苏科版九年级数学全册知识点
初三数学知识点归纳苏教版

初三数学知识点归纳苏教版课堂临时报佛脚,不如课前预习好。
其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
初三新学期数学知识点苏教版一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1、这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
2、不等式与不等式组不等式:①用符号”=“号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...及a都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
苏科版初三数学重要知识点

苏科版初三数学重要知识点天才就是勤奋曾经有人这样说过。
如果这话不完全正确,那至少在很大程度上是正确的。
学习,就算是天才,也是需要不断练习与记忆的。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
九年级数学知识点函数的图像与一元二次方程1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k 个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x 的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?|当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x 为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a 时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).初三年级数学知识点旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
苏科版九年级数学上册全册知识点归纳

)的方程两边直接开平方而转化为两个一元一次方程的方③化二次项系数为方,即方程两边都加上一次项系数的一半的平方;化原方程为可以用两边开平方来求出方程的解;如果公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二±因式分解的方法:提公因式、公式法、十字相乘法。
.一元二次方程的注意事项:、一个四边形的四个顶点都在同一个圆上,这个四边形叫做圆的内接四边形。
、圆内接四边形的对角互补。
x n,我们把n个数的算术平均数,简称平通常,平均数可以用来表示一组数据的并不总是相同的,有时有些数据比其他的更重要.所以,我们在计算这组数据的平均数时,往往根据其重要程度,分别给每个数据一个”n个数据,个数据的权数,则称为这组数据的加权平均数.将一组数据按从小到大排列,处于中间位置的数(奇数个数时)或中间两个数的平均数(偶数个数时)叫做这组数据的中位数.在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际选择。
)如何理解众数是指一组数据中出现次数最多的那个数据,它的大小只与一组一组数据中的部分数据有关,一组数据的众数可能有一个或几个,也可能没有。
.描述一组数据的离散程度可采取许多方法,在统计中常先求这组数据的平均数,再求这组数据与平均数的差的平方和的平均数,用这个平均数来衡量这组数据的波动大小-)-)-)-)(二)通常,一组数据的方差越小,这组数据的离散程度越小,这组数据也就越稳定..标准差:有些情况下,需用到方差的算术平方根,即,一般地,设一个试验的所有可能发生的结果有中的一个结果出现.如果每个结果出现的机会均等,那么我们说这出现的机会都一样,那么我们就称这个试验的结果具有等可能性.表示一次试验所有等可能出现的结果数)树状图它可以帮助我们不重复、不遗漏地列出所有可能出现的结果。
小结:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不。
苏科版九年级数学上+圆知识点汇总及练习(无答案)

图2 圆知识点1 圆的有关概念(1) 圆心和半径:圆心确定位置,半径确定大小。
等圆或同圆的半径都相等。
(2) 弦:圆上任意两点之间的线段。
直径是圆中最长的弦。
(3) 弧:圆上任意两点之间的部分。
完全重合的弧叫做等弧(强调度数相等且长度相等)(4) 三角形的外心是三边垂直平分线的交点,它到三个顶点的距离相等。
(5) 经过不在同一条直线上的三个点唯一确定一个圆。
【常作辅助线1】连接圆心和圆上的点,形成半径。
1.如图1,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在 MN⌒上,且不与M N ,重合,当P 点在MN⌒上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( ) A.变大 B.变小 C.不变 D.不能确定2.如图2,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠BOC =70°,AD ∥OC ,则∠AOD =__________.3.如图AB 是⊙O 的直径,CD 是⊙O 的弦,AB 与CD 的延长线交于点E ,且AB =2DE ,∠E =18°,求 ∠AOC 的度数。
知识点2 圆的有关性质(1)圆是中心对称图形,也是轴对称图形。
(2) 弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中,有一组量相等,那么它们所对的其余各组量都分别相等。
(3)垂径定理:垂直于弦的直径平分弦,也平分弦所对的优弧和劣弧。
(4) 圆周角的性质:① 同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半②直径所对的圆周角是直角,90°的圆周角所对的弦是直径。
【解题方法1】半径、弦长、弓高、圆心到弦的距离这四个量的关系是只要知道其中的两个就能求出另两个。
【解题方法2】当弦长=R 时,弦所对的圆心角=60°, 当弦长=R 2时,弦所对的圆心角=90°当弦长=R 3时,弦所对的圆心角=120°,一条弦所对的圆周角中,同侧相等,异侧互补。
苏科版初三数学知识点梳理

苏科版初三数学知识点梳理失败乃成功之母,重复是学习之母。
学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科⽬的学习⽅法都是不断重复学习。
下⾯是⼩编给⼤家整理的⼀些初三数学的知识点,希望对⼤家有所帮助。
九年级上册数学单元知识点第⼀章证明⼀、等腰三⾓形1、定义:有两边相等的三⾓形是等腰三⾓形。
2、性质:1.等腰三⾓形的两个底⾓相等(简写成“等边对等⾓”)2.等腰三⾓形的顶⾓的平分线,底边上的中线,底边上的⾼的重合(“三线合⼀”)3.等腰三⾓形的两底⾓的平分线相等。
(两条腰上的中线相等,两条腰上的⾼相等)4.等腰三⾓形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三⾓形的⼀腰上的⾼与底边的夹⾓等于顶⾓的⼀半6.等腰三⾓形底边上任意⼀点到两腰距离之和等于⼀腰上的⾼(可⽤等⾯积法证)7.等腰三⾓形是轴对称图形,只有⼀条对称轴,顶⾓平分线所在的直线是它的对称轴3、判定:在同⼀三⾓形中,有两个⾓相等的三⾓形是等腰三⾓形(简称:等⾓对等边)。
特殊的等腰三⾓形等边三⾓形1、定义:三条边都相等的三⾓形叫做等边三⾓形,⼜叫做正三⾓形。
(注意:若三⾓形三条边都相等则说这个三⾓形为等边三⾓形,⽽⼀般不称这个三⾓形为等腰三⾓形)。
2、性质:⑴等边三⾓形的内⾓都相等,且均为60度。
⑵等边三⾓形每⼀条边上的中线、⾼线和每个⾓的⾓平分线互相重合。
⑶等边三⾓形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、⾼线或所对⾓的平分线所在直线。
3、判定:⑴三边相等的三⾓形是等边三⾓形。
⑵三个内⾓都相等的三⾓形是等边三⾓形。
⑶有⼀个⾓是60度的等腰三⾓形是等边三⾓形。
⑷有两个⾓等于60度的三⾓形是等边三⾓形。
九年级下册数学知识点总结直线与圆的位置关系①直线和圆⽆公共点,称相离。
AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。
AB与⊙O相交,d③直线和圆有且只有⼀公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。
苏教版九年级数学上册知识点总结(苏科版)

知识点总结第一章一元二次方程定义方程是只含有一个未知数的整式方程,并且可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
2用配方法求解一元二次方程思路:将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边同时开平方,转化为一元一次方程,便可求出它的根。
我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
3。
用公式法求解一元二次方程对于一元二次方程,当b2-4ac≥0时,它的根是:上面这个公式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法。
对于ax2+bx+c=0(a,b,c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根。
当b2-4ac=0时,方程有两个相等的实数根。
当b2-4ac<0时,方程没有实数根。
4、用因式分解法求解一元二次方程当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就可以将方程分解成两个一元一次方程,这两个一元一次方程的解就是一元二次方程的根,这种解一元二次方程的方法,叫做因式分解法。
5、一元二次方程的根与系数的关系(韦达定理)如果方程ax2+bx+c=0(a,b,c为常数,a≠0)有两个实数根x1,x2,那么x1+x2=-b/a,x1x2=c/a思维导图:知识点归类建立一元二次方程模型知识点一一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
一元二次方程的解法一、一元二次方程概念:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
二、求解方法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
苏教版九年级数学知识点整理

苏教版九年级数学知识点整理【数的开方】1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);留意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3.平方根的表示方法:a的平方根表示为和.留意:可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.留意:0的算术平方根还是0.5.三个重要非负数:a2≥0,|a|≥0,≥0.留意:非负数之和为0,说明它们都是0.6.两个重要公式:(1);(a≥0)(2).7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).留意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方.8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.9.立方根的特性:.10.无理数:无限不循环小数叫做无理数.留意:?和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1)(2).13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应当用无理数表示;假如题目有近似要求,则结果应当用无理数的近似值表示.留意:(1)近似计算时,中间过程要多保存一位;(2)要求记忆:初三数学下册学问点整理1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。
假如∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
苏科版数学九年级知识点

苏科版数学九年级上册的知识点包括:
- 第一章《一元二次方程》
- 1.1 一元二次方程
- 1.2 解一元二次方程(一)——配方法
- 1.3 解一元二次方程(二)——公式法
- 1.4 解一元二次方程(三)——因式分解法 - 1.5 实际问题与一元二次方程
- 第二章《二次函数》
- 2.1 二次函数的定义
- 2.2 二次函数图象上点的坐标特征
- 2.3 二次函数图象的绘制
- 2.4 二次函数的性质
- 2.5 二次函数与一元二次方程
- 第三章《旋转》
- 3.1 图形的旋转
- 3.2 中心对称
- 3.3 课题学习设计图案
- 第四章《圆》
- 4.1 圆的相关概念
- 4.2 圆心角、弧、弦的关系
- 4.3 圆周角定理
- 4.4 确定圆的条件
- 4.5 直线和圆的位置关系判断
- 4.6 课题学习设计图案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版数学九年级全册知识点梳理第一章图形与证明(二)1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
判定——从边:1两组对边分别平行的四边形是平行四边形。
2一组对边平行且相等的四边形是平行四边形。
3两组对边分别相等的四边形是平行四边形。
从角:两组对角分别相等的四边形是平行四边形。
对角线:对角线互相平分的四边形是平行四边形。
矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。
定理1:矩形的4个角都是直角。
定理2:矩形的对角线相等。
定理:直角三角形斜边上的中线等于斜边的一半。
判定:1有三个角是直角的四边形是矩形。
2对角线相等的平行四边形是矩形。
菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。
定理1:菱形的4边都相等。
定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。
判定:1四条边都相等的四边形是菱形。
2对角线互相垂直的平行四边形是菱形。
正方形的性质与判定:正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。
正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。
判定:1有一个角是直角的菱形是正方形。
2有一组邻边相等的平行四边形是正方形。
1.4 等腰梯形的性质与判定定义:两腰相等的梯形叫做等腰梯形。
定理1:等腰梯形同一底上的两底角相等。
定理2:等腰梯形的两条对角线相等。
判定:1在同一底上的两个角相等的梯形是等腰梯形。
2对角线相等的梯形是等腰梯形。
1.5 中位线三角形的中位线平行于第三边,并且等于第三边的一半。
梯形的中位线平行于两底,并且等于两底的一半。
中点四边形:依次连接一个四边形各边中点所得到的四边形称为中点四边形(中点四边形一定是平行四边形)。
原四边形对角线中点四边形相等菱形互相垂直矩形相等且互相垂直正方形第二章数据的离散程度2.1 极差:一组数据中的最大值与最小值的差叫做极差。
计算公式:极差=最大值-最小值。
极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。
一般说,极差越小,则说明数据的波动幅度越小。
2.2 方差各个数据与平均数的差的平均数叫做这组数据的方差,记作S 2。
巧用方差公式:1、基本公式:S2=[(X1-)2+(X2-)2+……+(X n-)2]2、简化公式:S 2=[(X12+X22+……+X n2)-n2]可写成:S2=(X12+X22+……+X n2)-23、简化②:S2=[(X’12+X’22+……+X’n2)-n2] 也可写成: S2=(X’12+X’22+……+X’n2)-2标准差:方差的算术平方根叫做这组数据的标准差,记作S。
意义:1、极差、方差和标准差都是用来描述一组数据波动情况的特征,常用来比较两组数据的波动大小,我们通常研究的是这组数据的个数相等、平均数相等或比较接近的情况。
2、方差较大的波动较大,方差较小的波动较小。
3、方差大,标准差就大,方差小,标准差就小。
因此标准差同样反映数据的波动大小。
注意:对两组数据来说,极差大的那一组不一定方差大,反过来,方差大的极差也不一定大。
第三章二次根式3.1 二次根式定义:一般地,式子(a≧0)叫做二次根式,a叫做被开方数。
有意义条件:当a≧0时,有意义;当a≦0时,无意义。
性质:1、≧0(a≧0)2、()2=a(a≧0)2=∣a∣= a(a≧0)a(a<0)3.2 二次根式的乘除法法则:√a·√b=√ab(a≧0,b≧0)=√(a≧0,b>0)化简:①√ab=√a·√b(a≧0,b≧0)②√=(a≧0,b>0)③==(a≧0,b >0)第四章一元二次方程4.1 概念:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程。
一般形式是aX2+bX+c=0(a、b、c是常数,a≠0),其中aX2称为二次项,a称为二次项系数,bX称为一次项,b称为一次项系数,c称为常数项。
4.2 解法:1、直接开平方2、配方法:先把一元二次方程变形为(X+h)2=k的形式(其中h,k都是常数),如果k ≧0,再通过直接开平方法求出方程的解3、公式法(求根公式):一元二次方程aX2+bX+c=0 前提:(a≠0)b2-4ac≧0,记住求根公式:a acbbx24 2-±-=(注意在找abc时须先把方程化为一般形式)4分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)※根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无实数根。
反之,也成立。
※如果一元二次方程02=++cbxax的两根分别为x1、x2,则有:acxxabxx=⋅-=+2121。
※一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x1、x2的对称式的值,4、因式分解法(重点是十字相乘法)根的判别式一元二次方程aX2+bX+c=0 (a≠0)的根的情况可由b2-4ac来判定,因此b2-4ac叫做一元二次方程根的判别式。
当b2-4ac>0时,方程有两个不相等的实数根当b2-4ac=0时,方程有两个相等的实数根当b2-4ac<0时,方程没有实数根。
在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
※处理问题的过程可以进一步概括为:解答检验求解方程抽象分析问题→→第五章中心对称图形(二)5.1 圆定义:圆是定点的距离等于定长的点的集合。
其中,定点叫做圆心,定长叫做半径。
与圆有关的概念:1、连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。
2、圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆。
大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
3、定点在圆上的角叫做圆心角。
4、圆心相同,半径不相等的两个圆叫做同心圆。
能够互相重合的两个圆叫做等圆。
在同圆或等圆中,能够互相重合的弧叫做等弧。
与圆的位置关系:在平面内,点与圆有3中位置关系:点在圆内,点在圆上,点在圆外。
如果设⊙O的半径为r,点P到圆心O的距离为d,那么“点P在圆内←→d<r;点P在圆上←→d=r;点P在圆外←→d>r”5.2 圆的对称性圆是中心对称图形,圆心是对称中心。
圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。
圆心角、弧、弦之间的关系(等对等定理):在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.3 圆周角概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
(圆心与圆周角的位置关系分为三种情况:圆心在角的一边上;圆心在角的内部;圆心在角的外部)推论:1、直径(或半圆)所对的圆周角是直角。
2、90°的圆周角对的弦是直径。
5.4 确定圆的条件条件:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心是三角形的三边的垂直平分线的交点,这个点叫做三角形的外心。
这个三角形叫做圆的内接三角形5.5 直线与圆的位置关系1、直线与圆有两个公共点时,叫做直线与圆相交。
(d<r)2、直线与圆有唯一的公共点,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点。
(d=r)3、直线与圆没有公共点时,叫做直线与圆相离。
(d>r)直线与圆的位置关系可以用它们的交点的个数来区分,也可以用圆心到直线的距离与半径的大小关系来区分,它们的结果是一致的。
切线的性质与判定:判定:经过半径的外端并且垂直于这条半径的直线式圆的切线。
性质:(圆的切线垂直于过切点的半径)经过圆心且垂直于切线的直接必经过切点。
经过切点且垂直于切线的直线必经过圆心切线与圆只有一个公共点;切线与圆心的距离等于半径;切线垂直于过切点的半径。
内心:与三角形各边都相切的圆叫做三角形的内切圆。
内切圆的圆心叫做三角形的内心,它是三角形的三条角平分线的交点。
这个三角形叫做圆的外切三角形。
5.6 圆与圆的位置关系性质与判定:如果两圆的半径分别为R和r,圆心距为d,那么两圆外离←→d>R+r两圆外切←→d=R+r图5OBC A BAOBAO两圆相交←→R-r <d <R+r (R >r ) 两圆内切←→d=R-r(R >r) 两圆内含←→0≤d <R-r (R >r ) 连心线的性质:圆是轴对称图形,从上表中可以看出它们都是轴对称图形。
沿O 1、O 2所在直线(连心线)对折,发现:两圆相切,直线O 1O 2必过切点;两圆相交,连心线垂直平分它们的公共弦。
5.7 正多边形与圆正多边形概念:各边相等、各角也相等的多边形叫做正多边形。
性质:正多边形都是对称图形,一个正n 边形共有n 条对称轴,没条对称轴都通过正n 边形的中心。
一个正多边形如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。
如果一个正多边形是中心对称图形,那么它的中心就是对称中心。
边数相同的正多边形相似。
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
友情提醒:(1)边数相同的正多边形相似,这是解与正多边形有关问题常用到的知识。
(2)任何三角形都有外接圆和内切圆,但只有正三角形的外接圆和内切圆才是同心圆。
过正多边形任意三个顶点的圆就是这个正多边形的外接圆。
作正多边形:作半径为R 的正n 边形的关键是n 等分圆。
这就要学习两种方法: 用量角器等分圆,可以作任意正多边形,这是近似作法。
具体地说先计算出顶点在圆心的角的度数,即正n 边形的圆心角为,然后依次用量角器将圆等分,顺次连接各分点,就作出正n 边形。