不等式易错点

合集下载

不等式的解法

不等式的解法

复习重点:不等式的解法,主要有一元一次、一元二次、一元高次不等式,分式不等式,无理不等式,指数、对数不等式及含绝对值的不等式的解法;在复习中强调基本方法及易错点。

复习难点:含字母系数的二次型不等式,无理不等式解法,数形结合的方法解不等式,及不等式变形的等价性问题。

(一)各种类型不等式基本解法中的易错点:1.二次型不等式:ax2+bx+c>0(<0)易错点:<1>是否为二次不等式;<2>含字母表示的二根的大小。

2.一元高次不等式:a(x-x1)(x-x2)……(x-x n)>0。

易错点:<1>a>0时,从右上方开始穿线;<2>奇穿偶切,如(x-2)2(x+1)3>0.各因式的幂指数为奇数时穿过ox轴,若幂指数为偶数时,与ox轴相切不穿过;<3>孤立点容易遗漏。

如:(x-3)(x+2)2(x-1)≥0(x-3)(x-1)≥0或x=-2。

3.分式不等式:,易错点:<1>方法的规范,化为(1)的形式;<2>等价性;如(2)。

4.无理不等式<1>易错点:①遗漏情况(2);②不等式组(1),省略f(x)≥0,可简化运算。

<2>注:g(x)=0为孤立点,易遗漏。

5.含绝对值不等式:注意:<1>方法的选择:分段去绝对值号;用等价不等式解或数形结合方法解决。

<2>形如的基本解法:<i>分段讨论;<ii>数形结合。

6.指数不等式及对数不等式基本类型:<1>同底型;<2>a f(x)<b、log a f(x)<b型用定义;<3>换元法解。

易错点:<1>定义域:对数式中底数、真数的限制条件;<2>利用函数单调性,要分成底数大于1还是在0与1之间考虑。

解不等式问题重点注意:i.等价变形;ii.数形结合的方法。

不等式易错点分析

不等式易错点分析

不等式易错点分析易错点一:忽视字母之间的联系性,使字母范围扩大例1.已知函数c ax x f -=2)(满足1)1(4-≤≤-f ,5)2(1≤≤-f ,求)3(f 的最大值与最小值.典型错解:由题意得⎩⎨⎧≤-≤--≤-≤-54114c a c a ⎩⎨⎧≤-≤-≤-≤=54141c a a c ,同向不等式相加可得 930≤≤a ,即30≤≤a ,又由41≤-≤a c ,可得71≤≤c .∴2790≤≤a ,17-≤-≤-c ,即2697≤-≤-c a ,而c a f -=9)3(, ∴)3(f 的最大值是26,最小值是 —7.错因分析:在26)3(7≤≤-f 中,当且仅当1,3==c a 时,右等号成立;当且仅当7,0==c a 时,左等号成立,这两组字值均不满足⎩⎨⎧≤-≤--≤-≤-54114c a c a ,因此26)3(7≤≤-f 中的左右等号均不能成立,故26、-7不是要求的最值.究其原因,是将a 、c 的范围扩大了.正确解答:由c a f -=)1(,c a f -=4)2(,c a f -=9)3(, 可设)2()1()3(nf mf f +=,则c a c a n c a m -=-+-9)4()(,∴⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧-=--=+3835194n m n m n m ,∴)2(38)1(35)3(f f f +-=,而1)1(4-≤≤-f ,5)2(1≤≤-f , ∴320)1(3535≤-≤f ,340)2(3838≤≤-f ,∴20)2(38)1(351≤+-≤-f f , 即20)3(1≤≤-f ,当⎩⎨⎧=--=-544c a c a ,即⎩⎨⎧==73c a 时,右边等号成立;当⎩⎨⎧-=--=-141c a c a ,即⎩⎨⎧==10c a 时,左边等号成立;两组值均满足⎩⎨⎧≤-≤--≤-≤-54114c a c a ,故)3(f 的最大值是20,最小值是1-.易错点二:忽视一元二次不等式中二次项系数的符号 例 1.已知不等式02≥++c bx ax 的解集为⎭⎬⎫⎩⎨⎧≤≤-231|x x ,则不等式02<++a bx cx 的解集为( )A .⎭⎬⎫⎩⎨⎧<<-312|x x B .⎭⎬⎫⎩⎨⎧>-<312|x x x 或 C .⎭⎬⎫⎩⎨⎧<<-213|x x D .⎭⎬⎫⎩⎨⎧>-<213|x x x 或 典型错解:由题意知,31-,2是方程)0(02≠=++a c bx ax 的两根,因此由根与系数的关系得a b -=+-231,a c =⨯-2)31(,∴a b 35-=,a c 32-=.∴不等式02<++a bx cx 可化为035322<+--a ax ax ,即0135322>-+x x ,解得213>-<x x 或,故选D . 错因分析:由于对一元二次不等式解集的意义理解不够,故忽视了对a 、b 、c 符号的判断.根据给出的解集,除知道31-和2是方程)0(02≠=++a c bx ax 的两根外,还应知道0<a ,然后通过根与系数的关系进一步求解.正确解答:由于不等式02≥++c bx ax 的解集为⎭⎬⎫⎩⎨⎧≤≤-231|x x ,可知0<a ,且31-,2是方程)0(02≠=++a c bx ax 的两根, ∴a b -=+-231,a c =⨯-2)31(,∴a b 35-=,a c 32-=.∴不等式02<++a bx cx 可化为035322<+--a ax ax ,由于0<a∴0135322<-+x x ,即03522<-+x x ,解得213<<-x . ∴所求解集为⎭⎬⎫⎩⎨⎧<<-213|x x ,选C . 易错点三:忽视基本不等式中定值的条件例2.已知正数a ,b 满足3222=+b a ,求12+b a 的最大值.典型错解:∵)1(211222++≤+b a b a ,等号成立的条件是12+=b a ,122+=b a ,又3222=+b a ,∴342=a ,312=b ,∴12+b a 的最大值为34. 错因分析:)1(2122++b a 并不是定植,利用基本不等式求定值时,定值是前提,先有定值后相等,并不是先相等后求值.正确解答:)12(2122122212222++⨯≤+⨯=+b a b a b a 2)13(42=+⨯=,当且仅当122+=b a ,且3222=+b a 时,等号成立. 解得12=a ,12=b ,即1==b a 时,12+b a 有最大值2.易错点四:忽视基本不等式中等号成立的一致性 例3. 已知0,0x y >>,且12=+y x ,求yx 11+的最小值. 典型错解:∵0,0x y >>,且12=+y x ,∴)2)(1111y x yx y x ++=+( 2422112=⋅⋅≥xy yx ,∴y x 11+的最小值为24.错因分析:错解的原因是连续两次使用基本不等式时,忽视了等号成立的一致性.实际上,第一个取“=”的条件为yx 11=,即y x =,而第二个取“=”的条件为y x 2=,这样前后就矛盾了.正确解答:∵0,0x y >>,且12=+y x ,∴)2)(1111y x yx y x ++=+( 22322323+=⋅+≥++=yxx y y x x y ,当且仅当y x x y =2,且12=+y x , 即12-=x ,221-=y 时,等号成立,yx 11+的最小值为223+. 易错点五:该分类讨论的不分类讨论,或能分类讨论但不能做到“不重不漏”例4.已知关于x 的不等式01)2()4(22≥-++-x a x a 的解集是空集,求实数a 的取值范围.典型错解:根据“三个二次”之间的关系,结合题意得⎪⎩⎪⎨⎧<-++=∆<-0)4(4)2(04222a a a解得562<<-a ,∴所求的实数a 的取值范围是562<<-a . 错因分析:只把不等式当做x 的一元二次不等式,而忽视其它情形,也就是对2x 的系数该分类的不分类,也就使得解法有漏洞.正确解答:当2=a 时,不等式为014≥-x ,解集非空; 当2-=a 时,不等式为01≥-,解集为空集;当2±≠a 时,根据“三个二次”之间的关系,结合题意得⎪⎩⎪⎨⎧<-++=∆<-0)4(4)2(04222a a a ,解得562<<-a . 综上可得,所求的实数a 的取值范围是562<≤-a . 不等式问题常见思维误区的归纳与总结:在解决不等式的问题时,易错点还是比较多的,除了上述五个易错点外,易错点还有:不能正确运用不等式的性质;在解不等式或证明不等式时不能对不等式进行等价转化;线性规划中不能正确画图、识图,找不准最优解;利用基本不等式时忽视应用的三个条件缺一不可,等等.了解这些易错点可以帮助我们引以为戒、拨乱反正、健步前冲.。

初一不等式经典易错题解析

初一不等式经典易错题解析

初一不等式经典易错题解析初一不等式经典易错题解析初一学生在学习不等式时,难免会遇到一些经典易错题,这在一定程度上也给学习带来了一些困扰。

在本文中,我们将对初一不等式中一些经典易错题进行解析,希望对同学们的学习有所帮助。

一、乘方不等式易错点在不等式中,乘方往往是初一学生们考试时经常遇到的问题,其中特别容易发生的错误包括:1. 未进行“正负性”分析乘方在不等式中的作用是使变量的取值范围变广,但我们必须检查其“正负性”,否则就会出现错误的答案。

比如,当我们遇到以下不等式时:(1)x^2-6x+5>0(2)x^2+6x+5>0根据情况,我们可以把这两个不等式转化为因式分解的形式。

对于第一个式子,我们可以得到x在0到5之外或者在1到正无穷之间;而对于第二个式子,我们可以得到x在正无穷到-1或者在-5到正无穷之外。

在情况(1)中,我们需要特别注意的是,当x在1到5之间时,式子的取值就会变为负数,因此其“正负性”分析对于解题至关重要。

2. 公因数舍去的问题在乘方问题中,如果变量被约分后就会导致解题出现偏差。

例如:对于以下不等式而言:(3)2x^2+3x-2<0当我们对其进行因式分解,会得到2(x+1)(x-2)<0,但我们需要注意,当x=-1时,x+1=0,此时2(x+1)(x-2)的分子是0,不符合数学逻辑规律,我们需要忽略掉这种情况。

因此,正确的解题思路应该是用区间法将不等式的解空间分为三段,分别为x<-1、-1<x<2、2<x。

二、加减不等式易错点在初一不等式题型中,加减不等式也经常出现。

在处理这类问题中,需要注意以下问题:1. 未进行化简,直接求解很多时候,初一学生在解加减不等式时直接将式子简化,导致解题出现了较大偏差。

事实上,在处理不等式问题时,我们需要把含有常数的项先整合。

例如:对于以下不等式而言:(4)2x+1<3x-4如果我们直接拆方程,化简后得到x>5,但这种做法是错误的,因为我们在拆方程之前必须将常数加起来,然后再消元,即:(5)-x<-5x>5因此,式子的解空间是x>5。

指数不等式与对数不等式易错点

指数不等式与对数不等式易错点

指数不等式与对数不等式的解法易错点一、忘记根据底数的范围讨论函数的单调性【例1】解不等式2122-+>x x a a0(>a 且1≠a ). 错解:由2122-+>x x a a ,得2122->+x x ,即0322<--x x ,解得31<<-x ,即2122-+>x x a a 的解集为()3,1-.剖析:本题忘记讨论底数10<<a 与1>a 两种情况,导致错误.正解:当1>a 时,由2122-+>x x a a ,得2122->+x x ,即0322<--x x ,解得31<<-x ;当10<<a 时,由2122-+>x x a a ,得2122-<+x x ,即0322>--x x ,解得31>-<x x 或;综上所述,当1>a 时,不等式的解集为()3,1-;当10<<a 时,不等式的解集为()()+∞-∞-,31, .二、忽视对数式的“真数为正”导致错误【例2】解不等式0)2(log )12(log 212>-++x x错解:由0)2(log )12(log 212>-++x x ,得())2(l o g 12lo g 22->+x x ,即212->+x x ,解得3->x ,即0)2(log )12(log 212>-++x x 的解集为()+∞-,3.剖析:本题忽视对数式中的真数为正值导致错误.正解:由0)2(l o g )12(l o g 212>-++x x ,得())2(l o g 12l o g 22->+x x ,即⎪⎩⎪⎨⎧->+>->+21202012x x x x ,即⎪⎪⎩⎪⎪⎨⎧->>->3221x x x ,即2>x ,即0)2(l o g )12(l o g 212>-++x x 的解集为()+∞,2. 三、利用换元思想时,忘记中间元的求值范围导致错误 【例3】若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.错解:∵不等式4x -2x +1-a ≥0在[1,2]上恒成立, ∴4x -2x +1≥a 在[1,2]上恒成立. 令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1. 由二次函数的性质可知:y 取得最小值-1,∴实数a 的取值范围为(-∞,-1].。

一元一次不等式易错点分析

一元一次不等式易错点分析

不等式(组)常见错解剖析河南师大附中 刘晨曦不等式(组)是初中数学的重要内容之一,是以后学习函数等知识的基础,因此学好这部分内容对以后的学习起着非常重要的作用. 但初学者,由于对其定义、性质、解法等理解不透,而导致许多错误.现就平时作业和检测中常出现的错误进行剖析,以提高同学们的解题能力.1 忽视因式为0例1 若a b >,则22____ac bc .错解 因为20c >,且a b >,所以22ac bc >,故填>.剖析 上面的解法错在忽视了0c =.当0c =时,22ac bc =.正解 因为20c ≥,且a b >,所以22ac bc ≥,故应填≥.2 忽视系数0a ≠例2 若(1)20m m x ++>是关于x 的一元一次不等式,则m 的取值是 . 错解 由题意,得1m =,∴1m =±.故填1±.剖析 当1m =-时,10m +=,此时得到不等式2>0. 一元一次不等式应满足的条件是:①只含有一个未知数;②未知数的最高次数是1;③是不等式. 一元一次不等式的一般形式是:000ax b ax b a +>+<≠或(),在解题时切不可忽视0a ≠的条件. 正解 由题意,得1m =,且10m +≠,即1m =±且1m ≠-,∴1m =.故应填1. 3 忽视移项要变号例3 解不等式61431x x +>-.错解 移项,得63114x x +>-+,合并同类项,得 913x >,系数化为1,得 139x >. 剖析 移项是解不等式时的常用步骤,可以说它是不等式性质1的直接推论.但要注意移项必须变号,而上面的解法就错在移项时忘记了变号.正解 移项,得63114x x ->--,合并同类项,得 315x >-,系数化为1,得 5x >-.4 忽视括号前的负号例4 解不等式()53216x x -->-.错解 去括号,得5636x x -->-,解得3x <.剖析 错解在去括号时,没有将括号内的项全改变符号,忽视了括号前的负号.去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号. 正解 去括号,得5636x x -+>-,解得9x <.5 忽视分数线的括号作用例5 解不等式125164x x +--≥. 错解 去分母,得2261512x x +--≥,移项,得2612215x x -≥-+,合并同类项,得425x -≥,系数化为1,得 254x ≤-. 剖析 分数线具有“括号”的作用,故在去分母时,分数线上面的多项式应作为一个整体,加上括号.上面的解法就错在忽视分数线的括号作用.正解 去分母,得2(1)3(25)12x x +--≥,去括号,得2261512x x +-+≥,移项,得 2612215x x -≥--,合并同类项,得45x -≥-,系数化为1,得54x ≤. 6 忽视分类讨论例6 代数式1x -与2x -的值符号相同,则x 的取值范围________.错解 由题意,得1020x x ->⎧⎨->⎩,解之,得2x >,故填2x >. 剖析 上面的解法错在忽视了对符号相同的分类讨论.由题意知,符号相同,两代数式可以均是正数,也可以均是负数,应分大于0和小于0进行探究.正解 由题意,得10102020x x x x ->-<⎧⎧⎨⎨->-<⎩⎩或,解之,得21x x ><或, 故应填21x x ><或.7 忽视隐含条件例7 关于x 的不等式组()()()233113224x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,求a 的取值范围. 错解 由(1)得8x >,由(2)得24x a <-,因不等式组有四个整数解,故中的整数解有4个,即9、10、11、12,故2413a -≤,解得114a ≥-. 剖析 上面的解法错在忽视隐含条件2412a ->而致错,当有多个限制条件时,对不等式关系的发掘不全面,会导致未知数范围扩大,因此解决这方面的问题时一定要细心留意隐含条件.正解 由(1)得8x >,由(2)得24x a <-,因不等式组有四个整数解,故中的整数解有4个,即9、10、11、12,故122413a <-≤,解得11542a -≤<-. 8 用数轴表示解集时,忽视虚、实点例8 不等式组()()()523111317222x x x x ->+⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴表示出来. 错解 解不等式(1),得52x >,解不等式(2),得4x ≤, 在同一条数轴上表示不等式(1)、(2)的解集,原不等式组的解集是如图1图1剖析 本题的解集没有错,错在用数轴表示解集时,忽视了虚、实点.不等式的解集在数轴上表示时,没有等号的要画虚点,有等号的要画实点.正解 解不等式(1),得52x >,解不等式(2),得4x ≤,在同一条数轴上表示不等式(1)、(2)的解集,如图2,原不等式组的解集是.图29 忽视题中条件例9 有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数是多少?错解 设宿舍间数为x ,学生人数为420x +,由题意,得()420818x x +--<,解得5x >,∵x 是正整数 ∴ x = 6,7,8……答:至少有6间宿舍.剖析 错解的原因在于对题意不够理解,忽视题中的“一间宿舍不满也不空”这一条件.审清题意是解决这类问题的关键.正解 设宿舍间数为x ,学生人数为420x +,由题意,得()0420818x x <+--<,解得57x <<,∵x 是正整数 ∴6x =.答:有6间宿舍.。

必学五基本不等式的题型与易错点

必学五基本不等式的题型与易错点

高考基本不等式专题典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)=31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 解法二:∵0<x <31,∴31-x >0. ∴y=x(1-3x)=3x(31-x)≤3[231x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2xx 1•=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x-1,即x=-1时,等号成立. ∴y=x+x1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值. 思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x>-1,∴x+1>0. ∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+•+x x -1=1. 当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1.变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开.解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2t t 1•=2,当且仅当t=t1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.例2已知x >0,y >0,且x 1+y 9=1,求x+y 的最小值.思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换”, ∵x 1+y 9=1, ∴x+y=(x+y)·(x 1+y 9)=10+yx x y 9+. ∵x>0,y >0,∴y x x y 9+≥2y x x y 9•=6. 当且仅当y x x y 9=,即y=3x 时,取等号. 又x 1+y 9=1,∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9-y y . ∵x>0,y >0,∴y>9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10. ∵y>9,∴y -9>0. ∴999-+-y y ≥299)9(-•-y y =6. 当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y 9=1,得y+9x=xy,∴(x -1)(y-9)=9. ∴x+y=10+(x -1)+(y-9)≥10+2)9)(1(--y x =16,当且仅当x-1=y-9时取得等号.又x 1+y 9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的X 围对另外一个变量的X 围的影响.黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy 6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y 9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.变式训练已知正数a,b,x,y 满足a+b=10,y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.解:x+y=(x+y)(yb x a +)=a+x ay y bx ++b=10+x ay y bx +. ∵x,y>0,a,b >0, ∴x+y≥10+2ab =18,即ab =4. 又a+b=10,∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a 例3求f(x)=3+lgx+x lg 4的最小值(0<x <1). 思路分析:∵0<x <1,∴lgx<0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数. 解:∵0<x <1,∴lgx<0,x lg 4<0.∴-x lg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (xx --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=x lg 4,即x=1001时取得等号. 则有f(x)=3+lgx+x lg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0. 解:∵x<45,∴4x -5<0. y=4x-5+541-x +3=-[(5-4x)+x451-]+3 ≤-2xx 451)45(-•-+3=-2+3=1. 当且仅当5-4x=x 451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(xx 238223-+-)+23,再求最值. 解:y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,∵当x <23时,3-2x >0, ∴x x 238223-+-≥x x 2382232-•-=4,当且仅当xx 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1 (1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy.方法一:由于2x+3y≥2y x 32⨯=2xy 6, ∴2xy 6≤18,得xy≤227,即S≤227. 当且仅当2x=3y 时等号成立.由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x>0,∴0<y <6.S=xy=(9-23y)y=23 (6-y)y. ∵0<y <6,∴6-y >0.∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y. 方法一:∵2x+3y≥2y x 32•=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.方法二:由xy=24,得x=y 24.∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x200+80×200. =800(x+x 324)+16 000≥800×2xx 324•+16 000=44 800, 当且仅当x=x 324 (x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)] =800×212112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度.导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可. 探究:设此人应选第n 层楼,此时的不满意程度为y.由题意知y=n+n8. ∵n+n8≥2248=⨯n n , 当且仅当n=n 8,即n=22时取等号. 但考虑到n∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.。

备战2021年高考数学一轮复习易错题08不等式含解析

备战2021年高考数学一轮复习易错题08不等式含解析

易错点08 不等式-备战2021年高考数学一轮复习易错题【典例分析】(2020年普通高等学校招生全国统一考试数学)已知a >0,b 〉0,且a +b =1,则( ) A 。

2212a b +≥B 。

122a b ->C 。

22log log 2a b +≥-D.≤【答案】ABD 【解析】 【分析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B,211a b a -=->-,所以11222a b -->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D,因为2112a b =+++=,≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养。

【易错警示】易错点1.随意消项致误 【例1】解不等式;22(1025)(43)0x x x x -+-+≥.【错解】原不等式可化为:2(5)(1)(3)0x x x ---≥,因为2(5)x -≥,所以(1)(3)0x x --≥,所以31x x ≥≤或,故原不等式的解集为:{}|31x x x ≥≤或. 【错因】错误是由于随意消项造成的,事实上,当2(5)0x -=时,原不等式亦成立.【正解】原不等式可化为:50(1)(3)0x x x -≠⎧⎨--≥⎩或50x -=,解得3x ≥或1x ≤或5x =.所以原不等式的解集为:{}315x x x ≥≤=x|或或易错点2.认为分式不等式与二次不等式等价致误 【例2】解不等式;102x x -≤+. 【错解】原不等式可化为:(1)(2)0x x -+≤,解得21x -≤≤,所以原不等式的解集为[2,1]-.【错因】没有考虑分母不能为0【正解】原不等式可化为:(1)(2)02x x x -+≤⎧⎨≠-⎩,解得21x -<≤, 所以原不等式的解集为(2,1]-.易错点3.不等式两边同乘一个符号不确定的数致误 【例3】解不等式;122x x -≤+. 【错解】不等式两边同乘以2x +得:12(2)x x -≤+,解得5x ≥-, 所以原不等式的解集为[5,)-+∞. 【错因】两边同乘以2x +,导致错误【正解】原不等式可化为:1520022x x x x -+-≤⇒≥++,解得5x ≤-或2x >-,所以原不等式的解集为(,5](2,)-∞--+∞.易错点4.漏端点致误 【例4】集合{}{}2|20,|3A x x x B x a x a =--≤=<<+,且A B φ=,则实数的取值范围是______ 【错解】{}{}2|20|12A x xx x x =--≤=-≤≤ ,若使AB φ=,需满足231a a >+<-或.解得24a a ><-或,所以实数a 的取值范围是24a a ><-或.【错因】忽视了集合{}|12A x x =-≤≤的两个端点值-1和2,其实当2a =时{}|25B x x =<<,满足A B φ=;当31a +=-时,即4a =-时也满足AB φ=.【正解】{}{}2|20|12A x xx x x =--≤=-≤≤若使A B φ=,需满足231a a ≥+≤-或,解得24a a ≥≤-或,所以实数a 的取值范围是24a a ≥≤-或. 易错点5.忽视基本不等式成立的前提“正数” 【例5】求函数1y x x=+的值域.【错解】因为12y x x=+≥=,所以函数 1y x x=+的值域为[2,)+∞. 【错因】没有考虑为负数的情形.【正解】由题意,函数1y x x=+的定义域为{|0}x x ≠.当0x >时,12y x x=+≥=,当1x =时取得等号;当0x <时,11()2y x x x x=+=--+≤-=--,当1x =-时取得等号. 综上,求函数1y x x=+的值域是(,2][2,)-∞-+∞. 易错点6.忽视基本不等式取等的条件 【例6】求函数2y =的最小值.【错解】函数222y ===≥,所以函数的最小值为2.【错因】使用基本不等式求函数的最值时,一定验证等号成立的条件即a b a b+≥=才能取等号.上述解法在等号成立时,在实数范围内是不成立的. 【正解】22y ===令2t ≥,1y t t =+在2t ≥时是单调递增的,115222y t t ∴=+≥+=. 故函数的最小值是52.易错点7.多次使用基本不等式,忽视等号是否同时成立【例7】已知两个正实数,x y ,满足4x y +=,求14x y+的最小值.【错解】由已知得44x y xy =+≥≤,142x y +≥=≥,所以14x y +最小值是2.【错因】两次使用基本不等式,其中4xy ≤等号成立必须满足x y =,而14x y+≥的等号成立时,必须有4x y =,因为均为正数,所以两个等号不会同时成立,所以上述解法是错误的. 【正解】141444()()()59x y x y x y x y y x +=++=++≥,当且仅当14x y=且4x y +=,即48,33x y ==时取等号,1494x y ∴+≥,即14x y +最小值为94.【变式练习】一、单选题1.(2020·贵州铜仁伟才学校高一期中)已知0a b <<,则下列不等式正确的是( ) A .22a b <B .11a b <C .22ab < D .2ab b<【答案】C 【解析】试题分析:取a =-2,b =—1,代入到各个选项中得到正确答案为C .2.(2020·河北省高二开学考试)若正数a ,b 满足31a b +=,则13a b+的最小值为( ) A .12 B .14C .16D .18【答案】C【解析】因为31a b +=,所以()131333310b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因为a ,b 为正数,所以33b a a b +≥,当且仅当33b a a b =,即14a b ==时取等号, 故13a b +的最小值为16,故选:C 。

中考数学常见易错知识点汇总(方程组与不等式组)

中考数学常见易错知识点汇总(方程组与不等式组)

中考数学常见易错知识点汇总(方程组与不
等式组)
方程(组)与不等式(组)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括
号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式易错点 【易错点 29】含参分式不等式的解法。

易对分类讨论的标准把握不准,分类讨论达不到不重不漏的目的。

例 29 解关于 x 的不等式 a ( x − 1) >1(a≠1)【易错点】不等式化为关于 x 的一元二次不等式后,忽视对二次项系数的正负的讨论 解:原不等式可化为: (a − 1) x + (2 − a) >0,即[(a-1)x+(2-a)](x-2)>0. x−2 a − 2 )(x-2)>0 同解.若 a − 2 ≥2,即 0≤a<1 时,原不等式无解;若 a − 2 <2,即 a<0 或 a>1,于是 当 a>1 时,原不等式与(x- a −1 a −1 a −1 a − 2 )∪(2,+∞). a>1 时原不等式的解为(-∞, 当 a<1 时,若 a<0,解集为( a − 2 ,2);若 0<a<1,解集为(2, a − 2 )a −1x−2a −1 a −1 a − 2 )∪(2,+∞);0<a<1 时,解集为(2, a − 2 );a=0 时, ∅ ;a<0 时,解集为( a − 2 ,2). 综上所述:a>1 时解集为(-∞, a −1 a −1 a −1【知识点分类点拔】解不等式对学生的运算化简等价转化能力有较高的要求,解不等式需要注意下面几个问题: (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法. (2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法. (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法. (4)掌握含绝对值不等式的几种基本类型的解法. (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.(6)对于含字母的不等式,要能按照正 确的分类标准,进行分类讨论. 【易错点 30】求函数的定义域与求函数值域错位 例 30、已知函数 f ( x ) = lg  m 2 − 3m + 2 x 2 + 2 ( m − 1) x + 5 (1)如果函数 f ( x ) 的定义域为 R 求实数 m 的取值范围。

(2)如果函   数 f ( x ) 的值域为 R 求实数 m 的取值范围。

【易错点分析】易忽视对 m 2 − 3m + 2 是否为零的讨论,思维不全面.漏解。

另一方面对两个问题中定义域为 R 和值域为 R 的含义理 解不透彻导致错解。

解析: (1)据题意知若函数的定义域为 R 即对任意的 x 值 m 2 − 3m + 2 x 2 + 2 ( m − 1) x + 5 > 0 恒成立,令()()g ( x ) = ( m − 3m + 2 ) x + 2 ( m − 1) x + 5 ,当 m − 3m + 2 =0 时,即 m = 1 或 2 。

经验证当 m2 22= 1 时适合,当 m 2 − 3m + 2 ≠ 0 时,据二次函数知m> 9。

4识若对任意 x 值函数值大于零恒成立,只需 m 2 − 3m + 2 > 0 解之得 m < 1 或 m > 9 综上所知 m 的取值范围为 m ≤ 1 或 ∆ < 04(2) 如果函数 f ( x ) 的值域为 R 即对数的真数 ( m 2 − 3m + 2 ) x 2 + 2 ( m − 1) x + 5 能取到任意的正数, g ( x ) = ( m 2 − 3m + 2 ) x 2 + 2 ( m − 1) x + 5 令 当 m2 − 3m + 2 =0 时,即 m = 1 或 2 。

经验证当 m = 2 时适合,当 m 2 − 3m + 2 ≠ 0 时,据二次函数知识知要使的函数值取得所有正值只需 9。

m 2 − 3m + 2 > 0 解之得 2 < m ≤ 9 综上可知满足题意的 m 的取值范围是 2≤m≤  4 4 ∆≥0  【知识点归类点拔】对于二次型函数或二次型不等式若二次项系数含有字母,要注意对字母是否为零进行讨论即函数是一次函数还 是二次函数不等式是一次不等式还是二次不等式。

同时通过本题的解析同学们要认真体会这种函数与不等式二者在解题中的结合要 通过二者的相互转化而获得解题的突破破口。

【易错点 31】不等式的证明方法。

学生不能据已知条件选择相应的证明方法,达不到对各种证明方法的灵活应用程度。

例 31、已知 a>0,b>0,且 a+b=1.求证:(a+ 不能同时取得等号,本题可有如下证明方法。

证法一:(分析综合法)欲证原式,即证 4(ab)2+4(a2+b2)-25ab+4≥0,即证 4(ab)2-33(ab)+8≥0,即证 ab≤ 1 或 ab≥8.∵a>0,b> 40,a+b=1,∴ab≥8 不可能成立∵1=a+b≥21 1 1 )(b+ 1 )≥ 25 .【易错点分析】此题若直接应用重要不等式证明,显然 a+ 和 b+ b a a b 4ab ,∴ab≤ 1 ,从而得证.41 1 证法二:(均值代换法)设 a= +t1,b= +t2.∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|< 1 ,|t2|< 1 2 2 2 21 1 1 1 2 2 ( + t1 ) 2 + 1 ( + t 2 ) 2 + 1 ( + t1 + t1 + 1)( + t 2 + t 2 + 1) a +1 b +1 1 1 4 ∴ (a + )(b + ) = × = 2 × 2 = 4 1 1 1 1 a b a b + t1 + t2 ( + t1 )( + t 2 ) 2 2 2 2 25 3 2 25 1 1 5 4 2 2 2 2 + t2 + t 2 ( + t1 + t1 + 1)( + t 2 + t 2 + 1) ( + t 2 ) 2 − t 2 25 4 = 4 = 4 = 16 2 ≥ 16 = . 1 1 1 1 2 2 2 4 − t2 − t2 − t2 4 4 4 42 2显然当且仅当 t=0,即 a=b=1 时,等号成立. 2证法三:(比较法)∵a+b=1,a>0,b>0,∴a+b≥2 ab ,∴ab≤ 1 41 1 25 a 2 + 1 b 2 + 1 25 4a 2 b 2 + 33ab + 8 (1 − 4ab)(8 − ab) ( a + )(b + ) − = ⋅ − = = ≥0 a b 4 a b 4 4ab 4ab 1 1 25 ∴ (a + )(b + ) ≥ a b 4证法四:(综合法)∵a+b=1, a>0,b>0,∴a+b≥2 ab ,∴ab≤25   2 (1 − ab) + 1 ≥ 16  (1 − ab) 2 + 1 25 1 3 9   2 ∴1 − ab ≥ 1 − = ⇒ (1 − ab) ≥ ⇒  ≥ ⇒ 1 4 4 16  ab 4 ≥4    ab  1 . 41 1 25 即( a + )(b + ) ≥ a b 4证法五:(三角代换法)∵ a>0,b>0,a+b=1,故令 a=sin2α,b=cos2α,α∈(0, π )21 1 1 1 sin 4 α + cos 4 α − 2 sin 2 α cos 2 α + 2 (a + )(b + ) = (sin 2 α + )(cos 2 α + )= a b sin 2 α cos 2 α 4 sin 2 2α 4 − 2 sin 2 2α + 16 ≥ 25 ( 4 − sin 2 α ) 2 + 16  = Q sin 2 2α ≤ 1,∴ 4 − sin 2 2α ≥ 4 − 1 = 3. 1  1 4 sin 2 2α ≥  2 sin 2α 4  2 2 (4 − sin 2α ) 25 1 1 25 ⇒ ≥ 即得(a + )(b + ) ≥ . 4 a b 4 4 sin 2 2α【知识点归类点拔】1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式 有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关 于某一个变量的二次式,则考虑用判别式法证. (2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路, 开扩视野. 2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换, 均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以 从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少” “惟一”或含有其他否定词的命题, 适宜用反证法. 【易错点 32】函数与方程及不等式的联系与转化。

学生不能明确和利用三者的关系在解题中相互转化寻找解题思路。

例 32、 已知二次函数 f ( x ) 满足 f ( −1) = 0 , x ≤ f ( x ) ≤ 1 ( x 2 + 1) 对一切实数 x 恒成立. (1) 求 f (1) ; (2) 求 f ( x ) 的解析式; 且 (3) 2 2n ( n ∈ N ). 【易错点分析】对条件中的不等关系向等式关系的转化不知如何下手,没有将二次不等式与二次函数 求证: n 1∑ f (k ) > n + 2i =1相互转化的意识,解题找不到思路。

解: (1)由已知令 x = 1 得: 1 ≤ f (1) ≤ 1 (12 + 1) = 1 ∴ f (1) = 1.21 (2)令 f ( x ) = ax 2 + bx + c(a ≠ 0) 由 f ( −1) = 0, f (1) = 1 得: a − b + c = 0 ∴ b = 1 , c = 1 − a 即 f ( x ) ax 2 1 x 1 a 则 对任 = + + − x ≤ f ( x ) ≤ ( x 2 + 1) 意实数x 恒成立就是a + b + c = 1 1  2 1  ax − x + − a ≥ 0 对任意实数恒成立,即: 2 2  (1 − 2a ) x 2 − x + 2a ≥ 0 22222 a > 0,1 − 2a > 0 1 1  ∴a = ,c = 1 2  4 4  ∆ 1 = (2a − ) ≤ 0 2   ∆ 2 = (4a − 1)2 ≤ 0 则 f ( x) = 1 x2 + 1 x + 14 24(3) (2) f ( x ) = 1 ( x + 1)2 故 1 由 知 =4f (k )n 1 1 1 1 1 1 1 1 1 4 4 ) ∴∑ = 4( − )= − > 4( − + − + L + > 2 k +1 k + 2 2 3 3 4 n+1 n+2 (k + 1)(k + 2) (k + 1) i =1 f ( k )=2n n+2故原不等式成立. 【知识点归类点拔】函数与方程的思想方法是高中数学的重要数学思想方法函数思想,是指用函数的概念和性质去分析问题、转化 问题和解决问题。

相关文档
最新文档