线性规划应用案例

合集下载

线性规划应用举例

线性规划应用举例
线性规划应用举例 典型问题: 人力资源分配 套裁下料 配料问题
连续投资问题
例:人力资源分配的问题
例.某昼夜服务的公交线路每天各时间段内所需司机和乘务人 员数如下: 班次 时间 所需人数 1 60 6:00 —— 10:00 2 70 10:00 —— 14:00 3 60 14:00 —— 18:00 4 50 18:00 —— 22:00 5 20 22: —— 2:00 6 30 2:00 —— 6:00 设司机和乘务人员分别在各时间段一开始时上班,并连续 工作八小时,问该公交线路怎样安排司机和乘务人员,既能 满足工作需要,又配备最少司机和乘务人员?
假设 x1,x2,x3,x4,x5 分别为上面8种方案下料的原材料根数。这样我们建立 如下的数学模型。 目标函数: Min x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 约束条件: s.t. x1 + 2x2 + x4 + x6 ≥ 100 2x3 + 2x4 + x5 + x6 + 3x7 ≥ 100 3x1 + x2 + 2 x3 + 3x5 + x6 + 4x7 ≥ 100 x1,x2,x3,x4,x5 x6,x7 x8 ≥ 0
例:配料问题
例.某工厂要用三种原料1、2、3混合调配出三种不 同规格的产品甲、乙、丙,数据如下表。问:该厂 应如何安排生产,使利润收入为最大?
产品名称 甲 乙 丙 原材料名称 1 2 3 规格要求 单价(元/kg) 50 原材料 1 不少于 50%,原材料 2 不超过 25% 35 原材料 1 不少于 25%,原材料 2 不超过 50% 25 不限 每天最多供应量 100 100 60 单价(元/kg) 65 25 35

线性规划应用案例分析

线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。

它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。

这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。

本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。

某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。

公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。

通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。

某物流公司需要计划将货物从多个产地运输到多个目的地。

公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。

通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。

某投资公司需要将其资金分配给多个不同的投资项目。

每个项目都有不同的预期回报率和风险水平。

公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。

通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。

这些案例展示了线性规划在实践中的应用。

然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。

线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。

线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。

这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。

下面我们将详细讨论线性规划的应用。

线性规划是一种求解最优化问题的数学方法。

它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。

这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。

工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。

线性规划的实际应用举例

线性规划的实际应用举例

线性规划的实际应用举例即两为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(的实际应用举例加以说明。

个变量的线性规划)1 物资调运中的线性规划问题万个40万个和30万个,由于抗洪抢险的需要,现需调运1 A,B两仓库各有编织袋50例/元万个、180/万个到乙地。

已知从A仓库调运到甲、乙两地的运费分别为120元到甲地,20元/万个。

问如何调运,能150/万个、万个;从B仓库调运到甲、乙两地的运费分别为100元? ?总运费的最小值是多少使总运费最小仓库调Bz元。

那么需从x万个到甲地,y万个到乙地,总运费记为解:设从A仓库调运40-x万个到甲地,调运运万个到乙地。

20-y从而有。

z=120x+180y+100(40-x)+150·(20-y)=20x+30y+70001)(图,即可行域。

作出以上不等式组所表示的平面区域z'=z-7000=20x+30y. 令:20x+30y=0,作直线l且与原点距离最小,0),,l的位置时,直线经过可行域上的点M(30l把直线向右上方平移至l y=0时,即x=30,亦取得最小值,取得最小值,从而z=z'+7000=20x+30y+7000z'=20x+30y 元)。

30+30×z=20×0+7000=7600(min万个到乙地,可使总万个到甲地,20B30万个到甲地,从仓库调运10A答:从仓库调运元。

运费最小,且总运费的最小值为76002 产品安排中的线性规划问题吨,麦麸0.4吨需耗玉米某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料2例1O.4吨,其余添加剂0.2.吨甲种1吨,其余添加剂0.2吨。

每吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3元。

可供饲料厂生产的玉米供应500元,每1吨乙种饲料的利润是饲料的利润是400吨。

问甲、乙300吨,麦麸供应量不超过500吨,添加剂供应量不超过量不超过600 ? ?最大利润是多少两种饲料应各生产多少吨(取整数),能使利润总额达到最大1。

线性规划的实际应用举例

线性规划的实际应用举例

线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。

1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。

已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。

问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。

那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。

从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。

作出以上不等式组所表示的平面区域(图1),即可行域。

令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。

答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。

2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。

每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。

可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。

问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。

线性规划应用案例

线性规划应用案例

市场营销应用案例一:媒体选择在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。

在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。

对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。

在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。

REL发展公司正在私人湖边开发一个环湖社区。

湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。

REL公司已经聘请BP&J 来设计宣传活动。

考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。

在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。

BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。

质量评定是通过宣传质量单位来衡量的。

宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。

表4-1列出了收集到的这些信息。

表4-1 REL发展公司可选的广告媒体REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。

而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。

应当推荐何种广告媒体选择计划呢?案例二:市场调查公司开展市场营销调查以了解消费者个性特点、态度以及偏好。

专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。

市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。

线性规划应用案例

线性规划应用案例

线性规划应用案例线性规划是一种在约束条件下寻找最优解的数学优化方法。

它在实际应用中广泛使用,涉及许多领域和行业。

本文将介绍两个典型的线性规划应用案例:运输问题和产能规划问题。

一、运输问题运输问题是线性规划最早发展起来的一个领域,它是指如何在各个供应地和需求地之间运输商品,以使得总运输成本最小。

一个典型的运输问题可以描述为:有m个供应地和n个需求地,每个供应地和需求地之间有一个固定的运输成本和一个固定的供应和需求量。

问题是如何确定每对供需地之间的运输量,以使得总运输成本最小。

举例来说,假设有三个供应地A、B、C,三个需求地X、Y、Z。

运输成本如下表所示:\begin{array}{ c c c c c c }&X&Y&Z&供应量\\A&10&12&8&100\\B&6&8&7&200\\C&9&10&11&300\\需求量&150&175&125&\\\end{array}求解此问题的线性规划模型如下:目标函数:minimize \quad Z = 10x_{11} + 12x_{12} + 8x_{13} + 6x_{21} + 8x_{22} + 7x_{23} + 9x_{31} + 10x_{32} + 11x_{33}约束条件:x_{11} + x_{12} + x_{13} \leq 100x_{21} + x_{22} + x_{23} \leq 200x_{31} + x_{32} + x_{33} \leq 300x_{11} + x_{21} + x_{31} \geq 150x_{12} + x_{22} + x_{32} \geq 175x_{13} + x_{23} + x_{33} \geq 125x_{ij} \geq 0, i = 1,2,3 \quad j = 1,2,3其中x_{ij}表示从供应地i到需求地j的运输量。

线性规划运用举例

线性规划运用举例

线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。

线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。

下面将举例说明线性规划在实际生产和管理中的应用。

1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。

企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。

线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。

例如,生产一种食品有两个不同的发酵温度可以选择。

这个决策需要考虑到提高产量的同时也要保证产品质量。

通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。

2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。

为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。

线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。

例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。

3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。

在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。

通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。

例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。

总之,线性规划在生产和管理中的应用非常广泛。

通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。

线性规划 实际案例

线性规划 实际案例

线性规划是一种数学优化模型,用于解决在有一些约束条件下,如何使一个目标函数达到最优解的问题。

线性规划广泛应用于许多实际案例中,其中一些常见的案例如下:
1.生产规划:在生产过程中,企业可能需要在有限的生产资源和需求的限制下,决策
生产的数量、成本、产品组合等,以使生产效益最大化。

这就需要用到线性规划模
型来解决。

2.交通规划:在城市规划过程中,市政部门可能需要决策道路的建设、扩建、维护等,
以满足城市交通需求,并考虑到道路建设的成本和环境影响等因素。

这时候可以使
用线性规划模型来解决。

3.财务规划:在进行财务管理时,企业或个人可能需要在有限的资金和资产的限制下,
决策投资、储蓄、借贷等,以使财务效益最大化。

这时候可以使用线性规划模型来
解决。

4.供应链管理:在供应链管理过程中,企业可能需要决策采购、生产、运输、库存等
各个环节,以保证供应链的流畅运行并达到最优的效益。

这时候可以使用线性规划
模型来解决。

这些都是线性规划在实际案例中的应用,线性规划能够帮助企业和组织在有限的条件下,有效地规划和决策,并取得较好的效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市场营销应用案例一:媒体选择在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。

在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。

对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。

在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。

REL发展公司正在私人湖边开发一个环湖社区。

湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。

REL公司已经聘请BP&J 来设计宣传活动。

考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。

在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。

BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。

质量评定是通过宣传质量单位来衡量的。

宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。

表4-1列出了收集到的这些信息。

表4-1 REL发展公司可选的广告媒体REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。

而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。

应当推荐何种广告媒体选择计划呢?案例二:市场调查公司开展市场营销调查以了解消费者个性特点、态度以及偏好。

专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。

市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。

在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。

市场营销调查公司的目标是以最小的成本满足客户要求。

市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。

一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。

在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。

而且MSI还同意同时开展日间和晚间调查。

尤其是,客户的合同要求依据以下限制条款进行1000个访问:●至少访问400个有儿童的家庭;●至少访问400个无儿童的家庭;●晚间访问的家庭数量必须不少于日间访问的家庭数量;●至少40%有儿童的家庭必须在晚间访问;●至少60%无儿童的家庭必须在晚间访问。

因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。

基于以往的调查研究,预计的访问费用如下表所示:以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的呢?财务应用案例一:投资组合投资组合选择问题所涉及的情况是财务经理从多种投资选择中选择具体的一些投资,如股票和债券、共有基金、信用合作社、保险公司等等,银行经理们经常会遇到这样的麻烦。

投资组合选择问题的目标函数通常是使预期收益最大化或使风险最小化。

约束条件通常表现为对准许的投资类型,国家法律,公司政策,最大准许风险等方面的限制。

对于此类问题,我们可以通过使用各种数学规划方法建立模型进而求解。

此节中,我们将把投资组合选择问题作为线性规划问题来求解。

假设现在有一家坐落于纽约的威尔特(Welte)共有基金公司。

公司刚刚完成了工业债券的变现进而获得了100,000美元的现金,并正在为这笔资金寻找其他的投资机会。

根据威尔特目前的投资情况,公司的上层财务分析专家建议新的投资全部投在石油、钢铁行业或政府债券上。

分析专家已经确定了5个投资机会,并预计了它们的年收益率。

表4-3是各种投资及它们的收益率。

威尔特的管理层已经设置了以下的投资方针:1.在任何行业(石油或钢铁)的投资不得多于50000美元。

2.对政府债券的投资至少相当于对钢铁行业投资的25%。

3.对太平洋石油这样高收益但高风险的投资项目,投资额不得多于对整个石油行业投资的60%。

可使用的100,000美元应该以什么样的投资方案(投资项目及数量)来投资呢?以预期收益最大化为目标,并遵循预算和管理层设置的约束条件,我们可以通过建立并解此问题的线性规划模型来回答它。

解决方案将为威尔特共有基金公司的管理层提供建议。

案例二:财务计划威尔特公司建立了一项提前退休计划,作为其公司重组的一部分。

在自愿签约期结束前,68位雇员办理了提前退休手续。

因为这些人的提前退休,在未来的8年里,公司将承担以下责任,每年年初支付的现金需求如下表所示:公司的财务人员必须决定现在应将多少数量的钱存放在一边,以便应付8年期的负债到期时的支付。

该退休计划的财务计划包括政府债券的投资及储蓄。

对于政府债券的投资限于以下3种选择:政府债券的面值是1000美元,这意味着尽管价格不同,在到期时,也都支付1000美元。

表中所示的比率是基于面值的。

为了制定这个计划,财务人员假设所有没投资于债券的资金都将用于储蓄,且每年可获得4%的利息。

我们定义如下决策变量:F=退休计划所形成的8年期债务所需第一年的总金额,B1=在第一年年初买入的债券1的单位数量,B2=在第一年年初买入的债券2的单位数量,B3=在第一年年初买入的债券3的单位数量,Si=在第i年年初投资于储蓄的金额(i=1,2……8)目标函数用于求出满足退休计划带来的8年期债务所需资金的最小值,即Min F。

这类财务计划问题的重要特点是必须为每年计划范围写出约束条件。

大体上,每个约束条件都采用下面的形式:年初可使用资金 - 投资于债券与储蓄的资金= 该年现金支付责任生产管理应用案例一:制造或购买决策我们利用线性规划来决定生产一些零配件时,一个公司每一种分别应该生产多少,又应该从外部购进多少。

像这样的决策叫做“制造或购买决策(产或购决策)”。

嘉德思(Janders)公司经营多种商用和工程产品。

现在,嘉德思公司正准备推出两款新的计算器。

其中一款是用于商用市场的,叫做“财务经理”;另一款用于工程市场,叫做“技术专家”。

每款计算器由3种零部件组成:一个基座、一个电子管和一个面板,即外盖。

两种计算器使用相同的基座,但电子管和面板则不相同。

所有的零部件生产都可以由公司自己生产或从外部购买。

零部件的生产成本和采购价格汇总见表4-5。

表4-5 嘉德思计算器零配件的生产成本和采购价格嘉德思的预测师们指出总共将需要3000台财务经理和2000台技术专家。

但是,因为这个公司生产能力有限,这个公司仅能安排200个小时的正常工作时间和50个小时的加班时间用于计算器的生产。

加班时间需要每小时多付给员工9美元的加班奖金,即额外成本。

表4-6显示了各零部件所分得的生产时间(以分钟计)。

嘉德思公司的问题是决定每种零部件有多少单位自己生产,多少单位从外部购买。

表4-6 嘉德思计算器各零配件每单位的生产时间案例二:生产计划线性规划方案最重要的应用是安排多个时期的计划,比如生产计划。

根据生产计划问题的解,经理能够在一定的时间段(几星期或几个月内)为一个或多个产品制定一个高效低成本的生产计划。

其实生产计划问题也可以看做是未来某个时期的生产调配问题。

经理必须决定生产水平,使公司能够满足生产需求,在收到产品生产量、劳动力生产量以及贮藏空间上有所限制的同时,还要使生产成本最小。

利用线性规划解决生产计划问题的一个好处就是它们是周期性的。

一个生产计划必定是为当月制定的,然后下个月又制定一次,再下个月又制定一次,如此周而复始。

看一看每个月的问题,生产经理就可以发现,虽然生产需求已经发生了变化,生产次数、产品生产量、贮藏空间等限制大致还是一样的。

因此,生产经理基本上可以按以前月份的管理方法解决同样的问题,而生产计划的一个总线性规划模型可能被频繁地使用。

一旦这个模型被固定下来,经理只需要在特定的生产时期提供当时的需求量、生产量等有关数据就可以了,并且可重复利用此线性规划模型构想出生产计划。

让我们来看看Bollinger Electronics公司的案例,该公司为一个重要的飞机引擎制造公司生产两种不同的电子组件。

飞机引擎制造商在下面3个月里每个月都会通知Bollinger Electronics公司的销售办公室,告诉他们每个星期对组件的需求量。

每个月对组件的需求量变化可能很大,这要视飞机引擎制造商正在生产哪种类型的引擎情况而定。

表4-7列出的是刚刚接到的订单,这批订单是下3个月的需求量。

表4-7 Bollinger Electronics公司3个月的需求一览表接到订单之后,需求报告就被送到生产控制部门。

生产控制部门则必须制定出3个月生产组件的计划。

为了制定出生产计划,生产经理需要弄清楚以下几点:总生产成本,存货成本。

改变生产力水平所需的经费。

接下来我们要介绍Bollinger Electronics公司如何建立公司的生产贮存线性规划,以使公司的成本最小。

为了制定出此模型,我们用Xim表示m月生产产品i的单位生产量。

在这里i=1或2,m=1、2或3;i=1指的是332A组件,i=2指的是802B组件,m=1指的是四月份,m=2指的是五月份,m=3指的是六月份。

双重下标的目的是规定一个更具描述性的符号。

我们可以简单地用X6来代表三月份生产的产品2的单位生产量。

但是X23更具描述性,它直接确定用变量代表的月份和产品。

如果生产一个332A组件的成本为20美元,生产一个802B组件的成本为10美元,那么目标函数中总成本部分是:总生产成本=20X11+20X12+20X13+10X21+10X22+10X23每个月每单位产品的生产成本是一样的,所以我们不需要在目标函数里涵盖生产成本。

也就是说,不管选择的生产一览表是什么样的,总生产成本将会保持相同的水平。

换句话说,生产成本不是相关成本,无需在制定生产计划时认真考虑。

但是,如果每个月单位产品成本是改变的,那么单位产品成本变量就必须包含在目标函数里。

对于Bollinger Electronics公司的问题来说,不管这些成本是不是包含在里面,它的解决方案将会是一样的。

我们把它们包括在里面,这样线性规划问题的目标函数将包含所有与产品有关的成本。

为了把相关库存成本合并到模型里面,我们用Sim来表示产品i在第m月月底的存货水平。

Bollinger Electronics公司已经决定,每月在基本存货上的成本占生产产品成本的1.5%。

也就是说,0.015×20=0.30(美元/332A组件),0.015×10=0.15(美元/802B组件)。

相关文档
最新文档