBP=EPCP=DEBC=12.三、新知应用【例1】已知△ABC∽△A′B′C′,AD、A′D′是它们的对应角平分线,且AD=8cm,A′D′=3cm,则△ABC与△A′B′C′对应高的比为__8∶3__.【分析】根据相似三角形性质可知,相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比,可求△ABC与△A′B′C′对应高的比.【解析】∵△ABC∽△A′B′C′,AD和A′D′是它们的对应角平分线,∴AD∶A′D′=8∶3,∴△ABC与△A′B′C′对应高的比为8∶3.【答案】8∶3说明:本题考查对相似三角形性质的理解.相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.【例2】两个相似三角形的相似比为2∶5,已知其中一个三角形的一条中线为10,那么另一个三角形对应的中线是________.【解析】∵相似三角形的相似比为2∶5,其中一个三角形的一条中线为10.而这条中线可能是小三角形的,也可能是大三角形的,∴另一个三角形对应的中线可能为4,也可能是25.【正解】4或25说明:对于这类题目要分情况讨论,题中的“中线”改成“高”或“角平分线”,做题的方法也是一样的,学习数学要会“举一反三”.四、巩固新知尝试完成下面各题.1.若两个相似三角形的相似比是2∶5,则对应高的比是( A )A.2∶5 B.4∶25C.2∶ 5 D.25∶42.顺次连接三角形三边的中点,所构成的三角形与原三角形对应高的比是( C )A.1∶4 B.1∶3C.1∶2 D.1∶13.若一个三角形三边之比为3∶5∶7,与它相似的三角形的最长边的长为21,则最短边的长为( C )A.15 B.10 C.9 D.34.已知△ABC∽△A′B′C′,BD,B′D′是它们的对应中线,且ACA′C′=32,B′D′=4,则BD的长为__6__.五、课堂小结相似三角形的性质:1.相似三角形对应高线、对应中线、对应角平分线之比等于相似比.2.三角形的重心每分一条中线成1∶2的两条线段.六、课后作业请完成本资料对应的课后作业部分内容.。

九年级数学上册 4.5 相似三角形的性质及应用教案 (新版)浙教版

《相似三角形的性质及其应用》教学目标1、能运用相似三角形的性质解决一些简单的实际问题.2、进一步检验数学的应用价值.重点与难点1、本节教学的重点是运用相似三角形的性质解决简单的实际问题.2、由于学生缺乏一定的生活经验,让他们设计测量树高的方案有一定的难度,所以例题中的方案设计是本节教学的难点.知识要点1、若物体的高度和宽度不能被直接测量,则一般思路是根据题意和所求,建立相关的相似三角形的模型,然后根据相似三角形的性质以及比例关系可求得.2、在同一时刻两个物体的高度和它的影长是成比例的.重要方法1、在测量物体的高时,物体与水平面是垂直的.2、在测量宽度时,可采用下面的方法.一、复习提问 我们已经学习相似三角形的性质有哪些?1、相似三角形对应角相等.∵△A ′B ′C ′∽△ABC ∴ ∠A = ∠A ′ , ∠B = ∠B ′ ∠C = ∠C ′2、相似三角形对应边成比例.A B C D EA B C D E AB CA ′B ′C ′∵△ABC ∽△ABC ∴AB A ′B ′ =BC B ′C ′ =CA C ′A ′3、相似三角形的周长之比等于相似比;4、相似三角形的面积之比等于相似比的平方.5、相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.思考:你能够将上面生活中的问题转化为数学问题吗?二、例题讲解1、校园里有一棵大铁树,要测量树的高度,你有什么方法?把一小镜子放在离树(AB )8米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.8m ,观察者目高CD =1.6m. 这时树高多少?你能解决这个问题吗? 长为2.40m 的标杆CD 直立在地面上,量出树的影长为2.80m ,标杆的影长为1.47m.这时树高多少?你能解决这个问题吗?分别根据上述两种不同方法求出树高(精确到0.1m )请你自己写出求解过程,并与同伴探讨,还有其他测量树高的方法吗? C2、如图,屋架跨度的一半OP =5m ,高度OQ =2. 25 m.现要在屋顶上开一个天窗,天窗高度 AC =1. 20m ,AB 在水平位置.求AB 的长度.(结果保留3个有效数字)三、课堂小结 1、相似三角形的应用主要有如下两个方面(1)测高(不能直接使用皮尺或刻度尺量的)(2)测距(不能直接测量的两点间的距离)2、测高的方法测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决.3、测距的方法测量不能到达两点间的距离,常构造相似三角形求解.4、解决实际问题时(如测高、测距),一般有以下步骤:①审题 ②构建图形 ③利用相似解决问题AB CO PQ。

4.5 相似三角形的性质及其应用九年级上册数学浙教版

5.能运用相似三角形的性质解决简单的实际问题.
知识点1 相似三角形对应线段的性质 重难点
1.根据相似三角形的定义可知,我们可得到相似三角形的两个基本性质:相似三角形的对应角相等,对应边成比例.
2.相似三角形对应线段的性质:相似三角形对应高线的比,对应中线的比与对应角平分线的比都等于相似比,即相似三角形对应线段的比等于相似比.
测量数据
观测者的眼睛与地面的距离 ,标杆的高度 ,观测者与标杆之间的距离 ,观测者与旗杆之间的距离 .
注意:观测者的眼睛(点 )、标杆的顶端(点 )和旗杆的顶端(点 )必须要“三点共线”,标杆与地面要垂直,同时旗杆底部必须可到达
典例4 如图,小华在水平地面上放置了一小块平面镜 来测量铁塔 的高度,已知当镜子与铁塔底部的距离 、镜子与小华的距离 时,小华刚好从镜子中看到铁塔的顶端 .若小华的眼睛距离地面的高度 ,试估计铁塔 的高度.
图形
推理
结论
周长之比
.
周长之比等于相似比.
面积之比
.
面积之比等于相似比的平方.
典例3 (2023·丽水期末)已知 ,且 与 的周长比为 ,则 与 的面积比为__.
[解析] ,且周长比为 , 与 的相似比为 , 与 的面积比为 .
解题通法相似三角形性质的应用技巧相似三角形的相似比、各对应线段的比、周长比及面积比之间是可以互相转化的,即相似比 对应高线的比 对离等于____ .转动时,叶片外端离地面的最大高度等于___________ .
[解析] 如图,过点 作 , 的平行线,交 于点 ,过点 作水平线 交 于点 ,过点 作 ,垂足为 ,连结 并延长至点 ,使得 .
由题意可知,点 是 的中点. , , 点 是
的中点. , , .

相似三角形的性质(1)教学设计数学九年级上册

九_年级_数学_新授_课型 第 章 第 课时,总第 课时 月 日 周教学内容:相似三角形的性质(1)教学目标:1.探究得出相似三角形对应线段(高、中线、角平分线)的比等于相似比;. 2.学会用相似三角形性质解决有关问题;. 3.培养合情推理和有条理的表达的能力; 重点:探索出相似三角形中与线段有关的性质难点:利用相似三角形对应线段(高、中线、角平分线)的比等于相似比的性质解决相关问题.学习内容及导学流程方法指导或行为提示 一、目标导学(一) 复习导入全等三角形的对应线段有怎样的关系?那么相似三角形的对应线段的关系又会怎样呢? (二)揭示课题,明确目标。

我们今天就一起来探究相似三角形的性质。

本节课我们的目标是:(教师解读教学目标) 二、新知探究 (一)自学自研 1.请学生自主学习教材P85~86动脑筋和例9、例10,试着完成下面的问题: 问题1 如图,已知△ABC ∽△A B C ''', AH A H ''分别为对应边BC ,B C ''上的高,那么AH ABA H AB =''''吗? 解:∵△ABC ∽△A B C '''∴=∠B .又=∠AHB =︒90, ∴ABH ∆∽ .( )∴AH AB A H A B =''''. 类似地,我们可以得到其余两组对应边上的高的比也等于相似比. 由此得到结论: . 问题2如图,已知△ABC ∽△A B C ''' ,AT ,A T '' 分别为对应角BAC ∠、∠B A C ''' 的角平分线. 求证:AT ABA T AB =''''. 证明:∵△ABC ∽△A B C '''∴=∠B , BAC ∠= .又AT ,A T '' 分别为对应角BAC ∠、∠B A C ''' 的角平分线∴BAT ∠= = ='''B A T ∠∴ABT ∆∽'''A B T ∆( ) ∴AT ABA T AB =''''从上面这个问题得到结论: .推广:若将上题中AT 、A T ''改为分别对应边BC ,C B ''边上的中线,还会有AT ABA T AB =''''成立吗?由此你们又能得到什么结论? 归纳结论: .要证明四条线段成比例,则在哪两个三角形中有这一组对应线段成比例呢?故应先证三角形相似知识链接 相似三角形判定的基本定理及性质的运用(二)合作共研 问题3:例10:如图,AB ∥PQ ,AB =100m, PQ =120m,点P ,A ,C在一条直线上,点Q ,B ,C ,也在一条直线上.若AB与PQ 的距离是40m ,求点C 到直线PQ 的距离.解:∵AB ∥PQ ,∴△CAB ∽ . 过点C 作CD PQ ,垂足为点D .设CD 交AB 的延长线于点E ,∴CE ⊥AB ,=DE .∴AB PQ= = ( )即:100120CD DE CD-=,∴CD =240m .答:点C 到直线PQ 的距离为240m三、巩固提升1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( ) A.34 B.43 C.916 D.1692.如图,△ABC ∽△A B C ''',AD ,BE 分别是△ABC 的高和中线,A D '',B E ''分别是△A B C ''' 的高和中线 ,且AD = 4,A D ''= 3,BE = 6,求B E ''的长.(二)变式提高如图,要在一块△ABC 的纸片上截取正方形DEFG 模型.其中,G ,F 在BC 边上,D ,E 分别在AB ,AC 边上,AH ⊥BC 交DE 于M ,若BC =12 cm ,AH =8 cm ,求正方形DEFG 的边长.对应高的比、对应中线的比都等于相似比,因此将对应高、对应中线这二者联系起来变式题是常见考察相似三角形性质的题型,教师进行方法点拨四、学后反思 本节课你有哪些收获呢?你还存在哪些疑惑呢?五、课后达标 1、已知△ABC ∽△DEF ,对应角平分线的比为4∶3,△ABC 中AB 边上的中线为12,则△DEF 中DE 边上的中线为 . 2、如图,△ABC ∽△A′B′C′,AB =15 cm ,A′B′=10 cm ,AD 与A′D′分别是△ABC 和△A′B′C′的中线.AD 与A′D′的和为15 cm ,分别求AD 和A′D′的长. 3.如图,在四边形ABCD 中,AC 平分∠BAD ,∠ABC =∠ACD =90°,BM ⊥AC 于点M ,CN ⊥AD 于点N ,且BC =12,BM =8,CD =15.求CN 的长.此题属于相似三角形判定与性质的综合应用 教后反思:A E BD CP Q。

浙教版数学九年级上册《4.5 相似三角形的性质及应用》教案1

浙教版数学九年级上册《4.5 相似三角形的性质及应用》教案1一. 教材分析浙教版数学九年级上册《4.5 相似三角形的性质及应用》这一节主要介绍了相似三角形的性质和应用。

学生通过前面的学习已经掌握了相似三角形的定义和性质,本节课将通过具体的例题来让学生进一步理解和掌握相似三角形的性质及在实际问题中的应用。

二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的定义和性质有所了解。

但学生在应用相似三角形的性质解决实际问题时,往往会因为对性质理解不深而出现错误。

因此,在教学过程中,需要引导学生通过具体例题来深入理解和掌握相似三角形的性质,提高他们在实际问题中的应用能力。

三. 教学目标1.理解相似三角形的性质,并能灵活运用性质解决实际问题。

2.培养学生的逻辑思维能力和解决问题的能力。

3.提高学生对数学的兴趣和积极性。

四. 教学重难点1.相似三角形的性质及其应用。

2.如何引导学生通过具体例题来理解和掌握相似三角形的性质。

五. 教学方法采用问题驱动法,通过具体的例题来引导学生理解和掌握相似三角形的性质。

在教学过程中,注重学生的参与和思考,培养他们的逻辑思维能力和解决问题的能力。

六. 教学准备1.准备相关的例题和练习题。

2.准备多媒体教学设备,如投影仪等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入相似三角形的性质,激发学生的学习兴趣。

2.呈现(15分钟)呈现相关的例题,引导学生分析和理解相似三角形的性质。

在这个过程中,教师可以通过提问的方式引导学生思考和讨论,帮助他们理解和掌握相似三角形的性质。

3.操练(15分钟)让学生通过具体的练习题来运用和巩固相似三角形的性质。

教师可以个别辅导学生,帮助他们解决在解题过程中遇到的问题。

4.巩固(10分钟)通过一些综合性的题目来巩固学生对相似三角形性质的理解和掌握。

教师可以引导学生进行小组讨论,共同解决问题。

5.拓展(10分钟)让学生通过一些拓展性的题目来进一步理解和运用相似三角形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.5 相似三角形的性质及其应用(1)
教学目标:
1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.
2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.
3、会运用上述两个性质解决简单的几何问题.
重点与难点:
1、本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质.
2、相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.
知识要点:
三角形相似的条件:
1、相似三角形的对应角相等,对应边成比例.
2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比.
3、相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方.
重要方法:
1、相似三角形的相似比等于面积比的算术平方根.
2、相似三角形中的相似比和面积比的关系,应注意相似三角形这个前提,否则不成立.
教学过程:
一、问题情境
某施工队在道路拓宽施工时遇到这样一个问题,马路旁边原有一个面积为100平方米,周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米.现在的问题是:被削去的部分面积有多大?它的周长是多少?
思考:你能够将上面生活中的问题转化为数学问题吗?
二、新课
1、如图,4 ×4正方形网格
看一看:
ΔABC与ΔA′B′C′有什么关系?为什么?(相似)
算一算:
ΔABC与ΔA′B′C′的相似比是多少?( 2 )
ΔABC与ΔA′B′C′的周长比是多少? ( 2 )
面积比是多少?(2)
想一想:
上面两个相似三角形的周长比与相似比有什么关系?面积比与相似比又有什么关系?结论:相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方
验一验:
是不是任何相似三角形都有此关系呢?你能加以验证吗?
已知:如图4-24,△ABC∽△A′B′C′,且相似比为k.
求证:
△ABC的周长
△A′B′C′的周长
=k,
△ABC的面积
△A′B′C′的面积
=k2
例题
已知:如图,△ABC∽△A′B′C′, △ABC与△A′B′C′的相似比是k,AD、A′D′是对应高。

求证:AD
A′D′
=k
证明:
∵△ABC∽△A′B′C′∴∠B= ∠B′
∵AD、A′D′是对应高。

∴∠ADB=∠A′D′B′=90O∴△ABD∽△A’B’D’
练一练:
1、已知两个三角形相似,请完成下列表格
注:周长比等于相似比,已知相似比或周长比,求面积比要平方,而已知面积比,求相似比或周长比则要开方。

2、如图,D、E分别是AC,AB上的点,∠ADE=∠B, AG⊥BC于点G,AF⊥DE于点F.若AD =3,AB=5,求:
(1)AG AF

(2)△ADE与△ABC的周长之比;
(3)△ADE与△ABC的面积之比.
例1 如图:是某市部分街道图,比例尺为1∶10000;请估计三条道路围成的三角形地块ABC 的实际周长和面积.
问题解决:如图,已知DEBC,AB=30m,BD=18m, ΔABC的周长为80m,面积为100m2,求ΔADE 的周长和面积
拓展延伸
1.过E作EFAB交BC于F,其他条件不变,则ΔEFC的面积等于多少?BDEF面积为多少?
2.若设SΔABC=S, SΔADE=S1, SΔEFC=S
2.
请猜想:S与S1、S2之间存在怎样的关系?你能加以验证吗?
证明:DEBC △ADE∽△ABC S1
S
=(
AE
AC
)2
S1
S

AE
AC
FEBA △CFE∽△CBA S2
S
=(
AE
AC
)2
S2
S

CE
AC
S1 S +
S2
S
=1
类比猜想
如图, DEBC,FGAB,MNAC, 且DE、FG、MN交于点P。

若记SΔDPM= S1, SΔPEF= S2, SΔGNP= S3,SΔABC= S、S与S1、S2、S3之间是否也有
类似结论?猜想并加以验证。

练一练:书本P115课内练习1、2
练一练(分组练习)
证明:相似三角形的对应高的比,对应中线的比,对应角平分线的比等于相似比。

能力训练
1.若两个相似三角形的相似比是2∶3,则它们的对应高线的比是,对应中线的比是,对应角平分线的比是,周长比是,面积比是。

2.两个等边三角形的面积比是3∶4,则它们的边长比是,周长比是。

3.某城市规划图的比例尺为1∶4000,图中一个氯化区的周长为15cm,面积为12cm2,则这个氯化区的实际周长和面积分别为多少?
4、在△ABC中,DE∥BC,E、D分别在AC、AB上,EC=2AE,则S
△ADE ∶S
四边形DBCE
的比为______
5、如图,△ABC中,DE∥FG∥BC,AD=DF=FB,则S
△ADE :S
四边形DFGE
:S
四边形FBCG
=______
6.已知:梯形ABCD中,AD∥BC,AD=36,BC=60cm,延长两腰BA,CD交于点O,OF⊥BC,交AD于E,EF=32cm,则OF=_______.
7、ΔABC中,AE是角平分线,D是AB上的一点,CD交AE于G,∠ACD=∠B,且AC=2AD.则ΔACD∽Δ______.它们的相似比K =_______.
探究活动:
1、书本P115
已知△ABC,如图,如果要作与BC平行的直线把△ABC划分成两部分,使这两部分(三角形与四边形)的面积之比为1∶1该怎么作?如果要使划分成的两部分的面积之比为1∶2呢?如果要使划分成的两部分的面积之比为1∶n呢?(平行线等分线段、平行线分线段成比例定理)
2.阅读下面的短文,并解答下列问题:
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.
如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比(a∶b).
S甲S乙=(
a
b
)2
V甲
V乙
=(
a
b
)3
练习
(1)下列几何体中,一定属于相似体的是( )
A.两个球体 B.两个锥体 C.两个圆柱体D.两个长方体
(2)请归纳出相似体的三条主要性质:
①相似体的一切对应线段(或弧)长的比等于______;
②相似体表面积的比等于__ ____;
③相似体体积比等于___ .
(3)假定在完全正常发育的条件下,不同时期的同一人的人体是相似体,一个小朋友上幼儿园时身高为1.1米,体重为18千克,到了初三时,身高为1.65米,问他的体重是多少?(不考虑不同时期人体平均密度的变化)
设他的体重为x千克,根据题意得x
18=(
1.65
1.1
)3
解得x=60.75(千克) 三、小结
四、作业:见作业本。

相关文档
最新文档