随机数原理
随机数算法原理

随机数算法原理
随机数算法是一种用于生成随机数序列的算法。
它的原理基于数学函数和随机化技术,以确保生成的序列是在一定范围内具有随机性的。
其中一种常用的随机数算法是线性同余法。
其原理是基于一个线性递推关系,通过对前一个随机数乘以一个常数,再加上另一个常数,最后对一个大整数取模,得到下一个随机数。
具体的公式为:
Xn+1 = (a * Xn + c) mod m
其中,Xn代表当前的随机数,Xn+1代表下一个随机数,a和c是常数,m是模数。
通过不同的常数选择,可以得到不同范围内的随机数。
同时,为了提高随机性,常数a和c需要是比较大的素数,模数m
需要是一个较大的整数。
此外,初始种子X0也需要是一个随机的整数,以确保生成的序列具有更好的随机性。
除了线性同余法,还有其他一些常见的随机数算法,例如乘积法、平方取中法、梅森旋转算法等。
每种算法都有其特定的原理和适用范围,选择适合的算法取决于具体的应用需求和随机性要求。
总之,随机数算法通过使用数学函数和随机化技术,生成具有随机性的数列。
选择合适的算法和参数可以得到不同范围内、
不同随机性要求的随机数序列。
这些随机数在计算机科学、密码学、模拟实验等领域有着广泛的应用。
随机数 原理

随机数原理
随机数是指无法预测或确定的数值,它是由一个确定的过程产生的,这个过程被称为随机过程。
随机数通常用于模拟实验、密码学、科学计算等领域。
随机数的产生基于一种称为随机数发生器的算法或设备。
随机数发生器可以是硬件设备,如计算机芯片中的物理噪声发生器,或者是软件算法,如伪随机数发生器。
伪随机数发生器是一种根据特定的算法和种子值生成序列看似随机的数。
种子值是用来初始化随机数发生器的起始状态的值,相同的种子值和算法将产生相同的随机数序列。
因此,伪随机数发生器是确定性的。
真随机数发生器则是基于物理过程产生随机数,比如基于量子物理性质的随机数发生器。
真随机数发生器的随机性更高,因为它们依赖于不可预测的物理过程。
为了使用随机数,通常会将从随机数发生器中得到的随机数进行处理,以满足具体的需求。
例如,可以通过乘法、加法和取余等操作将随机数映射到指定的范围内,生成所需的随机数。
总之,随机数是通过随机数发生器产生的一系列看似无规律的数。
它们在实际应用中具有广泛的用途,但必须注意选择适当的随机数发生器和随机性要求,以确保结果的可靠性和安全性。
随机数的产生原理

随机数的产生原理随机数的产生原理是计算机科学领域中非常重要的一个概念。
在计算机程序开发、密码学、模拟实验等领域都广泛应用着随机数。
首先,我们需要明确随机数的概念。
所谓随机数是指其具有不可预测性和不相关性的数值序列。
也就是说,随机数的产生是不受特定规律、模式或者输入的影响。
在计算机中,由于计算机的运算是通过确定性算法进行的,所以计算机无法自主产生完全随机的数值序列,而只能通过一定的算法来模拟随机数的产生。
常见的随机数生成方法有伪随机数产生器和真随机数产生器。
其中,伪随机数产生器是利用已知的确定性算法生成的数字序列,这些数字序列在某种程度上具有类似随机的性质。
而真随机数产生器则利用物理现象来产生真正的随机数。
首先,我们来介绍一下伪随机数的产生方法。
伪随机数的产生是通过确定性的算法进行的,这个算法需要一个种子作为输入来产生一系列看似随机的数字。
在同一个种子的情况下,这个算法每次产生的数字都是相同的。
因此,为了产生不同的伪随机数序列,通常会使用系统时间等随机的种子。
常见的伪随机数产生算法有线性同余法、梅森旋转算法等。
线性同余法是最常见的伪随机数生成算法之一。
它的原理是通过不断迭代一个初始值(种子)来产生随机数序列。
具体的计算公式为:X(n+1) = (a * X(n) + c) mod m其中,X(n)表示第n个随机数,X(n+1)表示第n+1个随机数,a、c、m为一组给定的常数,mod表示取余操作。
在梅森旋转算法中,使用了一个非常大的2的幂次数作为种子,通过一系列的位操作或异或操作来产生伪随机数。
这种算法的优点是速度快且产生的随机数质量高。
然而,伪随机数产生器是基于已知的算法进行的,其产生的随机数序列是可预测和重现的。
因此,在某些应用场景(如密码学)中,需要使用更加安全和随机的随机数。
那么如何产生真随机数呢?真随机数的产生是利用物理现象的随机性来产生的。
常用的真随机数产生方法包括噪声源、热噪声和量子现象。
随机数原理

随机数原理随机数在计算机科学和信息技术领域中扮演着非常重要的角色。
它们被广泛应用于密码学、模拟、随机化算法等领域。
而要理解随机数的原理,首先需要明白什么是随机数,以及如何生成真正的随机数。
随机数是一种在一定范围内取值的数值,其取值是无法预测的,且每个值的概率相等。
在计算机中,通常所说的随机数都是伪随机数,即通过确定性算法生成的数列,其看起来像是随机的。
而真正的随机数则需要借助于物理过程来生成,例如测量大气噪声、放射性衰变等。
在计算机中,生成伪随机数的方法有很多种,其中最常见的是使用伪随机数生成器(PRNG)。
PRNG通过一个初始值(种子)来产生一系列看似随机的数值。
但实际上,由于计算机的确定性特性,使用相同的种子将会得到相同的随机数序列。
因此,在实际应用中,通常会使用当前时间、用户的输入等不可预测的因素作为种子,以增加随机性。
除了PRNG外,还有一种更为安全的随机数生成方法,即使用真随机数生成器(TRNG)。
TRNG利用物理过程来生成随机数,因此其生成的随机数是真正随机的,不受计算机的确定性影响。
然而,由于其生成过程相对复杂,因此在实际应用中并不常见。
在密码学中,随机数的重要性不言而喻。
密码学中的伪随机数生成器(CSPRNG)被用来生成加密密钥、初始化向量等,以确保加密算法的安全性。
而如果使用不安全的随机数,将会给密码学系统带来严重的安全隐患。
总的来说,随机数在计算机科学中有着广泛的应用,其原理和生成方法也是非常值得深入研究的课题。
通过本文的介绍,相信读者对随机数的原理有了更深入的理解,同时也对随机数的安全性有了更清晰的认识。
希望本文能对您有所帮助,谢谢阅读。
随机数产生原理及实现

电子信息与通信工程学院实验报告实验名称随机数的产生课程名称随机信号分析姓名顾康学号U201413323 日期6月6日地点南一楼东204 成绩教师董燕以上为6种分布的实验结果1.均匀分布随机变量X~U(0,1)的一组样本值的模拟值一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到,通常是利用递推公式:Xn=f(Xn-1,.....,Xn-k)1.1 同余法Xn+1 = λXn(mod M)Rn=Xn/MR1 R2...Rn即为(0,1)上均匀分布的随机数列。
而上述方法是伪随机的,{Rn}本质上是递推公式给定的周期序列,周期T可看做logλ(M)。
解决方法是:选择模拟参数并对序列进行统计检验。
1.2选择模拟参数1)周期长度取决于Xo,λ, M的选择2)通过选取适当的参数可以改善随机数的性质几组参考的取值Xo =1 , λ=7 , M=10^10Xo =1 , λ=5^13 , M=2 *10^10Xo =1 , λ=5^17 , M=10^121.3对数列进行统计检验对应序列能否看作X的独立同分布样本,须检验其独立性和均匀性for i=2:1:size %同余法均匀分布x(i)= mod ( v*x(i-1), M);y(i)=x(i)/M;endsubplot(2,3,1);hist(y,100)[ahat,bhat,ACI,BCI]=unifit(y)% 以0.95的置信度估计样本的参数首先我们的标准是U ~(0,1),而实验值,ACI表示ahat的范围[-0.0030,0], BCI表示bhat的范围[1.0000,1.0030]。
同时样本的均值和方差分别为0.4932和0.0830,结论与理论值很接近。
该样本以0.95的可信度服从(0,1)均匀分布。
2.伯努利分布2.1算法原理若随机变量R服从(0,1),P(X=Xi)=PiP(0)=0, P(n)=∑PiP{P(n-1)<R<=P(n)}=P(n)-P(n-1)=Pn令{P(n-1)<X<=P(n)}={X=Xn} 有P(X=Xn)=Pn从理论上讲,已经解决了产生具有任何离散型随机分布的问题。
随机数生成原理 实现方法 不同编程语言的随机数函数

1-0:Microsoft VC++产生随机数的原理:Srand ( )和Rand( )函数。
它本质上是利用线性同余法,y=ax+b(mod m)。
其中a,b,m都是常数。
因此rand的产生决定于x,x被称为Seed。
Seed需要程序中设定,一般情况下取系统时间作为种子。
它产生的随机数之间的相关性很小,取值范围是0—32767(int),即双字节(16位数),若用unsigned int 双字节是65535,四字节是4294967295,一般可以满足要求。
1-1:线性同余法:其中M是模数,A是乘数,C是增量,为初始值,当C=0时,称此算法为乘同余法;若C ≠0,则称算法为混合同余法,当C取不为零的适当数值时,有一些优点,但优点并不突出,故常取C=0。
模M大小是发生器周期长短的主要标志,常见有M为素数,取A为M的原根,则周期T=M-1。
例如:a=1220703125a=32719 (程序中用此组数)a=16807代码:void main( ){const int n=100;double a=32719,m=1,f[n+1],g[n],seed;m=pow(2,31);cout<<"设置m值为"<<m-1<<endl;cout<<"输入种子"<<endl; //输入种子cin>>seed;f[0]=seed;for(int i=1;i<=n;i++) //线性同余法生成随机数{f[i]=fmod((a*f[i-1]),(m-1));g[i-1]=f[i]/(m-1);cout.setf(ios::fixed);cout.precision(6); //设置输出精度cout<<i<<" "<<'\t'<<g[i-1]<<endl;}}结果分析:统计数据的平均值为:0.485653统计数据的方差为:0.3205761-2:人字映射递推公式就是有名的混沌映射中的“人字映射”或称“帐篷映射”,它的非周期轨道点的分布密度函数:人字映射与线性同余法结合,可产生统计性质优良的均匀随机数。
随机数讲解

随机数讲解随机数是一种随机生成数字的算法,可以用于各种不同的应用中。
在现代科技中,随机数已经成为了许多应用不可或缺的一部分,例如密码学、数据加密、人工智能、金融等等。
本文将介绍随机数的生成原理、应用场景以及如何使用随机数。
一、随机数生成原理随机数生成算法最基本的原则是“生成一个序列唯一的数字”。
为了实现这个目标,随机数生成器会通过多种算法生成一个序列数字。
现在我们来介绍几种常见的随机数生成算法。
1.Pseudo Random Number Generator(PRNG)PRNG是一种基于伪随机数生成的随机数生成器。
它使用的是一个序列伪随机数种子,通过这个种子来计算出其他的伪随机数。
每次生成的随机数都应该是不同的,并且可以通过简单的加法、减法、乘法等操作与之前的随机数进行区分。
2.True Random Number Generator(TRNG)TRNG是一种真正的随机数生成器,它使用的是一个物理随机数种子。
这个种子可以随着时间的推移而改变,因此生成的随机数可以保证是不同的。
TRNG通过一系列的数学运算来生成真正的随机数,并且这些随机数可以精确地表示任何种子。
3.Secure Random Number Generator(SRNG)SRNG是一种安全的随机数生成器,主要用于金融和密码学等领域。
它使用的是一个安全的随机数种子,并且可以生成同时满足NIST GG 88-1和FIPS140-2标准的随机数。
为了保证随机性,SRNG在生成随机数之前会对种子进行一个非线性变换,以消除种子对随机性造成的微小影响。
二、随机数应用场景随机数在许多应用中都可以使用,下面列举了其中的一些应用场景。
1.密码学随机数在密码学中有着重要的应用,主要用于生成加密密钥、随机密码以及数字签名等。
这些数字都是基于随机数生成的,可以确保密码的复杂度和安全性。
2.数据加密随机数也可以用于数据加密中。
通过使用随机数作为密钥,数据加密算法可以确保密钥的复杂度和安全性,以保护数据的安全。
随机数产生原理

随机数产生原理
随机数在计算机领域中有着广泛的应用,它们可以用于密码学、模拟实验、随机算法等多个领域。
那么,随机数是如何产生的呢?
本文将从硬件和软件两个方面来介绍随机数的产生原理。
首先,我们来看硬件随机数的产生原理。
硬件随机数是通过物
理过程来产生的,这些物理过程具有不可预测性和不确定性。
常见
的硬件随机数产生器包括基于热噪声的随机数发生器、基于量子效
应的随机数发生器等。
其中,基于热噪声的随机数发生器利用了电
子元件的热噪声来产生随机数,而基于量子效应的随机数发生器则
利用了量子力学中的不确定性原理来产生随机数。
这些硬件随机数
产生器能够产生高质量的随机数,具有很好的随机性和不可预测性。
其次,我们来看软件随机数的产生原理。
软件随机数是通过算
法来产生的,这些算法被称为伪随机数生成器。
伪随机数生成器使
用一个起始值,通过一系列的计算得到随机数序列。
常见的伪随机
数生成算法包括线性同余发生器、梅森旋转算法、随机数表法等。
这些算法能够产生看似随机的数列,但实际上是确定性的。
因此,
在使用软件随机数时,需要注意选择合适的种子和算法,以避免出
现可预测的随机数序列。
总结来说,随机数的产生原理可以分为硬件随机数和软件随机数两种。
硬件随机数利用物理过程的不可预测性来产生随机数,具有很好的随机性和不可预测性;而软件随机数则是通过算法来产生的,是确定性的。
在实际应用中,我们需要根据具体的需求选择合适的随机数生成方法,以确保随机数的质量和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dor = Int((upperbound - lowerbound + 1) * Rnd + lowerbound)yes = 0For j = 1 To i - 1If r = random(j) Then yes = 1: Exit ForNextLoop While yes = 1random(i) = rDebug.Print r;NextDebug.PrintEnd Sub运行结果:199 174 147 126 120 190 192 146 122 111粗看起来,上面的程序似乎没有什么问题,在执行过程中程序也能够通过。
但,仔细分析我们就会发现问题出在一个新产生的随机数是否已经存在的判定上。
既然是随机数,那么从数学的角度来说在概率上,每次产生的随机数r就有可能相同,尽管这种可能性很小,但确是一个逻辑性与正确性的问题。
因此,每次产生的新的随机数r都有可能是数组random的前i-1个数中的某一个,也就是说程序在运行过程中由此可能会导致死循环,那么,能否找到一个不在数组random中的随机数r的工作就变得不确定了。
从算法的角度来讲,在理论上,程序失去了有穷性、有效性和确定性。
什么是算法?通常人们将算法定义为一个有穷的指令集,这些指令为解决某一特定任务规定了一个运算序列。
一个算法应当具有以下特征:5输入:一个算法必须有0个或多个输入。
它们是算法开始运算前给予算法的量。
这些输入取自于特定的对象的集合。
它们可以使用输入语句由外部提供,也可以使用置初值语句或赋值语句在算法内提供。
6输出:一个算法应有1个或多个输出,输出的量是算法计算的结果。
7确定性:算法的每一步都应确切地、无歧义地定义。
对于每一种情况,需要执行的动作都应严格地、清晰地规定。
8有穷性:一个算法无论在什么情况下,都应在执行有穷步后结束。
9有效性:算法中每一条运算都必须是足够基本的。
就是说,它们原则上都能精确地执行,甚至人们只用纸和笔做有限次运算就能完成。
一般来说,我们所编写的程序都是在特定算法基础上设计出来的,程序常常与算法是相互对应的,在没有特殊的情况下,程序也应当具有以上五个特征。
但,也有一些程序在设计中,人们由于疏忽会想当然地认为,程序只要编写出来一般都会自然地符合算法的五个特征,这是应当引为注意的。
那么,应该如何对其进行改进,使其符合算法的五个特征呢?仍然以上述由计算机随机产生10个101~200之间互不相同的数为例进行阐述。
首先,把要产生的所有数放到一个数组a中。
令upperbound 是此范围的上限,而lowerbound 是范围的下限。
第二,每次随机生成数组a的一个下标subscript,然后取出它所对应的数据,将数组a的最后一个数放到下标subscript的位置,同时将数组a长度减1。
尽管前若干次生成的下标subscript随机数有可能相同,但,因为每一次都把最后一个数填到取出的位置,因此,相同下标subscript对应的数却绝不会相同,每一次取出的数都不会一样,这样,就保证了算法的确定性、有效性、有穷性。
程序流程图:程序:Private Sub Command3_Click()Dim a(10), b(100) As Integerlowerbound = 101upperbound = 200For i = 1 To upperbound - lowerbound + 1b(i) = lowerbound + i - 1NextRandomizelength = upperbound - lowerbound +1For i = 1 To 10subscript = Int(length * Rnd + 1)r = b(subscript)b(script) = b(length)length = length - ia(i) = rDebug.Print a(i);NextDebug.PrintEnd Sub运行结果:195 153 148 183 149 101 137 172 126 110枚举可重复这种随机数的生成比较简单,只要把各个枚举数放入一个数组中保存起来,然后随机生成数组的下标,最后取出对应下标下的数组的值即可。
流程图和程序可参考前面的论述。
枚举不可重复首先把各个枚举数放入一个数组中保存起来,其它的处理方法完全类似于某范围内不可重复随机数的方法。
结束语上述算法具有很高的应用价值与理论价值。
在计算机数据结构、算法分析与设计、科学模拟等方面需要随机数的应用中,都可使用该算法。
参考文献:[1]《Visual Basic程序设计教程》北京:机械工业出版社,2002.2.1[2]严蔚敏《数据结构》(第二版)北京:清华大学出版社,1999关于一定范围内不重复随机数的讨论:1)问题:在1~1000产生N个随机数(N为用户指定, N大于0,不大于1000),产生出来的数,不能重复,如N=3时,结果可以是1,202,454;但不能为34,43,43。
我现在的实现是,如果N=1000时,顺序产生全部的1~1000。
如果N <1000,则随机产生数,同时进行重复数过滤。
现在问题是当900 <N <1000,特别是995 <N <1000时,程序总是不停的产生数并判断该数已经产生过,然后继续重复上述步骤。
想请教如何改变算法,让产生过程更快。
以下示例假设N=1000用一个列表,把1到1000的数存起来,随机从所有数中取出一个,后面的数前移,列表的元素数量减1,如此重复。
3)讨论:给你写了个,速度还可以,一秒钟不到,就出来了。
#include <time.h>#include <stdio.h>#include <stdlib.h>int find(int *a,int num,int data);void main(){int a[1000]={0},temp,n;int i,j,k;printf( "please input zhe number of data: ");scanf( "%d ",&n);for(i=0;i <n;i++){srand(time(NULL));temp=rand()%(1000-i)+1;for(j=0,k=0;j <temp;){if(a[k++]==0)j++;}a[k-1]=1;}for(i=1;i <=1000;i++)if(a[i-1]==1)printf( "%4d ",i);}程序的思想是这样的:用一个标志数组a[1000],加入产生的数为123,则将a[122]置为1,产生n个数后,把下一个随机数(假设为next)的范围定为1000-n,由于此时数组a还有1000-n元素没有置为1,此时可以把next对应的空位置为1,这样一直循环,直到产生所需数为止。
最后扫描整个数组a,把值为1的元素位置输出即可。
4)讨论:定义一个数组,里面是顺序排好的自然数把随机一个数组元素和第一个元素交换把随机一个数组元素和第二个元素交换把随机一个数组元素和第三个元素交换……把随机一个数组元素和第N个元素交换这里N为需要生成的不重复随机数个数5)讨论:随机洗牌算法。
代码:/*Ëæ»úÏ´ÅÆËã·¨±à³Ì»·¾³: VC6.0*/#include <iostream>#include <ctime>#include <cstdlib>using namespace std;void Random_Shuffle( int n ){int list[1000];int i;for( i=0; i <1000; ++i )list[i]=i+1;srand(time(NULL));int j;for( i=0; i <1000; ++i ){j=rand()%1000;swap( list[i], list[j] );}for( i=0; i <n; ++i )cout < <list[i] < < " ";cout < <endl;}int main( ){int n;cout < < "ÇëÊäÈëN (N <1000) : ";cin> > n;Random_Shuffle( n );return 0;}粗心了。
我的代码中Random_Shuffle()中的第二个for循环,只需要执行n次。
应该改为:for( i=0; i <n; ++i ){j=rand()%1000;swap( list[i], list[j] );}6)讨论:995 <N <1000是5/1000的几率!虽然总能排带!但是太慢了不如直接对1000个数的数组进行随机排序!用洗牌算法(我自己的思路,大家不要笑)随机2个数a 和b,将数组中index=a 到index=b之间的所有数一起放到数组的前面或者后面!循环多次就行了关于真随机数生成器/blog/199943有关如何产生随机数的理论有许多,如果要详细地讨论,需要厚厚的一本书的篇幅。
有限状态机不能产生真正的随机数的,所以在现在的计算机中并没有一个真正的随机数生成算法,现有的随机数生成算法生产的随机数只不过因为重复的周期比较大,可以做到使产生的数字重复率很低,这样看起来好象是真正的随机数,一般称作叫伪随机数发生器。
真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。
这样的随机数发生器叫做物理性随机数发生器,它们的缺点是技术要求比较高。
真随机数生产效率没有伪随机数高,还有就是"信息熵的信息量如果很有限的话,就不是一定是真的随机数了。
"还有人质疑真正的随机数的存在,这是哲学问题,不在此涉及。
查了下现有的真随机数生成器,比如PuTTYgen的随机数是让用户移动鼠标达到一定的长度,之后把鼠标的运动轨迹转化为种子;Intel通过电阻和振荡器来生成热噪声作为信息熵资源;Unix/Linux的dev/random和/dev/urandom采用硬件噪音生成随机数;(待补充)基于特定Intel芯片组中random number generator(RNG)单元的真随机数生成器.在Intel 815E芯片组的个人电脑上安装Intel Security Driver(ISD)后,可以通过编程读取寄存器获取RNG中的随机数.有人在BBS上提到:RSA的书上介绍过一种随机数发生器,根据的是劣质内存芯片工作在高温下,其数据是不可预测的,读取这里面的数据,就会得到难以预测的随机数。