线性规划
线性规划的标准形式

线性规划的标准形式线性规划是运筹学中的一种重要方法,用于求解最优化问题。
在实际应用中,线性规划的标准形式是一种常见的数学表达方式,能够简化问题的求解过程,提高计算效率。
本文将对线性规划的标准形式进行详细介绍,包括定义、特点、转换方法等内容,希望能够帮助读者更好地理解和运用线性规划方法。
一、定义。
线性规划的标准形式是指将线性规划问题转化为一种特定的数学表达形式,以便于利用现有的数学工具进行求解。
一般来说,线性规划的标准形式可以表示为:Max z = c1x1 + c2x2 + ... + cnxn。
Subject to:a11x1 + a12x2 + ... + a1nxn ≤ b1。
a21x1 + a22x2 + ... + a2nxn ≤ b2。
...am1x1 + am2x2 + ... + amnxn ≤ bm。
xi ≥ 0, i = 1, 2, ..., n。
其中,c1, c2, ..., cn为目标函数的系数,x1, x2, ..., xn为决策变量,a11, a12, ..., amn为约束条件的系数,b1,b2, ..., bm为约束条件的常数,m和n分别为约束条件和决策变量的个数。
通过这种形式的表示,线性规划问题可以被更方便地求解。
二、特点。
线性规划的标准形式具有以下几个特点:1. 目标函数为线性函数,约束条件为线性不等式。
这种形式的表示使得问题具有了良好的数学性质,可以利用线性代数和凸优化等数学工具进行求解。
2. 决策变量为非负数。
这一特点使得问题的解空间被限制在第一象限,简化了问题的求解过程。
3. 约束条件为≤型不等式。
这种形式的约束条件使得问题的可行域为一个凸集,便于进行几何和数学分析。
三、转换方法。
对于一般的线性规划问题,可能并不总是处于标准形式。
因此,需要将问题转化为标准形式,以便于求解。
常见的转换方法包括:1. 将最小化问题转化为最大化问题。
这可以通过将目标函数的系数取相反数来实现。
线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
线性规划

矿物质(g)
维生素(mg)
0.1
0.05
0.05
0.1
0.02
0.02
0.2
0.2
0.05
0.08
希望建立数学模型,既能满足动物需要,又使总成 本最低的饲料配方
模型
饲料 符号 A1 x1 A2 x2 A3 x3 A4 x4 A5 x5
约 l2 : 12x1 8x2 480 束 12x1 8x2 480 l4 条 3x1 100 l3 : 3x1 100 件 c l4 : x1 0, l5 : x2 0 x1 , x2 0 目标 函数
l1 : x1 x2 50
x2 A
l1 B l2 C Z=3600 l3
线性规划问题的数学模型的一般形式
( 1)列出约束条件及目标函数 (2)画出约束条件所表示的可行域 (3)在可行域内求目标函数的最优解及最优值
线性规划问题的标准形式
{
max y=cTx s.t. Ax=b x≥0
求解方法: (1)单纯形法 (2)软件求解:Lindo, Lingo, matlab,sas
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
Max z 72x1 64x2
z=c (常数) ~等值线
0
l5
Z=0
x1 D Z=2400
第五章 线性规划

第五章线性规划线性规划是一种优化问题的数学建模方法,用于在给定的约束条件下寻找最优解。
它在经济学、工程学、运筹学等领域中被广泛应用。
本文将详细介绍线性规划的基本概念、模型建立和求解方法。
一、线性规划的基本概念1.1 目标函数线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。
1.2 约束条件线性规划的约束条件是限制决策变量取值的条件。
约束条件通常表示为一组线性不等式或等式。
例如,a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ + a₂₂x₂+ ... + a₂ₙxₙ ≥ b₂等。
1.3 决策变量决策变量是指在线性规划中需要确定的变量。
决策变量的取值将影响目标函数的值。
例如,在一个生产计划中,决策变量可以是生产的数量或分配的资源。
二、线性规划模型建立2.1 确定决策变量首先,根据实际问题确定需要决策的变量。
例如,在一个生产计划中,决策变量可以是生产的数量或分配的资源。
2.2 建立目标函数根据问题的要求,建立一个线性函数作为目标函数。
例如,如果我们的目标是最大化利润,那么目标函数可以是利润的总和。
2.3 建立约束条件根据问题的限制条件,建立一组线性不等式或等式作为约束条件。
例如,如果我们有限定的资源,那么约束条件可以是资源的总和小于等于给定的值。
2.4 完整的线性规划模型将目标函数和约束条件整合起来,形成一个完整的线性规划模型。
例如,一个典型的线性规划模型可以表示为:最大化 Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≥ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙx₁, x₂, ... , xₙ ≥ 0三、线性规划的求解方法3.1 图形法图形法是一种直观的线性规划求解方法,适用于二维或三维的问题。
线性规划知识点

线性规划知识点一、概述线性规划是一种数学优化方法,用于解决一类特定的优化问题。
它的目标是在给定的约束条件下,找到使目标函数取得最大或最小值的变量值。
线性规划广泛应用于经济、工程、运输、资源分配等领域。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中c1,c2,...,cn为系数,x1,x2,...,xn为变量。
2. 约束条件:线性规划的变量需要满足一系列约束条件,通常是一组线性等式或不等式。
例如,Ax ≤ b,其中A为系数矩阵,x为变量向量,b为常数向量。
3. 可行解:满足所有约束条件的变量值称为可行解。
4. 最优解:在所有可行解中,使目标函数取得最大或最小值的变量值称为最优解。
三、标准形式线性规划问题可以通过将其转化为标准形式来求解。
标准形式具有以下特点:1. 目标函数为最小化形式:minimize Z = c1x1 + c2x2 + ... + cnxn2. 约束条件为等式形式:Ax = b3. 变量的非负性约束:x ≥ 0四、求解方法线性规划问题可以使用多种方法求解,其中最常用的是单纯形法。
单纯形法的基本思想是通过迭代计算来逐步改进解的质量,直到找到最优解。
1. 初始化:选择一个初始可行解。
2. 进行迭代:根据当前解,确定一个非基变量进入基变量集合,并确定一个基变量离开基变量集合,以改进目标函数值。
3. 改进解:通过迭代计算,逐步改进解的质量,直到找到最优解。
4. 终止条件:当无法找到更优解时,算法终止。
五、应用案例线性规划在实际应用中有广泛的应用,以下是一些常见的应用案例:1. 生产计划:确定如何分配有限的资源以最大化产量。
2. 运输问题:确定如何分配货物以最小化运输成本。
3. 资源分配:确定如何分配有限的资源以最大化效益。
4. 投资组合:确定如何分配资金以最大化投资回报率。
5. 作业调度:确定如何安排作业以最小化总工时。
线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划
线性规划是一类最简单的优化问题,同时也是 具有普遍实际意义的一类优化问题。
线性规划模型的一般形式为:
max(min) z c1 x1 c2 x2 cn xn
s.t.
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 a x a x a x b mn n m m1 1 m 2 2 x1 , x2 , , xn 0
约束条件 每套钢架所需的三种长度的元钢数目是相 同的,而100套钢架需要三种长度的元钢都是 100根,因此有
长度为2.9m的元钢数: x1 2 x2 x4 x6 100 长度为2.1m的元钢数:2 x3 2 x4 x5 x6 3 x7 100 长度为1.5m的元钢数:3 x1 x2 2 x3 3 x5 x6 4 x8 100
车床B上的加工台时限制: x1 2 x2 8
车床C上的加工台时限制: 4 x1
车床D上的加工台时限制:
16
4 x2 12
非负条件:x1 , x2 0
第三步——明确目标函数 利润最大: max : z 2 x1 3 x2 该问题的数学模型为:
返回
结束
线性规划
目标函数:
max z 2 x2 3 x2
该问题所涉及的因素以及之间的数量关系可 以用表1-1表示
返回 结束
线性规划
产品 单位产品所需资源 资源
A1 A2 An
可供应的资源量
B1 B2 Bm
单位产品所得利润
a11 a12 a1n a 21 a 22 a 2 n a m 1 a m 2j 1
线性规划
x12 x13
线性规划的典型实例
运输问题
数学模型
10x11 min f s.t. x11 x12 x 21 x 22 x11 x 21 x12 x13 x ij x 22 x 23 0 (i 1, 2; j 12x12 9x13 x13 35 x 23 55 26 38 26 1, 2, 3) 8x 21 11x 22 13x 23
基本解不是线性规划问题的解,而是仅满足约束方程组的解
线性规划问题中解的概念
可行解、可行域
上面的分析仅考虑了约束方程组Ax=b,下面进一步考虑线性规划问题的非负 约束。我们称既满足约束方程组Ax=b,又满足非负约束x≥0的解为线性规划 问题的可行解,即可行解满足线性规划问题的所有约束。可行解的集合称为可 行域,记作:
下面将分步骤详细分析如何获得这个线性规划问题的解,同时介绍在这类问题 中的几个概念
线性规划问题中解的概念
基本解
如果线性规划问题的解存在,则它必定是满足Ax=b的有限多个“基本解”中 选出的,那么我们的第一个任务就是找出满足方程Ax=b的基本解 假设独立方程的个数为m个,故Ax=b的系数矩阵A的秩为m,于是A中必有m 个列向量是线性无关的,不妨假设A中的前m个列向量线性无关,则这m个列 向量可以构成矩阵A的m阶非奇异子矩阵,用矩阵B表示:
D x | Ax b, x 0
基本可行解
特别的,若线性规划问题的基本解能够满足线性规划问题中的非负约束,即:
xB B 1b 0
则称该解xB为基本可行解,简称基可行解,称B为可行基。基可行解的数量不 m 会超过 C n 个。显然,基本可行解一定是可行解,基可行解是可行域中一种特 殊的解
最优解
线性规划知识点总结
线性规划知识点总结引言概述:线性规划是一种数学优化方法,用于在给定的约束条件下最大化或者最小化线性目标函数。
它在各种领域中都有广泛的应用,包括经济学、管理学、工程学等。
本文将对线性规划的基本概念、模型构建、求解方法和应用进行详细阐述。
一、线性规划的基本概念1.1 目标函数:线性规划的目标函数是一个线性函数,用于表示需要最大化或者最小化的目标。
1.2 约束条件:线性规划的约束条件是一组线性等式或者不等式,用于限制变量的取值范围。
1.3 可行解与最优解:线性规划问题存在无穷多个可行解,但惟独一个最优解,即使满足所有约束条件且使目标函数取得最大(或者最小)值的解。
二、线性规划模型构建2.1 决策变量:线性规划模型中的决策变量是需要优化的变量,可以是实数、整数或者二进制数。
2.2 目标函数的构建:根据问题的具体要求,将目标转化为线性函数的形式,并确定是最大化还是最小化。
2.3 约束条件的建立:根据问题的限制条件,将其转化为线性等式或者不等式的形式,并确定约束条件的数学表达式。
三、线性规划的求解方法3.1 图形法:对于二维线性规划问题,可以使用图形法进行求解。
通过绘制约束条件的直线或者曲线,找到目标函数的最优解点。
3.2 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过迭代计算,不断改变基变量和非基变量的取值,直到找到最优解。
3.3 整数规划法:当决策变量需要取整数值时,可以使用整数规划法进行求解。
该方法将线性规划问题转化为整数规划问题,并采用分支定界等算法求解最优解。
四、线性规划的应用4.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化产量或者最小化成本。
4.2 资源分配:线性规划可以用于优化资源的分配,如确定最佳的人力资源配置、物资采购策略等。
4.3 运输问题:线性规划可以用于解决运输问题,如确定最佳的货物运输路线和运输量,以降低运输成本。
4.4 金融投资:线性规划可以用于优化金融投资组合,以最大化收益或者最小化风险。
线性规划知识点总结
线性规划知识点总结一、概述线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它的目标是找到一组决策变量的值,使得目标函数达到最大或者最小值。
线性规划广泛应用于经济学、管理学、工程学等领域,可以匡助决策者做出最优的决策。
二、基本概念1. 决策变量:线性规划中需要决策的变量,通常用x1、x2、x3等表示。
2. 目标函数:线性规划的优化目标,可以是最大化或者最小化一个线性函数。
3. 约束条件:对决策变量的限制条件,通常是一组线性不等式或者等式。
4. 可行解:满足所有约束条件的决策变量的取值组合。
5. 最优解:使得目标函数达到最大或者最小值的可行解。
三、标准形式线性规划问题可以通过将其转化为标准形式来求解,标准形式包含以下要素:1. 目标函数:通常是最大化或者最小化一个线性函数。
2. 约束条件:一组线性不等式或者等式。
3. 非负约束条件:决策变量的取值必须大于等于零。
四、线性规划的求解方法线性规划可以使用多种方法进行求解,常见的方法有:1. 图形法:适合于二维线性规划问题,通过绘制等式和不等式的图形来确定最优解。
2. 单纯形法:适合于多维线性规划问题,通过迭代计算来寻觅最优解。
3. 内点法:适合于大规模线性规划问题,通过迭代计算来寻觅最优解。
4. 整数规划法:适合于决策变量为整数的线性规划问题,通过搜索算法来寻觅最优解。
五、线性规划的应用线性规划在实际应用中有广泛的应用,以下是一些常见的应用场景:1. 生产计划:确定最优的生产数量和产品组合,以最大化利润或者满足需求。
2. 运输问题:确定最优的运输方案,以最小化运输成本或者最大化运输效率。
3. 资源分配:确定最优的资源分配方案,以最大化资源利用率或者满足需求。
4. 投资组合:确定最优的投资组合,以最大化收益或者最小化风险。
5. 作业调度:确定最优的作业调度方案,以最小化作业完成时偶尔最大化资源利用率。
六、线性规划的局限性线性规划虽然在许多问题中有广泛的应用,但也存在一些局限性:1. 线性假设:线性规划假设目标函数和约束条件都是线性的,不适合于非线性问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
2015年6月3日星期三
Page 11
设xj(j=1,2…,10)为第j种下料方案所用圆钢的根数。则用料最少 数学模型为:
Basic Concepts Simplex Method
1.1 数学模型
Mathematical Model
制作与教学 武汉理工大学管理学院 熊伟
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
表1-3 下料方案
方案 规格
1
2 1 0
2
2 0 1 0.3
3
1 2 0 0.5
4
1 1 2 0.1
5
1 0 3 o.4
6
0 4 0 0
7
0 3 1 0.3
8
0 2 2 0.6
9
0 1 4 0.2
10
0 0 5 0.5
需求量
1000 1000 1000
y1(根)
y2 y3
余料(m) 0
制作与教学 武汉理工大学管理学院 熊伟
制作与教学 武汉理工大学管理学院 熊伟
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
2015年6月3日星期三
Page 4
1.1.1 应用模型举例
【例1-1】生产计划问题。某企业在计划期内计划生产甲、乙两 种产品。按工艺资料规定,每件产品甲需要消耗材料A 2公斤, 消耗材料B 1公斤,每件产品乙需要消耗材料 A 1公斤,消耗材 料B 1.5公斤。已知在计划期内可供材料分别为 40、30公斤;每 生产一件甲、乙两产品,企业可获得利润分别为 300、400元, 如表1- 1所示。假定市场需求无限制。企业决策者应如何安排 生产计划,使企业在计划期内总的利润收入最大。
2015年6月3日星期三
Page 9
最优解:
1 X1 2 X2 3 X3 0 C1 67 C2 146 C3 404 >= 301 >= 350 >= 300 300 350 104 1 0
4 X4
5 X5 6 X6
170 C4
97 C5 120 C6
400 >=
480 >= 600 >=
400
480 600
制作与教学 武汉理工大学管理学院 熊伟
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
2015年6月3日星期三
Page 5
【解】设x1、x2分别为甲、乙产品的产量,数学模型为:
2015年6月3日星期三
Page 10
【例1-3】合理用料问题。某汽车需要用甲、乙、丙三种规格的轴各一根,这 些轴的规格分别是1.5,1,0.7(m),这些轴需要用同一种圆钢来做,圆钢长 度为4 m。现在要制造1000辆汽车,最少要用多少圆钢来生产这些轴? 【解】这是一个条材下料问题 ,设切口宽度为零。 设一根圆钢切割成甲、 乙、丙三种轴的根数分别为y1,y2,y3,则切割方式可用不等式 1.5y1+y2+0.7y3≤4表示,求这个不等式关于y1,y2,y3的非负整数解。象这样 的非负整数解共有10组,也就是有10种下料方式,如表1-3所示。
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
2015年6月3日星期三
Page 14
解: 设xj(j=1,2,…,5)是生产一个单位的合金所需第j 种矿石数 min Z 340 x1 260 x2 180 x3 230 x4 190 x5 量,得到下列 线性规划模型 0.25 x1 0.4 x2 0.2 x4 0.08 x5 0.28
2015年6月3日星期三
Page 12
1 X1
500
2 3 4 5 6 7 8 9 10
X2 X3 X4 X5 X6 X7 X8 X9 X10
0 0 0 0 62.5 0 0 250 0
Z=812.5
制作与教学 武汉理工大学管理学院 熊伟
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
2015年6月3日星期三
Page 13
【例1-4】配料问题。某钢铁公司生产一种合金,要求的成分规格 是 : 锡 不 少 于 28% , 锌 不 多 于 15% , 铅 恰 好 10% , 镍 要 界 于 35%~55% 之间,不允许有其他成分。钢铁公司拟从五种不同级 别的矿石中进行冶炼,每种矿物的成分含量和价格如表1-4所示。 矿石杂质在治炼过程中废弃,现要求每吨合金成本最低的矿物数 量。假设矿石在冶炼过程中,合金含量没有发生变化。
2015年6月3日星期三
Page 3
线性规划(Linear Programming,缩写为LP)通常研究资源 的最优利用、设备最佳运行等问题。例如,当任务或目标 确定后,如何统筹兼顾,合理安排,用最少的资源 (如资 金、设备、原标材料、人工、时间等)去完成确定的任务 或目标;企业在一定的资源条件限制下,如何组织安排生 产获得最好的经济效益(如产品量最多 、利润最大)。
星期 五 六 日
需要人数 480 600 550
超市人力资源部应如何安排每天的上班人数,使超市总的营业员 最少。
制作与教学 武汉理工大学Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
表1-4 矿石的金属含量 合金
矿石
1 2 3 4 5
锡% 锌% 铅% 镍% 杂质 25 40 0 20 8 10 0 15 20 5 10 0 5 0 15 25 30 20 40 17 30 30 60 20 55
费用(元/t ) 340 260 180 230 190
制作与教学 武汉理工大学管理学院 熊伟
2015年6月3日星期三
Page 8
【解】 设xj (j=1,2,…,7)为休息2天后星期一到星期日开始上 班的营业员,则这个问题的线性规划模型为
min Z x1 x2 x3 x4 x5 x6 x7
x1 x4 x5 x6 x7 300 x x x x x 300 2 5 6 7 1 x1 x2 x3 x6 x7 350 x1 x2 x3 x4 x7 400 x1 x2 x3 x4 x5 480 x2 x3 x4 x5 x6 600 x3 x4 x5 x6 x7 550 x 0, j 1, 2, , 7 j
min Z x j
j 1 10
2 x1 2 x 2 x3 x 4 x5 1000 x 2 x3 x 4 4 x6 3x7 2 x8 x9 1000 1 x2 2 x 4 3 x5 x7 2 x8 4 x9 5 x10 1000 10 x j 0, j 1,2,
怎样辨别一个模型是线性规划模型?
其特征是: 1.解决问题的目标函数是多个决策变量的
线性函数,通常是求最大值或 最小值; 2.解决问题的约束条件是一组多个决策变量 的线性不等式或等式。
制作与教学 武汉理工大学管理学院 熊伟
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
运筹学
Operations Research
Chapter 1 线性规划
Linear Programming
1.1 LP的数学模型 1.2 图解法 1.3 标准型 1.4 基本概念 1.5 单纯形法 Mathematical Model of LP
Graphical Method
Standard form of LP
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
2015年6月3日星期三
Page 6
线性规划的数学模型由 决策变量 Decision variables 目标函数Objective function 及约束条件Constraints 构成。称为三个要素。
余料(m) 0 0.3 0.5 0.1 o.4 0 0.3 0.6 0.2 0.5
制作与教学 武汉理工大学管理学院 熊伟
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
0
0 0
7 X7
17 C7
550 >=
550
0
Z=617(人) 注:表中是取整数后的结果!整数规划将在第3章讲解。
制作与教学 武汉理工大学管理学院 熊伟
xiongw@
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划 Linear Programming
星 期 一 二 三 四
需要 人数 300 300 350 400