(完整版)概率论基本公式
概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
(完整)概率论核心概念及公式(全)

A B
如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。
A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表
件的关 示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件.
P(X k) Pn(k) Cnk pk qnk , 其中 q 1 p,0 p 1, k 0,1,2,, n ,
则称随机变量 X 服从参数为n , p 的二项分布。记为
X ~ B(n, p) 。
当n 1时,P(X k) pk q1k , k 0.1,这就是(0-1)分布,
所以(0—1)分布是二项分布的特例。
和事件 B,C,…表示事件,它们是 的子集。
为必然事件,Ø 为不可能事件.
不可能事件(Ø )的概率为零,而概率为零的事件不一定是不可能事件;同理,
必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
种方法来完成,则这件事可由 m×n 种方法来完成。
(3) 重复排列和非重复排列(有序)
一些常 对立事件(至少有一个)
见排列 顺序问题
(4)随 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
概率论的公式大全

概率论的公式大全概率论是数学中的一门重要分支,用于研究随机事件的发生概率和规律性。
下面是概率论中的一些常用公式和定理,供参考:1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的情况数,n(S)表示样本空间中所有事件发生的情况数。
2.加法定理:P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B发生的概率。
3.乘法定理:P(A∩B)=P(B,A)×P(A)其中,P(B,A)表示在事件A已经发生的条件下,事件B发生的概率。
4.互斥事件的概率:若事件A和事件B互斥(即不能同时发生),则P(A∪B)=P(A)+P(B) 5.条件概率:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在事件B已经发生的条件下,事件A发生的概率。
6.贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B)其中,P(A,B)表示在事件B已经发生的条件下,事件A发生的概率;P(B,A)表示在事件A已经发生的条件下,事件B发生的概率。
7.全概率公式:P(A)=∑[P(A∩B_i)]其中,事件B_1,B_2,...,B_n互斥且构成样本空间,P(B_i)不为0,P(A∩B_i)表示事件A和事件B_i同时发生的概率。
8.期望值:E(X)=∑[x_i×P(X=x_i)]其中,X为随机变量,x_i为随机变量X的取值,P(X=x_i)为随机变量X取值为x_i的概率。
9.方差:Var(X) = E[(X - E(X))^2]其中,X为随机变量。
10.协方差:Cov(X, Y) = E[(X - E(X)) × (Y - E(Y))]其中,X和Y为两个随机变量。
11.独立事件的概率:若事件A和事件B独立,即P(A∩B)=P(A)×P(B)12.独立随机变量的期望值:E(XY)=E(X)×E(Y)其中,X和Y为独立随机变量。
概率公式大全

概率公式大全概率公式大全(上篇)概率公式在概率论中起着非常重要的作用,它们用于描述随机事件的发生概率以及事件之间的关系。
本文将介绍一些常见的概率公式,帮助读者更好地理解和应用概率论。
1. 基本概率公式1) 事件的概率公式:在概率论中,事件的概率通常用P(A)表示,其中A表示一个事件。
事件A的概率可以用下述公式计算:P(A) = N(A) / N(S)其中,N(A)表示事件A发生的次数,N(S)表示样本空间S 中的总次数。
2) 样本空间的概率公式:当样本空间S的每个样本点发生的概率相同且为1/N(S)时,我们可以使用下述公式计算事件A的概率:P(A) = N(A) / N(S)这个公式在实际问题中应用广泛,是基本的概率公式之一。
2. 条件概率公式1) 条件概率的定义:在事件B发生的条件下,事件A发生的概率称为A在B 条件下的条件概率,用P(A|B)表示。
条件概率的计算公式如下:P(A|B) = P(A ∩ B) / P(B)其中,P(A ∩ B)表示事件A与事件B同时发生的概率。
2) 乘法公式:乘法公式是条件概率的推广形式,用于计算两个事件同时发生的概率。
根据乘法公式,我们可以得到:P(A ∩ B) = P(A|B) * P(B)这个公式在计算复杂事件的概率时非常有用。
3. 全概率公式全概率公式用于计算一个事件发生的总概率,它假设事件发生的样本空间可以划分为若干个互斥事件。
全概率公式如下:P(A) = Σi P(A|Bi) * P(Bi)其中,Bi表示样本空间S的一个划分,P(A|Bi)表示在Bi条件下事件A发生的概率。
这个公式可以在一些复杂问题中计算事件发生的概率,非常实用。
4. 贝叶斯公式贝叶斯公式是条件概率公式的逆运算,用于通过已知的条件概率反推出相反的条件概率。
根据贝叶斯公式,可以得到:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A)和P(B)分别表示事件A和事件B的概率。
(完整版)概率论公式总结

(完整版)概率论公式总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ∑≤==≤=xk k X P x X P x F )()()(概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp ()对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤ba dx x fb X a P )()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=x dtt f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )(1)(b x a a b x f ≤≤-=联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dy y x f x f X ),()(⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k k P x X E )(⎰+∞∞-⋅=dx x f x X E )()(∑=k k k p x g X g E )())((方差定义式 常用计算式常用公式 当X 、Y 相互独立时: 方差的性质D(a)=0,其中a 为常数D(a+bX)= abD(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质∑∑=i j iji p x X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关独立必定不相关、相关必定不独立、不相关不一定独立第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P。
(整理)概率论公式大全

第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
概率论公式大全

第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
概率论数理统计公式整理

概率论数理统计公式整理一、概率论公式1.定义公式:-事件概率的定义:若E为随机试验的一个事件,S为样本空间,则事件E发生的概率可以表示为P(E)=n(E)/n(S),其中n(E)表示事件E中元素的个数,n(S)表示样本空间S中元素的总数。
2.概率计算公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),其中A,B为两个事件。
-条件概率公式:P(A,B)=P(A∩B)/P(B),其中A,B为两个事件,且P(B)≠0。
-乘法公式:P(A∩B)=P(A)P(B,A),其中A,B为两个事件。
3.全概率公式与贝叶斯公式:-全概率公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(A)=ΣP(A,Bi)P(Bi),其中i=1,2,...,n。
-贝叶斯公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中i=1,2,...,n。
二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布:P(X=x)=p(x),其中x为随机变量X的取值,p(x)为概率质量函数。
- 连续型随机变量的概率密度函数: f(x) ≥ 0,且∫f(x)dx = 12.随机变量的数学期望:- 离散型随机变量的数学期望: E(X) = Σxip(xi),其中xi为随机变量X的取值,p(xi)为X取值为xi的概率。
- 连续型随机变量的数学期望: E(X) = ∫xf(x)dx。
3.方差和标准差:- 离散型随机变量的方差: Var(X) = E[(X - E(X))^2] = Σ(xi - E(X))^2p(xi)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计基本公式第一部分 概率论基本公式1、)(;A B A B A AB A B A B A -⋃=⋃-==--例:证明:成立。
得证。
成立,也即成立,也即(不发生,从而发生,则不发生,,知由(证明:(B A B A AB A B B A AB A B B B A B A B A AB A B B A --=-⋃-⋃-==-=-⋃--)).) 2、对偶率:.----⋃=⋂⋂=⋃B A B A B A B A ; 3、概率性率:(1))()()(212121A P A P A A P A A +=⋃为不相容事件,则、有限可加:(2))()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-⊂-=-时有:特别,(3))()()()(AB P B P A P B A P -+=⋃对任意两个事件有:)();();();()1(.4.0)(2.0)(5.0)(AB P B A P B A P AB P B P B A P A P ⋃-===--求:,,例:已知:.3.0)(1)(,7.0)()()()(3.0)()()(,5.0)(.,2.0)()()()(,=⋃-=⋃==-+=⋃=-=-∴===+∴=+---B A P B A P AB P AB P B P A P B A P AB P A P B A P A P AB P B P B A P AB P B A B B B A AB 又即是不相容事件,、且解:4、古典概型222n 2!)(n ,22)-n 2)!n 2(22nC n A P C A n n n ==!,则自成一双为:!!(解:分堆法:每堆自成一双鞋的概率只,事件堆,每堆为只,分为双鞋总共例: 5、条件概率称为无条件概率。
的条件概率,条件下,事件称为在事件)(,)()()|(B P B A A P AB P A B P =B)|P(B)P(A P(AB) A)|P(A)P(B P(AB)==乘法公式:)|()()(i i A B P A P B P i∑=全概率公式:)|()()|()()()()|(j j ji i i A B P A P A B P A P B P B A P B A P i ∑==贝叶斯公式:例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少?.348.0)()()|()|()2(.639.0)(31)()()(.21)|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴==========∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B ii 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。
,号罐球取自设解:6、独立事件(1)P(AB)=P(A)P(B),则称A 、B 独立。
(2)伯努利概型如果随机试验只有两种可能结果:事件A 发生或事件A 不发生,则称为伯努利试验,即: P(A)=p,q p A P =-=-1)( (0<p<1,p+q=1)相同条件独立重复n 次,称之为n 重伯努利试验,简称伯努利概型。
伯努利定理:k n k k n p p C p n k b --=)1(),;( (k=0,1,2……)事件A 首次发生概率为:1)1(--k p p例:设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号,(1)进行5次重复独立试验,求指示灯发出信号的概率;(2)进行了7次重复独立试验,求指示灯发出信号的概率。
353.0)()1(1)1()(7)2(163.0)()1()(512777375535=--=-===-==-=-=-=∑∑∑C P p p C p p C C P C B P p p C B P B k n k i k kki kk k i k ,代入数据,得:号”,则由题意有:次独立试验发出指示信“设,代入数据得:号”,则由题意有:次独立试验发出指示信“)设解:(第二章7、常用离散型分布(1)两点分布:若一个随机变量X 只有两个可能的取值,且其分布为:p x X P p x X P -====1}{;}{21 (0<p<1)则称X 服从21x x 、处参数为p 的两点分布。
特别地,若X 服从处,0121==x x 参数为p 的两点分布,即:则称X 服从参数为0—1分布。
其中期望E (X )=p,D(X)=p(1-p)(2)二项分布:若一个随机变量X 的概率分布由kn k k n p p C k X P -==)-1(}{(k=0,1,2……)给出,则称X 服从参数为n ,p 的二项分布,记为:X~b(n,p)(或B(n ,p) 其中∑===nk k X P 01}{,当n=1时变为:k kp pX P --==1)1(k}{ (k=0,1),此时为0—1分布。
其期望E (X )=np ,方差D(X)=n(1-p)(3)泊松分布:若一个随机变量X 概率分布为:⋯=>==-2,1,00,!}{k k ek X P k,λλλ则称X 服从参数为λ的泊松分布,记为:)(~)((~λπλX P X 或,其中∑∞===01}{k k X P ,λ称为泊松流强度。
泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n P ,如果∞→n 时,的常数)0(>→λλn nP ,则对任意给定的k ,有λλ--∞→∞←=-=e k p p C p n k b kkn n k nknn n !)1(),;(lim lim ,这表明,当n 很大时,p 接近0或1时,有λλ--≈-e k p p C kkn n k nk n !)1((np =λ)。
其期望方差相等,即:E(X)=D(X)=λ。
8、常用连续型分布(1)均匀分布:若连续随机变量X 的概率密度为{bx a a b x f <<-=),/(1,0)(其他则称X 在区间(a ,b )上服从均匀分布,记为X~U(a,b)。
其中⎰+∞∞=-1)(dx x f ,分布函数为:⎪⎩⎪⎨⎧≥<≤--<=.,1.),/()(,0)(b x b x a a b a x a x x F其期望E (X )=2ba +,方差D(X)=12)(2ab -。
(2)指数分布:若随机变量的概率为0,00,)(>⎩⎨⎧>=-λλλ,其他x e x f x ,则称X 服从参数为λ的指数分布,简记为X~e(λ).其分布函数:0,00,1)(>⎩⎨⎧>-=-λλ,其他,x e x F x其期望E(X)=λ1,方差D(X)=21λ. (3)正态分布:若随机变量X 的概率密度为+∞<<-∞=--x ex f x ,21)(222)(σμσπ,则称X服从参数为μ和2σ的正态分布,记为X~N(μ, 2σ),其中μ和σ(σ>0)都是常数。
分布函数为:.,21)(222)(⎰∞---+∞<<-∞=xt x dt ex F σμσπ。
当时,1,0==σμ称为标准正态分布,概率密度函数为:,21)22x ex -=πϕ(分布函数为:.21)(22dt e x x t ⎰∞--=Φπ定理:设)1,0(~),,(~2N X Y N X σμσμ-=则其期望E(X)= μ,D(X)= 2σ。
9、随机变量函数的分布(1)离散型随机变量函数分布一般方法:先根据自变量X 的所有可能取值确定因变量Y 的所有可能值,然后通过Y 的每一个可能的取值i y (i=1,2,……)来确定Y 的概率分布。
(2)连续型随机变量函数分布方法:设已知X 的分布函数)(x F X 或者概率密度)(x f X ,则随机变量Y=g(X)的分布函数}{})({}{)(Y Y C X P y X g P y Y P y F ∈=≤=≤=,其中})(|{y x g x C y ≤=,dx x f C X P y F yC X Y Y )(}{)(⎰=∈=,进而可通过Y 的分布函数)(y F Y ,求出Y 的密度函数。
例:设随机变量X 的密度函数为⎩⎨⎧<<--=其他,011|,|1)(x x x f X ,求随机变量。
的分布函数和密度函数12+=X Y⎪⎩⎪⎨⎧<≤--==⎪⎩⎪⎨⎧≥<<---≤==+-+=≤+=≤=≥---=-++=-=-≤≤--=≤+=≤=<<==≤+=≤=<<<<<-⎰⎰⎰⎰⎰⎰-∞+∞------其他所以,时,当时,得:当时那么当得:函数,则由的分布函数和概率密度分别是随机变量和解:设,021,111)'()(2,1,21),1(121,0)(,10|)|1(0}1{}{)(2y ),1(12)1()1(|)|1(11{}1{}{)(21,0)(}1{}{)(1,2111)()(1111-2111122y y y F x f y y y y y y F dx dx x dx y X P y Y P y F y y dx x dx x dx x y x y P y X P y Y P y y P y X P y Y P y F y y x Y y f y F Y X Y Y y y y y Y Y Y Y φ10、设随机变量X~N(),2σμ,Y=b aX +也服从正态分布.即))(,(~2σμa b a N b aX Y ++=。
11、联合概率分布(1)离散型联合分布:1i=∑∑jijP(2)连续型随机变量函数的分布:例:设随机变量(X ,Y )的密度函数1(),02,02(,)80,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他求(),(),(),(),cov(,)f x f y E X E Y X Y ,XY ρ,D(X+Y).解:①当0≤x ≤2时由dy x f X )y x (8/1[)(x0+=⎰,得:x fX4/11/8x x (2+=),当x <0或x >2时,由000)(02=+=⎰⎰∞-∞dy dy x f X ,所以,{20,4/11/8x ,02)(≤≤+=x x X x f 其他同理可求得:{2y 0,4/11/8y 02)(≤≤+=y Y y f ,其他; ② E(X)=7/6dx x (2=⎰)X xf ,由对称性同理可求得,E(Y)=7/6。