百分数应用题的分类(归纳总结)
分数(百分数)应用题的六种类型PPT课件

列方程
根据题目中的已知条件 ,列出一个包含未知数
的方程。
解方程
通过计算,求出未知数 的值。
检验
将求得的未知数的值代 入原方程进行检验,确
保答案的正确性。
典型例题分析
例题1
已知一个数的3/4是24,求这个数。
分析
根据题目中的已知条件,可以列出一个方程:3/4x=24 ,其中x表示这个数。解这个方程,可以得到x的值。
解方程
通过计算,求出未知数的值。
检验
将求得的未知数的值代入原方 程进行检验,确保答案的正确
性。
典型例题分析
例题1
已知甲数比乙数多25%,且甲数是 120,求乙数。
分析
设乙数为x,根据题意可列出方程: 甲数 = 乙数 + 乙数 × 25%。将甲 数代入方程,可求得乙数的值。
解答
120 = x + x × 25%,解得x = 96。
解答
3/4x=24,解得x=32。
例题2
已知一个数的25%是15,求这个数。
分析
根据题目中的已知条件,可以列出一个方程: 0.25x=15,其中x表示这个数。解这个方程,可以得到 x的值。
解答
0.25x=15,解得x=60。
学生自主练习
01
02
03
练习1
已知一个数的4/5是32, 求这个数。
练习2
THANKS
感谢观看
练习3
已知一个数的75%比它的 50%多6,求这个数。
06
CATALOGUE
类型五:折扣、纳税、利息问题中分数和 百分数应用
折扣问题中分数和百分数应用
折扣的含义及计算方法
01
六年级上分数百分数应用题分类总结

六年级上分数百分数应用题分类总结本文是一篇数学应用题分类总结文章,主要包括三类问题。
第一类问题是求一个数的几分之几(百分之几)是多少,需要用到乘法和连乘。
例如,某食油批发店上午卖出96箱花生油,下午卖出上午的5/12,需要求下午卖出的箱数;一根钢管长8米,用去一部分后还剩下全长的20%,需要求还剩下多少米。
第二类问题是求甲数是/占/相当于已数的几分之几(百分之几),需要用到除法。
例如,六(1)班有男生30人,女生20人,需要求男、女生各占全班的几分之几。
第三类问题是已知甲数的几分之几(或百分之几)是多少,需要用到除法或方程解。
例如,海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3,需要求海豹的寿命大约是多少年。
2330平方千米缩减到了大约1860平方千米,面积缩减了多少百分之几?6、一辆汽车从甲地到乙地,全程共600千米,第一天行了全程的三分之一,第二天行了剩下路程的一半,第三天行了剩下路程的三分之二,第四天行了剩下路程的四分之三,第五天行了剩下路程的五分之四,第六天行了剩下路程的六分之五。
这辆汽车比规定时间多行了多少百分之几的路程?7、某种药品原价100元,现在打7折出售,打折后的价格是多少?打折后比原价少多少百分之几?8、一件衣服原价200元,现在降价出售,降价后的价格是原价的75%,降价后比原价少多少百分之几?9、某地区去年的旅游人数是100万人次,今年增加到120万人次,今年比去年增加了多少百分之几?10、某种蔬菜去年产量是1000吨,今年增加到1200吨,今年比去年增加了多少百分之几?1、洞庭湖的面积从4350平方千米缩小到了约2700平方千米,面积减少了大约38.62%。
2、机器零件的成本从2.4元降低到了0.8元,成本降低了66.67%。
4、某玩具厂原计划要做550个布娃娃,实际比计划多做了50个,多做了9.09%。
5、西瓜太朗的书包原来每个96元,现在每个只要75元,降价了21.88%。
百分数(一)应用题五种类型

4、商场搞促销活动,一件衣服先降价8%,商场又返还售价5%的现金,现在买这件衣服,相当于降价百分之几?
5、某商品先按原价的150%定价,又按定价的80%出售,则售价比原价提高了还是降低了?变化幅度是多少?
6、陈伯伯家去年玉米产量比前年高10%,但比今年低9%,今年的玉米产量是前年的百分之几?(保留一位小数)
类型四:已知比一个数多(少)百分之几的数是多少,求这个数
【1、单位1未知用除法:比较量÷(1+多百分之几)或 比较量÷(1-少百分之几)】
【2、设单位1为X】
1、( )m比 m多50%; ( )千克比200千克少20%; 比90多20%的数是( ); 90比( )多20%
算式: 算式: 算式: 算式:
1、小张家上个月用水20吨,换了水笼头后,这个月用水18吨,这个月节约了百分之几?
2、小张家上个月用水20吨,换了水笼头后,这个月节约用水18吨,这个月节约了百分之几?
3、甲数是乙数的4倍,甲数比乙数多百分之几?乙数比甲数少百分之几?
4、嘟嘟经过锻炼,体重下降到60千克,比去年减少15千克,他的体重下降了百分之几?
7、一桶汽油,第一次用去总数的30%,第二次用去总数的 ,还剩50L,这桶汽油原来有多少升?
8、甲船的载货量比乙船的载货量多25%,甲乙两船共载货3600吨。甲、乙两船各载货多少吨?
9、宇航员在月球上的体重相当于地球上的20%,一位宇航员到月球上体重减轻了64千克。这位宇航员在地球上的体重是多少千克?
5、小明骑车从家去学校用了15分钟,从学校回家用了12分钟,回家时速度提高了百分之几?
6、正方形的边长减少10%,它的面积减少了百分之几?
六年级上分数、百分数应用题分类总结教案资料

六年级分数、百分数应用题分类总结第一类:求一个数的几分之几(百分之几)是多少?(用乘法,包括连乘)1、某食油批发店,上午卖出花生油96箱,下午卖出的是上午的5/12,下午卖出多少箱?2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、水果店运来苹果20筐,运来的橘子的筐数是苹果的12%,运来橘子多少筐?4、修一段公路,第一天修300米,第二天比第一天的7/15少60米,第二天修多少米?5、水果店进苹果36箱,进的梨的箱数是苹果的12%(5/8)。
(1)进的梨的箱数是多少?(2)进的梨的箱数比苹果少多少箱?(3)进的梨和苹果共有多少箱?6、小红体重42千克,小方体重38千克,小明的体重相当于小红和小方体重总和的50%,小明体重多少千克?7、从邮电局汇款需要交1%的汇费,寄2000元需要交多少汇费?8、王格尔塘镇中小学和洒索玛小学的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,洒索玛小学有学生750人,哪个学校的男生多?多多少人?9、小强在银行里储蓄了1200元钱,取出一部分捐献给灾区,还剩40%,他捐献了多少元?10、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来多少只小鸡?11、王格尔塘镇中小学有学生480人,只有10%的学生没有参加意外事故保险,参加保险的学生有多少?12、一个长方形花坛,长是12米,宽是长的60%,这个花坛的面积是多少?13、王格尔塘镇中心小学有480人,只有5%的学生没有参加意外事故保险。
参加保险的学生有多少人?14、王格尔塘镇中心小学开展回收废纸活动,共回收废纸87.5吨,用废纸生产再生纸的再生率为80%,这些回收的废纸能生产多少吨再生纸?15、海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3。
海豹的寿命大约是多少年?第二类:(1)求甲数是/占/相当于)已数的几分之几(百分之几)?(用除法:甲数÷已数)1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、某村计划种树250棵,实际种树200棵,计划种树的棵树是实际的百分之几?第三类:已知甲数的几分之几(或百分之几)是多少,求甲数(用除法或者用方程解)1、工地运来的水泥有24吨,运来的水泥是黄沙的5/6,运来的黄沙有多少吨?2、水果店运来苹果28箱,正好是运来梨的箱数的45%,运来的梨有多少箱?3、一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距多少千米?4、鲜牛肉煮熟后的重量只有原来的5/12,要得到熟牛肉26千克,需要鲜牛肉多少千克?5、王格尔塘下摊村种玉米120公顷,种玉米的面积是种小麦面积的36%,这个村种小麦多少公顷?6、我校有女生160人,正好占男生人数的42%,全校有多少人?7、某电视机厂去年上半年生产电视机48万台,是下半年产量的80%,这个电视机厂去年全年的产量是多少万台?8、一辆汽车从甲地到乙地,行了全程的3/4,行了240千米,还剩多少千米没有行?9、一辆汽车以每小时45千米的速度从甲地到乙地,3小时行了全程的15%,这辆汽车还要行多少千米才能到达乙地?10、王老师有1800元,是张老师的12%,李老师的钱是张老师的8%,李老师有多少元?11、汪刚看一本书,第一天看了18页,第二天看了全书的97%,还余45页没有看,这本书共有多少页?12、修一条公路,已经修了全长的4/5,未修的比已修的少28千米,这条公路全长多少千米?13、草地上的灰兔的只数是白兔的60%,白兔比灰兔多10只,白兔有多少只?14、我已经打了2000个字,正好打了全文的40%。
百分数应用题总结及答案解析(学生用)

百分数1、求一个数是另一个数的百分之几.一个数÷另一个数×100%2、求一个数比另一个数多百分之几.(一个数-另一个数)÷另一个数×100% 可概括为:(大数-小数)÷小数×100%3、求一个数比另一个数少百分之几.(另一个数-一个数)÷另一个数×100% 可概括为:(大数-小数)÷大数×100%4、求一个数的百分之几是多少.单位“1”的量×百分之几=百分之几对应量5、求比一个数多百分之几的数是多少.单位“1”的量×(1+百分之几)=(1+百分之几)对应量6、求比一个数少百分之几的数是多少.单位“1”的量×(1-百分之几)=(1-百分之几)对应量7、已知一个数的百分之几是多少,求这个数.百分之几对应量÷百分之几=单位“1”的量8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,其解法类似于第7类,还可以根据相关条件列方程解答.简单应用题的类型1、简单应用题:是指用一步计算解答的应用题.2、简单的加法应用题.(1)根据加法意义,求两个数的和.(2)求比一个数多几的数.3、简单的减法应用题.(1)根据减法意义,求剩余.(2)求两数的相差数.(3)求比一个数少几的数.4、简单乘法应用题.(1)求几个相同加数的和.(2)求一个数的几倍(几分之几)是多少.5、简单的除法应用题.(1)已知两个因数的积与其中一个因数,求另一个因数.(2)把一个数平均分成若干份,求每份是多少.(3)求一个数里包含几个另一个数.(4)求一个数是另一个数的几倍(或几分之几).(5)已知一个数的几倍(或几分之几)是多少,求这个数.复合应用题的类型及解法1、“归一”问题:此类应用题中暗含着单一量不变,文字叙述中多带有类似“照这样计算”的字样,其解题的关键是从已知的一种对应量中求出单一量(即归一),再以它为标准,根据题目要求算出所求量.2、“归总”问题:此类题中暗含着总量不变,即乘积不变.其解题的关键是先求出总数(即归总),再根据总数算出所求量.3、行程问题:根据速度、时间和路程之间的关系,计算相向、相背或同向运动的问题,称为行程问题.其基本的数量关系式为:速度×时间=路程,路程÷时间=速度,路程÷速度=时间.相遇问题,即同时相向而行并相遇或(同时背向而行);速度和×(相遇)时间=总路程.追及问题,即同时同向而行,速度慢的在前,速度快的在后:速度差×追及时间=路程差.4、工程问题:把工作总量看作单位“1”,工作效率用单位时间内完成工作总量的“几分之一”表示.根据工作总量、工作效率、工作时间其中两种量求出第三种量.数量关系式为:工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率5、分数应用题:关键是找标准量,即单位“1”.若单位“1”已知,用乘法计算;若单位“1”未知,用除法计算.求甲比乙多(或少)几分之几(百分之几)的解题规律:(甲-乙)÷乙已知甲比乙多(或少)几分之几(百分之几),求甲的解题规律:乙×(1+几分之几)乙×(1-几分之几)已知甲比乙多(或少)几分之几(百分之几),求乙的解题规律:甲÷(1+几分之几)甲÷(1-几分之几)利息=本金×利率×时间(5)应纳税额=应纳税所得额×税率1、一项工程甲乙合做6天完成,乙独做10天完成,甲独做要几天完成?甲的工作效率=1/6-1/10=1/15 甲独做需要1/(1/15)=15天完成2、一项工作,甲5小时先完成4分之1,乙6小时又完成剩下任务的一半,最后余下的工作有甲乙合作,还需要多长时间能完成?甲的工作效率=(1/4)/5=1/20 乙完成(1-1/4)×1/2=3/8乙的工作效率=(3/8)/6=1/16 甲乙的工作效率和=1/20+1/16=9/80此时还有1-1/4-3/8=3/8没有完成还需要(3/8)/(9/80)=10/3小时3、工程队30天完成一项工程,先由18人做,12天完成了工程的3/1,如果按时完成还要增加多少人?每个人的工作效率=(1/3)/(12×18)=1/648 按时完成,还需要做30-12=18天按时完成需要的人员(1-1/3)/(1/648×18)=24人需要增加24-18=6人4、甲乙两人加工一批零件,甲先加工1.5小时,乙再加工,完成任务时,甲完成这批零件的八分之五.已知甲乙的共效比是3:2.问:甲单独加工完成着批零件需多少小时?甲乙工效比=3:2 也就是工作量之比=3:2乙完成的是甲的2/3 乙完成(1-5/8)=3/8那么甲和乙一起工作时,完成的工作量=(3/8)/(2/3)=9/16所以甲单独完成需要1.5/(5/8-9/16)=1.5/(1/16)=24小时5、一项工程,甲、乙、丙三人合作需要13天,如果丙休息2天,乙要多做4天,或者由甲、乙合作多做1天.问:这项工程由甲单独做需要多少天?丙做2天,乙要做4天也就是说并做1天乙要做2天那么丙13天的工作量乙要2×13=26天完成乙做4天相当于甲乙合作1天也就是乙做3天等于甲做1天设甲单独完成需要a天那么乙单独做需要3a天丙单独做需要3a/2天根据题意1/a+1/3a+1/(3a/2)=1/131/a(1+1/3+2/3)=1/131/a×2=1/13 a=26甲单独做需要26天算术法:丙做13天相当于乙做26天乙做13+26=39天相当于甲做39/3=13天所以甲单独完成需要13+13=26天6、乙做60套,甲做60/(4/5)=75套甲三天做165-75=90套甲的工作效率=90/3=30套乙每天加工30×4/5=24套7、甲、乙两人生产一批零件,甲、乙工作效率的比是2:1,两人共同生产了3天后,剩下的由乙单独生产2天就全部完成了生产任务,这时甲比乙多生产了14个零件,这批零件共有多少个?将乙的工作效率看作单位1 那么甲的工作效率为2乙2天完成1×2=2乙一共生产1×(3+2)=5甲一共生产2×3=6所以乙的工作效率=14/(6-5)=14个/天甲的工作效率=14×2=28个/天一共有零件28×3+14×5=154个或者设甲乙的工作效率分别为2a个/天,a个/天2a×3-(3+2)a=146a-5a=14a=14一共有零件28×3+14×5=154个8、一个工程项目,乙单独完成工程的时间是甲队的2倍;甲乙两队合作完成工程需要20天;甲队每天工作费用为1000元,乙每天为550元,从以上信息,从节约资金角度,公司应选择哪个?应付工程队费用多少?甲乙的工作效率和=1/20 甲乙的工作时间比=1:2那么甲乙的工作效率比=2:1 所以甲的工作效率=1/20×2/3=1/30乙的工作效率=1/20×1/3=1/60甲单独完成需要1/(1/30)=30天乙单独完成需要1/(1/60)=60天甲单独完成需要1000×30=30000元乙单独完成需要550×60=33000元甲乙合作完成需要(1000+550)×20=31000元很明显甲单独完成需要的钱数最少选择甲,需要付30000元工程费.9、一批零件,甲乙两人合做5.5天可以超额完成这批零件的0.1,现在先由甲做2天,后由后由甲乙合作两天,最后再由乙接着做4天完成任务,这批零件如果由乙单独做几天可以完成? 将全部零件看作单位1那么甲乙的工作效率和=(1+0.1)/5.5=1/5整个过程是甲工作2+2=4天乙工作2+4=6天相当于甲乙合作4天,完成1/5×4=4/5那么乙单独做6-4=2天完成1-4/5=1/5所以乙单独完成需要2/(1/5)=10天10、有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成.现由甲、乙两队合作3天,余下的工程由乙队单独做正好按期完成,问规定日期是多少天?甲做3天相当于乙做5天甲乙的工作效率之比=5:3那么甲乙完成时间之比=3:5所以甲完成用的时间是乙的3/5所以乙单独完成需要5/(1-3/5)=5/(2/5)=12.5天规定时间=12.5-5=7.5天11、一项工程,甲队单独做20天完成,乙队单独做30天完成,现在乙队先做5天后,剩下的由甲、乙两队合作,还需要多少天完成?乙5天完成5×1/30=1/6甲乙合作的工作效率=1/20+1/30=1/6那么还需要(1-1/6)/(1/6)=(5/6)/(1/6)=5天12、一项工程甲独完成要10天,乙独做需15天,丙队要20天,3队一起干,甲队因事走了,结果共用了六天,甲队实际干了多少天?乙丙的工作效率和=1/15+1/20=7/60乙丙都做6天,完成7/60×6=7/10甲完成全部的1-7/10=3/10那么甲实际干了(3/10)/(1/10)=3天12、加工一个零件,甲需要4小时,乙需要2.5小时,丙需要5小时.现在有187个零件需要加工,如果规定三人用同样多的时间完成,那么各应该加工多少个?甲乙丙加工1个零件分别需要1/4小时,2/5小时,1/5小时那么完成的时间=187/(1/4+2/5+1/5)=187/0.85=220小时那么甲加工1/4×220=55个乙加工2/5×220=88个丙加工1/5×220=44个13、一项工程,由甲先做5/1,再由甲乙两队合作,又做了16天完成.已知甲乙两队的工效比是2:3,甲乙两队独立完成这项工程各需多少天?甲乙的工作效率和=(1-1/5)/16=(4/5)/16=1/20甲的工作效率=1/20×2/(2+3)=1/50乙的工作效率=1/20-1/50=3/100那么甲单独完成需要1/(1/50)=50天乙单独完成需要1/(3/100)=100/3天=33又1/33天14、一项工程,甲队20人单独做要25天,如果要20天完成,还需再加多少人?将每个人的工作量看作单位1还需要增加1×25×20/(1×20)-20=25-20=5人15、一项工程,甲先做3天,然后乙加入,4天后完成的这项工程的3分之1,10天后完成的这项工程的4分之3.甲因有事调走,剩余全都让乙做.一共做了多少天?根据题意甲乙合作开始是4天完成1/3,后来是10天完成3/4所以甲乙合作10-4=6天完成3/4-1/3=5/12所以甲乙的工作效率和=(5/12)/6=5/72那么甲的工作效率=(1/3-5/72×4)/3=(1/3-5/18)/3=1/54乙的工作效率=5/72-1/54=11/216那么乙完成剩下的需要(1-3/4)/(11/216)=54/11天一共做了3+10+54/11=17又10/11天16、甲乙做相同零件各做了16天后甲还需64个乙还需384个才能完成乙比甲的工作效率少百分之40,求甲的效率?设甲的工作效率为a个/天,则乙为(1-40%)a=0.6a个/天根据题意16a+64=0.6a×16+38416×0.4a=320 0.4a=20 a=50个/天甲的工作效率为50个/天算术法:乙比甲每天少做40%那么16天少做384-64=320个每天少做320/16=20个那么甲的工作效率=20/40%=50个/天17、张师傅每工作6天休息1天,王师傅每工作5天休息2天.现有一项工程,张师傅独做需97天,李师傅需75天,如果两人合作,一共需多少天?7除以7等于13余6,13*6=78,78+6=84个工作日75除以7等于10余5,10*5=50,50+5=55个工作日张师傅每工作日完成1/84,每周完成6/84=1/14王师傅每工作日完成1/55,每周完成5/55=1/11两人合作每工作日完成139/4620,每周完成25/1546周完成150/154,还剩4/154(4/154)/(139/4620)=120/139所以,6周零一天,43天18、甲乙丙三人共同完成一项工程,3天完成了全部的1/5,然后甲休息了3天,乙休息了2天,丙没休息,如果甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天工作量的4倍,那么这项工作从开始算起多少天完成?甲乙丙的工作效率和=(1/5)/3=1/15丙的工作效率=(1/15)/(3+4+1)=1/120甲的工作效率=1/120×3=1/40乙的工作效率=1/120×4=1/30这里把丙的工作效率看作1倍数甲休息3天,乙休息2天这段时间一共完成1/30+1/120×3=7/120那么剩下的还需要(1-1/5-7/120)/(1/15)=89/8天一共需要3+3+89/8=17又1/8天19、一项工程,甲独做30天,乙独做20天完成,甲先做了若干天后,由乙接替,甲乙共做22天,甲乙各做几天?乙的工作效率=1/20乙22天完成1/20×22=11/10多完成11/10-1=1/10乙的工作效率和甲的工作效率之差=1/20-1/30=1/60所以甲做了(1/10)/(1/60)=6天乙做了22-6=12天按照鸡兔同笼问题考虑20、一项工程甲乙合做需12天完成,若甲先做3天后,再由乙工作8天,共完成这项工作的5/12,如果这件工作由甲单独做,需()天完成?甲3天乙8天看作甲乙合作3天,乙独做8-3=5天这是解决问题的关键乙独做5天完成5/12-1/12×3=1/6乙的工作效率=(1/6)/5=1/30甲的工作效率=1/12-1/30=1/20甲单独完成需要1/(1/20)=20天21、一项工作,甲乙要4小时完成,乙丙要6小时完成.现在甲丙合作2小时,剩下的乙7小时完成.甲乙丙单独要多久完成?甲丙合作2小时,乙独做7小时相当于甲乙可做2小时,乙丙合作2小时,乙独做7-2-2=3小时那么乙独做完成1-1/4×2-1/6×2=1-1/2-1/3=1/6乙的工作效率=(1/6)/3=1/18甲的工作效率=1/4-1/18=7/36丙的工作效率=1/6-1/18=1/9甲单独完成需要1/(7/36)=36/7天=5又1/7天乙单独完成需要1/(1/18)=18天丙单独完成需要1/(1/9)=9天22、一项工程,甲队单独完成需12天,乙队单独完成需18天,现要求在10天内完成,则甲乙两队至少合作多少天?此题考虑至少一个队工作10天,另一个队作为补充假如甲工作10天,完成1/12×10=5/6那么乙需要帮助(1-5/6)/(1/18)=(1/6)/(1/18)=3天假如乙工作10天,完成1/18×10=5/9甲需要帮助(1-5/9)/(1/12)=(4/9)/(1/12)=48/9天=5又1/3天由此,很明显甲乙至少合作3天就可以了.23、某市日产垃圾700吨,甲乙合作要7小时,两厂合作2.5小时后,乙厂单独处理要10小时,已知甲每小时550元,乙每小时495元,要求费用不得超过7370元,那么甲至少处理多少小时? 甲乙的工作效率和=1/7甲乙合作2.5小时完成1/7×5/2=5/14乙的工作效率=(1-5/14)/10=9/140甲的工作效率=1/7-9/140=11/140设甲至少处理a小时那么甲完成a×11/140=11a/140还剩下1-11a/140需要乙完成则乙工作的时间=(1-11a/140)/(9/140)=(140-11a)/9小时根据题意550a+495×(140-11a)/9≤73704950a+69300-5445a≤66330495a≥2970a≥6甲至少要工作6小时24、正在修建中的高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成;需费用120万元;若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需费用110万元.问:(1)甲、乙两队单独完成此项工程各需多少天?(2)甲、乙两队单独完成此项工程,各需费用多少万元?甲乙的工作效率和=1/2420天完成1/24×20=5/6乙的工作效率=(1-5/6)/(40-20)=1/120乙单独完成需要1/(1/20)=120天甲的工作效率=1/24-1/120=1/30甲单独完成需要1/(1/30)=30天(2)甲乙工作一天需要费用120/24=5万元合作20天需要5×20=100万元乙单独工作20天需要110-100=10万元乙工作一天需要10/20=0.5万元那么甲工作一天需要5-0.5=4.5万元甲单独完成需要4.5×30=135万元乙单独完成需要0.5×120=60万元25、生产一批零件,甲每小时可做18个,乙单独做要12小时成.现在由甲乙二人合做,完成任务时,甲乙生产的数量之比是3:5,甲一共生产零件多少个?乙的工作效率=1/12完成任务时乙工作了(5/8)/(1/12)=15/2小时那么甲一共生产18×15/2=135个26、一项工程,甲独做10天完成,乙独做20完成,现在甲乙合作,甲休息一天,乙休息5天,完成这项工程要多少天?甲休息1天,乙休息5天,相当于甲乙休息1天后,乙又休息4天那么甲4天完成4/10=2/5甲乙的工作效率和=1/10+1/20=3/20那么剩下的需要(1-2/5)/(3/20)=(3/5)/(3/20)=4天完成全部工程需要4+5=9天1、一筐苹果,先拿出140个,又拿出余下的60%,这时剩下的苹果正好是原来总数的六分之一,这筐苹果原来有多少个?设这筐苹果原来有x个.1/6x=(x-140)×(1-60%)1/6x=(x-140)×2/5 1/6x=2/5x-562/5x-1/6x=56 7/30x=56 x=56 ÷7/30 x=2401、求一个数是另一个数的百分之几.一个数÷另一个数×100%2、求一个数比另一个数多百分之几.(一个数-另一个数)÷另一个数×100% 可概括为:(大数-小数)÷小数×100%3、求一个数比另一个数少百分之几.(另一个数-一个数)÷另一个数×100% 可概括为:(大数-小数)÷大数×100%4、求一个数的百分之几是多少.单位“1”的量×百分之几=百分之几对应量5、求比一个数多百分之几的数是多少.单位“1”的量×(1+百分之几)=(1+百分之几)对应量6、求比一个数少百分之几的数是多少.单位“1”的量×(1-百分之几)=(1-百分之几)对应量7、已知一个数的百分之几是多少,求这个数.百分之几对应量÷百分之几=单位“1”的量8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,其解法类似于第7类,还可以根据相关条件列方程解答.(1)在一次测验中,小明做对的题数是11道,错了4道,小明在这次测验中正确率是百分之几? 11÷(11+4)×100%≈73.3%(2)大米加工厂用2000千克的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率. 1600÷2000×100%=80%(3)林场春季植树,成活了24570棵,死了630棵,求成活率.24570÷(24570+630)×100%=97.5%(4)家具厂有职工1250人,有一天缺勤15人,求出勤率.(1250-15)÷1250×100%=98.8%(5)王师傅生产了一批零件,经检验合格的485只,不合格的有15只,求这一批新产品的合格率. 485÷(485+15)×100%=97%(6)用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率.192÷(192+8)×100%=96%(7)六(1)班今天有48人来上课,有2人请事假,求这一天六(1)班的出勤率.48÷(48+2)×100%=96%(8)六(1)班有50人,期中考试有5人不及格,求这个班的及格率.(50-5)÷50×100%=90%(9)在一次射击练习中,小王命中的子弹是200发,没命中的是50发,命中率是多少?(200-50)÷200×100%=75%(10)解放军战士进行实弹射击训练,50人每人射6发子弹,结果共命中256发,求命中率.256÷(50×6)×100%≈85.3%(11)某厂的一种产品,原来每件成本96元,技术革新后,每件成本降低到了84元,每件成本降低了百分之几?(96-84)÷96=12.5%(12)录音机厂第三季度计划生产录音机3600台,实际生产4500台,实际产量超过计划百分之几?(4500-3600)÷3600=25%(13)化纤厂由于加强企业管理,每班的工人由800名减少到650名.现在每班工人数比原来减少了百分之几?(800-650)÷800=18.75%(14)一项工程甲队单独做需要10天完成,乙队单独做需要12天完成,甲的工作效率比乙多百分之几?(10分之1-12分之1)÷12分之1=20%(15)加工一种零件,现在每天加工1500个,比过去每天多加工300个,现在每天加工的零件个数比过去增加百分之几?300÷(1500-300)=25%(16)某小学今年计划用水250吨,比去年节约用水30吨,今年计划用水相当于去年用水的百分之几?250÷(250+30)≈89.3%(17)小明家十月份用电80度,比上月节约了20度,比上月节约了用电百分之几?20÷(80+20)=20%(18)向群连锁店十月份的营业额是34.5万元,比九月份营业额增加了4.5万元,十月份的营业额比九月份增加了百分之几?(19)光明鞋厂六月份计划生产鞋24000双,实际生产了25200双.增产百分之几?(25200-24000)÷24000=5%(20)某糖厂七月生产552吨糖,比计划多生产72吨,超产百分之几?72÷(552-72)=15%(21)一个生产小组生产1600个零件,验收后有4个不合格,求产品的合格率?(1600-4)÷1600×100%=99.75%(22)西山村今年已积肥82万吨,比原计划多积14万吨,完成计划的几分之几?82÷(82-14)=34分之41(23)某化工厂三月份生产化肥1280吨,比计划少生产320吨,完成计划的百分之几?1280÷(1280+320)=80%(24)学校食堂五月烧煤7.5吨,比四月份节省了1.5吨,五月份比四月份节省用煤百分之几? 1.5÷(7.5+1.5)≈16.7%(25)某工人加工一个机器零件的时间由原来的15分钟降低到10分钟,工作时间降低了百分之几?(15-10)÷15≈33.3%工作效率提高了百分之几?(10分之1-15分之1)÷15分之1=50%(26)一个工厂扩建计划投资500万元,实际节约了45万元,节约投资百分之几?45÷500=9%(27)一种电视机现在每台成本550元,比原来降低了100元,成本降低了百分之几?100÷(550+100)≈15.4%(28)某钢铁厂八月份生产钢铁2460吨,比计划增产60吨,增产百分之几?60÷(2460-60)=2.5%(29)某工厂计划第一季度生产机器零件1820个,实际生产了2320个,增产几分之几?(2320-1820)÷1820=91分之25(30)单独做一件工作,甲要8天,比乙少用2天,甲的工作效率比乙快百分之几?8+2=10(8分之1-10分之1)÷10分之1=25%(31)一项工程,由于采用了先进技术,只用了14.4万元,比原计划节约投资3.6万元,节约了百分之几?(32)红星机器厂设备更新后,每天生产零件2400个,比原计划多生产400个.比原计划增产百分之几?400÷(2400-400)=20%(33)某机关精简机构后有工作人员167人,比原来工作人员少68人.精简了百分之几?68÷(167+68)≈28.9%(34)一种彩色电视机,现在每台2400元,比原来每台降价350元,降价百分之几?350÷(2400+350)≈12.7%(35)王师傅生产一种机器零件,原来要8天,结果提前3天完成.工作效率提高百分之几?8-3=5(5分之1-8分之1)÷8分之1=60%(36)行同一段路,甲要20分钟,乙要18分钟,甲的速度比乙的速度慢百分之几?(18分之1-20分之1)÷18分之1=10%(一)典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
人教版六年级上册数学《百分数应用题题型总结(一)》(课件)

题型4:已知一个数的百分之几是多少,求这个数
方法:①找单位“1”; ②单位“1”未知,所以用除法; ③用已知量÷对应的百分率。
题型4:已知一个数的百分之几是多少,求这个数。 例5:小明读一本故事书,读了40页,刚好是整本书的20%, 这本书一共有多少页?
成活的棵数 成活率= 总棵数 4×8÷1(0408%+2)=0.96=96%
答:成活率·是96%。
巩固训练:
3、六年级有学生160人,已达到《国家体育标准》(儿童组) 的有120人,六年级学生的达标率是多少?
达标的人数 达标率= 总人数 1×201÷0106%0=0.75=75%
答:六年级学生的达标率是75%。
200÷40%=500(棵) 答:梨树有500棵。
巩固训练:
6、一桶油两天卖完。第一天卖了36%,第二天卖了32千克, 这桶油共有多少千克?
32÷(1-36%)=50(千克) 答:这桶油共有50千克。
巩固训练:
1、小红家二月份计划支出1500元,实际支出1200元,实际支 出是计划的百分之几?计划支出是实际的百分之几?
1200÷1500=0.8=80% 答:实际支出是计划的80%。 1500÷1200=1.25=125% 答:计划支出是实际的125%。
巩固训练:
2、把30克盐加入到120克水中,盐占盐水的百分之几?
30÷(30+120)=0.2=20% 答:盐占盐水的20%。
题型2:求常见的百分率
合格率、及格率、出油率、出勤率、发芽率、成活率等。
方法:XX率=XX人数÷总数×100%
合格产品数 合格率= 产品总数 ×100%
及格人数 及格率=考试人数 ×100%
分数百分数应用题的知识点总结归纳

分数、百分数应用题的知识点总结我们可以把分数、百分数应用题分成两种类型:求分率、百分率的题目和求数量的题目。
以下所有类型的应用题的解决,都有一个步骤:1、先一定要确定单位12、然后看问题,明确这道题是求哪个类型的题目3、最后按照不同的方法解答。
1、求分率、百分率的应用题。
(1)求“一个数是(占)另一个数的几分之几(百分之几)”,是或占前面的数量除以是或占后面的数量,如果题中没有告诉你具体的数量,也可以用分数或百分数来表示,再求出来。
(其中求百分率的题目也是属于这种类型的题目)方法:一个数÷另一个数=几分之几(百分之几)。
举例:1、六(5)班男生人数25人,女生人数30人,男生人数是女生的几分之几?2、2000可花生仁榨出花生油760千克,求花生的出油率。
1,甲数是乙数的百分之几?3、甲数是乙数的4(2)求“一个数比另一个数多(少)几分之几(百分之几)”,先两个数量进行比较,也就是求出多的数量和少的数量,再除以单位“1”的数量。
如果题中没有告诉你具体的数量,也可以用分数或百分数来表示,再求出来。
方法:多的数量÷单位“1”的数量=多几分之几(多百分之几)少的数量÷单位“1”的数量=少几分之几(少百分之几)举例:1、停车场停了18辆大客车,15辆小汽车。
大客车比小汽车多几分之几?2、去年计划造林12公顷,实际造林15公顷,增产百分之几?1,甲数比乙数少百分之几?3、甲数是乙数的42、求数量的应用题。
(1)求另一个数量(求一个数的几分之几(或百分之几)是多少的题目也属于这种类型)先一定要确定单位“1”,然后找到表示问题的分率或百分率,再用单位“1”数量×表示问题的分率或百分率就可以求出答案来了。
当然这种问题也有稍复杂的情况,题中的分数不一定就表示最后的问题的分数,要求出最后的问题,你有可能先要求出其他数量或者分数。
所以做这种题目一定要看清问题,根据问题的不同,选择不同的方法。
六年级数学总复习百分数知识点和应用题分类汇总

新课标人教版六年级数学总复习——百分数知识点和应用题分类汇总一、百分数的意义和写法(一)、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
(二)、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。
区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。
2、分数化成百分数:①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(建议用这种方法)(三)常见分数小数百分数之间的互化;X K b1 .C om三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。
列式是:15÷20=15/20=75﹪3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:(1)百分率前是“的”:单位“1”的量×百分率=百分率对应量(2百分率前是“多或少”的数量关系:单位“1”的量×(1±百分率)=百分率对应量4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百分数应用题的分类(归纳总结)
知识要点:准确找到量所对应的率,利用量÷对应率=单位“1”解题
一、知识点概述
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系
例如:(1)a是b的几分之几,就把数b看作单位“1”.
(2)甲比乙多1
8
,乙比甲少几分之几?
方法一:可设乙为单位“1”,则甲为
19
1
88
+=,因此乙比甲少
191
889
÷=.
方法二:可设乙为8份,则甲为9份,因此乙比甲少
1 19
9
÷=.
二、怎样找准分数应用题中单位“1”
(一)、部分数和总数
在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:
我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”
后面的数量——谁就是单位“!”。
(三)、原数量与现数量
有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
三、怎样找准分数应用题中单位“1”
(一)、部分数和总数
在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,
而总数则作为标准量,那么总数就是单位“1”。
例如:
我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的
则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”
字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),
解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,
看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”
后面的数量——谁就是单位“!”。
(三)、原数量与现数量
有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数
和总数的关系。
这类分数应用题的单位“1”比较难找。
需要将题目文字完善
成我们熟悉的类似带“比”的文字,然后在分析。
例如:水结成冰后体积增加了,冰融化成水后,体积减少了。
完善后:水结成冰后体积增加了→ “水结成冰后体积比原来增加了” →原来
的水是单位“1”
冰融化成水后,体积减少了→ “冰融化成水后,体积比原来减少了”
→原来的冰是单位“1”
解题关键:要结合语文知识将题目简化的文字丰富后在分析
百分数应用题可分为以下六种主要类型:
一、求一个数的百分之几是多少?
1、60的40 %是多少?
提示:
A.有必要强调分数乘法的意义:把60(即单位“1”),平均分成100份,取其中的40份。
2、五(1)班有40人,男生占全班的65 % ,男生有多少人?
3、五(1)班男生有25人,女生是男生的80 %,女生多少人?
4、一条公路60千米,已经修了60%, 还剩下多少千米?
提示:
A.强调“单位“1”x 对应分率= 对应数量“:
公路全长x 60% = 已经修的部分,公路全长x 40% = 剩下的部分
二、已知一个数的百分之几是多少,求这个数。
1、()的30%是30。
2、五(1)班男生有20人,男生是全班的40 %,全班有多少人?
3、五(1)班男生有16人,男生是女生的80 %,女生有多少人?
4、一条公路,已经修了60 %,还剩下20千米,这条公路有多长?
5、五(1)班男生占全班的60 %,男生比女生多了10人,全班有多少人?
三、求比一个数多(或少)百分之几是多少?
1、五(1)班男生有20人,女生比男生多了10 %,女生有多少人?
提示:
A.补充完整:如“女生比男生多了10 %”,完整的句子是“男生比女生多了女生的10%”。
B.“比”相当于“等于”,转化成数学语言“女生+ 女生的10% = 男生”
2、五(2)班男生有20人,女生比男生少了10 %,女生有多少人?
四、已知比一个数多(或少)百分之几是多少,求这个数。
1、五(1)班男生有22人,男生比女生多10 %,女生有多少人?
A.补充完整(如三),转化成数学语言。
B.单位“1”不知道,把单位“1”设为x,用x代人“单位“1”x 对应分率=
对应数量”或者对应数量÷对应分率= 单位“1”
2、五(1)班男生有27人,男生比女生少10 %,女生有多少人?
五、求一个数是另一个数的百分之几?
提示:
A.把另一个数分成100份,即是单位“1”。
B.单位“1”可能是标准量或整体量,在出油率、正确率、成活率、出勤率、
含盐率等题目中,单位“1”是总数,即整体量。
1、五(1)班有50人,男生有20人,男生占全班的百分之几?
2、男生有20人,女生有30人,男生是女生的百分之几?
3、100千克的花生,能榨出65千克的花生油,花生的出油率是多少?
六、求一个数比另一个数多(或少)百分之几?
1、男生有30人,女生有20人,男生比女生多了百分之几?女生比男生少了百
分之几?
2、电饭锅的原价是220元,现价是160元,电饭锅的价格降低了百分之几?
提示:
A.补充完整“男生比女生多了女生的百分之几”.
B.分两步算:先算多(或少)的部分,用多(或少)出来的部分除以单位“1”。
或者先求出一个数是另一个数的百分之几,然后再跟单位“1”(即另一个数)比较大小。
对比练习1(只列式不计算)
(1)甲乙合作修一条路,甲修了120米,乙比甲少修了1/5。
乙修了多少米?(2)甲乙合作修一条路,甲修了120米,比乙多修了1/5。
乙修了多少米?(3)甲乙合作修一条路,甲修了120米,乙比甲多修了20米,乙修了多少米?(4)甲乙合作修一条路,甲比乙多修了120米,乙比甲少修了1/5,甲修了多少
(5)甲乙合作修一条路,甲修了120米,乙比甲少修了20米,少修了几分之几?(6)甲乙合作修一条路,乙修了120米,乙比甲少修了20米,少修了几分之几?对比练习2(只列式不计算)
(1)一张课桌100元,一把椅子60元。
椅子的价钱是课桌的百分之几?(2)一张课桌100元,一把椅子的价钱比一张课桌便宜40%。
一把椅子多少元?(3)一把椅子60元,是一张课桌价钱的。
一张课桌多少元?
(4)一张课桌100元,一把椅子的价钱是一张课桌价钱的。
一把椅子多少元?(5)一张课桌100元,一把椅子60元。
一把椅子比一张课桌便宜百分之几?(6)一把椅子60元,比一张课桌便宜40%。
一张课桌多少元?。