电磁场二章习题解答(精品文档)

合集下载

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答第1章习题习题1.1给定三个矢量A 、B 和C 如下:23x y z =+-A e e e .4y z=-+B e e ,52x z =-C e e ,解:(1)22323)12(3)A x y z e e e A a e e e A+-===+-++- (2)2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e •=+-•-+=-(4)arccos135.5A B AB θ•===︒ (5)1711cos -=⋅=⋅⋅==B B A A B B A A A A AB Bθ(6)12341310502xy zx Y Z e e e A C e e e ⨯=-=---- (7)0418520502xy zx Y Z e e e B C e e e ⨯=-=++-()(23)(8520)42x Y Z x Y Z A B C e e e e e e •⨯=+-•++=-123104041xy zx Y Z e e e A B e e e ⨯=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ⨯•=---•-=-(8)()10142405502x y zx Y Z e e e A B C e e e ⨯⨯=---=-+-()1235544118520xy zx Y Z e e e A B C e e e ⨯⨯=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。

解:29)4(32222=-++=A776)5(4222=+-+=B31)654()432(-=+-⋅-+=⋅z y x z y x e e e e e e B A则A 与B之间的夹角为131772931cos =⎪⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎪⎭⎫⎝⎛⋅⋅=ar BA B A arcis ABθ A 在B上的分量为532.37731cos -=-=⋅=⋅⋅⋅==B B A BA B A A A A AB Bθ习题1.9用球坐标表示的场225rr =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。

《电磁场与电磁波》(第四版)课后习题解答(全)

《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。

和向量错误!未找到引用源。

垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波第4版(谢处方编)课后习题答案高等

电磁场与电磁波第4版(谢处方编)课后习题答案高等
解:波源的波长
由此可知,导线的线度小于波长,故可将该长直导线视为电偶极子天线,其辐射电阻
对于环形导线可视为磁偶极子天线,其辐射电阻
式中a为圆环的半径,由 于是 代入上式,得
由以上的计算结果可知,环形天线的辐射电阻远远小于长直天线的辐射电阻,即环形天线的辐射能力远远小于长直天线的辐射能力。
9.11为了在垂直于赫兹偶极子轴线的方向上,距离偶极子100km处得到电场强度的有效值大于 ,赫兹偶极子必须至少辐射多大功率?
天线0和天线1在P点产生的总的辐射场为
其摸为
式中
即为二元天线阵的阵因子
9.6两个半波天线平行放置,相距 ,它们的电流振幅相等,同相激励。试用方向图乘法草绘出三个主平面的方向图。
:解:由上题结论可知,二元阵的方向性函数为
其中 为单元天线的方向性函数, 为阵因子,对于半波天线,
(其方向图由题9.3给出)
九章习题解答
9.1设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强度减小到最大值的 时,电台的位置偏离正南多少度?
解:元天线(电基本振子)的辐射场为
可见其方向性函数为 ,当接收台停在正南方向(即 )时,得到最大电场强度。由
为相距 的天线阵I和天线阵II构成的阵列天线的方向性函数
在垂直于半波天线轴线的平面内( ) 的方向图如题9.9(2)图所示。由方向图相乘原理可得该四元阵在 平面内的辐射方向图如题9.9(2)图所示。
题9.9(2)图
9.10求波源频率 ,线长 的导线的辐射电阻:
(1)设导线是长直的;
(2)设导线弯成环形形状。
阵因子(由上题结论)
当两天线相距 ,其上的电流振幅相等,同相激励时有 代入上式,得

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。

如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。

解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。

解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。

由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。

解:以球心为坐标原点,转轴(一直径)为$z$轴。

设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。

电磁场与电磁波基础教程(第2版)习题解答

电磁场与电磁波基础教程(第2版)习题解答

《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。

1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。

1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。

1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。

1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。

《电磁场与电磁波》第版谢处方编课后习题答案高等教育出版社

《电磁场与电磁波》第版谢处方编课后习题答案高等教育出版社

S
1 2
R1 2 R 2 3
1 2
R 1 2 R
2 312 1 7
69
1 7 . 1 3
1.3 求 P(3,1, 4) 点到 P(2, 2,3) 点的距离矢量 R 及 R 的方向。
解 rP ex 3 ey ez 4 , rP ex 2 ey 2 ez 3 ,

RPP rP rP ex 5 ey 3 ez
Ax ) y
ez
dS
S
y2
dS
a 2 00
r2 sin2 r d d r
a4 4
1.23 证明:(1) R 3 ;(2) R 0 ;(3)(A R) A 。其中 R ex x ey y ez z , A 为一常矢量。
解 (1) R x y z 3 x y z
(2)
ex ey ez R 0
2
2
2
2

A d l xd x x d x 22 d y 0d y 8
C
0
0
0
0
ex ey ez

A x y
z
ex 2 yz ez 2x
x x2 y2z
22
所以
A d S (ex 2yz ez 2x) ez d x d y 8
S
00
故有
A dl 8 A dS
2 a
r d 3r2 sin d r d d 4 a3
0 00
1.21 求矢量 A ex x ey x2 ez y2z 沿 xy 平面上的一个边长为 2 的正方形回路的线 积分,此正方形的两边分别与 x 轴和 y 轴相重合。再求 A 对此回路所包围的曲面积分,
验证斯托克斯定理。

电磁场与电磁波(版)课后答案谢处方

电磁场与电磁波(版)课后答案谢处方

第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。

解 (1)23A x y z+-===-e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波课后答案谢处方

电磁场与电磁波课后答案谢处方

第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为420049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2) 4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由21mv qU = 得 61.3710v ==⨯ m 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

解 电荷1q 在(4,0,0)处产生的电场为1113014q πε'-=='-r r E r r电荷2q 在(4,0,0)处产生的电场为222302444q πε-'-=='-e e r r E r r 故(4,0,0)处的电场为122+-=+=e e e E E E2.6 一个半圆环上均匀分布线电荷l ρ,求垂直于圆平面的轴线上z a =处的电场强度(0,0,)a E ,设半圆环的半径也为a ,如题2.6 图所示。

解 半圆环上的电荷元d d l l l a ρρφ''=在轴线上z a =处的电场强度为d φ''==E(cos sin )φφφ''-+'e e e在半圆环上对上式积分,得到轴线上z a =处的电场强度为(0,0,)d a ==⎰E E2[(cos sin )]d z xy ππφφφ'''-+=⎰e ee 2.7 三根长度均为L ,均匀带电荷密度分别为1l ρ、2l ρ和3l ρ地线电荷构成等边三角形。

设1l ρ=22l ρ=32l ρ,计算三角形中心处的电场强度。

解 建立题2.7图所示的坐标系。

三角形中心到各边的距离为3tan 302L d == 则111003(cos30cos150)42l lyyd Lρρπεπε=-=E e e 2120033(cos30sin 30)()28l l x y y L L ρρπεπε=-+=-E e e e e 3130033(cos30sin 30)()28l l xy y L Lρρπεπε=-=E e e e e 故等边三角形中心处的电场强度为123=++=E E E E111000333()()288l l l yy y L L L ρρρπεπεπε-+=e e e e e 1034l yLρπεe题 2.6图1l题2.7图2.8 -点电荷q +位于(,0,0)a -处,另-点电荷2q -位于(,0,0)a 处,空间有没有电场强度0=E 的点?解 电荷q +在(,,)x y z 处产生的电场为1222320()4[()]x y z x a y zqx a y z πε+++=+++e e e E电荷2q -在(,,)x y z 处产生的电场为2222320()24[()]x y z x a y z q x a y z πε-++=--++e e e E (,,)x y z 处的电场则为12=+E E E 。

令0=E ,则有22232()[()]x y z x a y z x a y z +++=+++e e e 222322[()][()]x y z x a y z x a y z -++-++e e e由上式两端对应分量相等,可得到2223222232()[()]2()[()]x a x a y z x a x a y z +-++=-+++ ① 222322232[()]2[()]y x a y z y x a y z -++=+++ ②2223222232[()]2[()]z x a y z z x a y z -++=+++ ③当0y ≠或0z ≠时,将式②或式③代入式①,得0a =。

所以,当0y ≠或0z ≠时无解; 当0y =且0z =时,由式①,有33()()2()()x a x a x a x a +-=-+解得(3x a =-±但3x a =-+不合题意,故仅在(3,0,0)a --处电场强度0=E 。

2.9 一个很薄的无限大导电带电面,电荷面密度为σ。

证明:垂直于平面的z 轴上0z z =处的电场强度E 中,有一半是有平面上半径为03z 的圆内的电荷产生的。

解 半径为r 、电荷线密度为d l r ρσ=的带电细圆环在z 轴上0z z =处的电场强度为0223200d d 2()zr z rr z σε=+E e 故整个导电带电面在z 轴上0z z =处的电场强度为002232221200000d 12()2()2z z zr z r z r z r z σσσεεε∞∞==-=++⎰E e e e 而半径为03z 的圆内的电荷产生在z 轴上0z z =处的电场强度为022320000d 12()42zz zr z r r z σσεε'==-==+E e e e E 2.10 一个半径为a 的导体球带电荷量为Q ,当球体以均匀角速度ω绕一个直径旋转,如题2.10图所示。

求球心处的磁感应强度B 。

解 球面上的电荷面密度为24Q a σπ=题2.10图当球体以均匀角速度ω绕一个直径旋转时,球面上位置矢量r a =r e 点处的电流面密度为S z r a σσσω==⨯=⨯=J v ωr e esin sin 4Qa aφφωωσθθπ=e e将球面划分为无数个宽度为d d l a θ=的细圆环,则球面上任一个宽度为d d l a θ=细圆环的电流为 d d sin d 4S Q I J l ωθθπ== 细圆环的半径为sin b a θ=,圆环平面到球心的距离cos d a θ=,利用电流圆环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为202232d d 2()z b Ib d μ==+B e 230222232sin d 8(sin cos )z Qa a a μωθθπθθ=+e 30sin d 8zQ aμωθθπe 故整个球面电流在球心处产生的磁场为 3000sin d 86z zQ Q a aπμωθμωθππ==⎰B e e 2.11 两个半径为b 、同轴的相同线圈,各有N 匝,相互隔开距离为d ,如题2.11图所示。

电流I 以相同的方向流过这两个线圈。

(1)求这两个线圈中心点处的磁感应强度x x B =B e ; (2)证明:在中点处d d x B x 等于零;(3)求出b 与d 之间的关系,使中点处22d d x B x 也等于零。

解 (1)由细圆环电流在其轴线上的磁感应强度 2022322()zIa a z μ=+B e得到两个线圈中心点处的磁感应强度为 202232(4)xNIb b d μ=+B e(2)两线圈的电流在其轴线上x )0(d x <<处的磁感应强度为2200223222322()2[()]x NIb NIb b x b d x μμ⎧⎫=+⎨⎬++-⎩⎭B e 所以 220022522252d 33()d 2()2[()]x B NIb x NIb d x x b x b d x μμ-=-+++- 故在中点2d x =处,有220022522252d 32320d 2[4]2[4]x B NIb d NIb d x b d b d μμ=-+=++ (3) 222200222722252d 153d 2()2()x B NIb x NIb x b x b x μμ=-+++ 222002272225215()32[()]2[()]NIb d x NIb b d x b d x μμ--+-+- 令0d d 222==d x xx B ,有 0]4[1]4[45252227222=+-+d b d b d 即 5222d b d +=题2.11图题 2.13图故解得 b d =2.12 一条扁平的直导体带,宽为a 2,中心线与z 轴重合,通过的电流为I 。

证明在第一象限内的磁感应强度为 04x I B aμαπ=-,021ln 4yI r B a r μπ= 式中α、1r 和2r 如题2.12图所示。

解 将导体带划分为无数个宽度为x 'd 的细条带,每一细条带的电流x aII '=d 2d 。

由安培环路定理,可得位于x '处的细条带的电流I d 在点),(y x P 处的磁场为00d d d 24I I x B R aRμμππ'===02212d 4[()]I x a x x y μπ''-+ 则 022d d d sin 4[()]x Iy x B B a x x y μθπ'=-=-'-+ 022()d d d cos 4[()]y I x x x B B a x x y μθπ''-=='-+ 所以022d 4[()]ax aIy x B a x x y μπ-'=-='-+⎰0arctan 4a aI x x a y μπ-'⎛⎫--= ⎪⎝⎭0arctan arctan 4I a x a x a y y μπ⎡⎤⎛⎫⎛⎫-----=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦0arctan arctan 4I x a x a a y y μπ⎡⎤⎛⎫⎛⎫+---=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦021()4I a μααπ--=04I aμαπ- 022()d 4[()]a y a I x x x B a x x y μπ-''-=='-+⎰220ln[()]8aa I x x y a μπ-'--+=22022()ln 8()I x a y a x a y μπ++=-+021ln 4I r a r μπ 2.13 如题2.13图所示,有一个电矩为1p 的电偶极子,位于坐标原点上,另一个电矩为2p 的电偶极子,位于矢径为r 的某一点上。

相关文档
最新文档