直线一级倒立摆控制详细报告

合集下载

电气系统综合设计实验报告--直线一级倒立摆控制系统设计

电气系统综合设计实验报告--直线一级倒立摆控制系统设计

电气控制系统设计——直线一级倒立摆控制系统设计学院轮机工程学院班级电气1111 姓名李杰学号 2011125036 姓名韩学建学号 2011125035 成绩指导老师肖龙海2014 年 12 月 25 日小组成员与分工:韩学建主要任务:二阶系统建模与性能分析,二阶控制器的设计,二阶系统的数字仿真与调试,二阶系统的实物仿真与调试。

二阶状态观测器的数字仿真与调试,二阶状态观测器的实物仿真与调试。

李杰主要任务:四阶系统建模与性能分析,四阶控制器的设计,四阶系统的数字仿真与调试,四阶系统的实物仿真与调试。

四阶状态观测器的数字仿真与调试,四阶状态观测器的实物仿真与调试。

前言倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统,倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

本报告通过设计二阶、四阶两种倒立摆控制器来加深对实际系统进行建模方法的了解和掌握随动控制系统设计的一般步骤及方法。

熟悉倒立摆系统的组成及基本结构并利用MATLAB对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,研究调节器参数对系统动态性能的影响,非常直观的了解控制器的控制作用。

目录第一章设计的目的、任务及要求1.1 倒立摆系统的基本结构 (4)1.2 设计的目的 (4)1.3 设计的基本任务 (4)1.4 设计的要求 (4)1.5 设计的步骤 (5)第二章一级倒立摆建模及性能分析2.1 微分方程的推导 (5)2.2 系统的稳定性和能控能观性分析 (11)2.3 二阶的能观性、能控性分析 (13)2.4 四阶的能观性、能控性分析 (18)第三章倒立摆系统二阶控制器、状态观测器的设计与调试3.1 设计的要求 (22)3.2 极点配置 (22)3.3 控制器仿真设计与调试 (23)3.4 状态观测器仿真设计与调试 (28)第四章倒立摆系统四阶控制器、状态观测器的设计与调试4.1 设计的要求 (26)4.2 极点配置 (26)4.3 控制器仿真设计与调试 (27)4.4 状态观测器仿真设计与调试 (28)心得体会 (31)参考文献 (31)第一章设计的目的、任务及要求1.1 倒立摆系统的基本结构与工作原理图1.1 倒立摆系统硬件框图图1.2 倒立摆系统工作原理框图倒立摆系统通过计算机、I/O卡、伺服系统、倒立摆本体和光电码盘反馈测量元件组成一个闭环系统。

直线一级倒立摆PID控制实验报告

直线一级倒立摆PID控制实验报告

直线一级倒立摆PID 控制实验一.实验目的本实验的目的是让实验者理解并掌握PID 控制的原理和方法,并应用于直线一级倒立摆的控制,PID 控制并不需要对系统进行精确的分析,因此我们采用实验的方法对系统进行控制器参数的设置。

二.实验设备1:直线一级倒立摆:直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载一级倒立摆。

2.PC机和运动控制卡主机箱三.实验原理经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型。

PID 控制器因其结构简单,容易调节,且不需要对系统建立精确的模型,在控制上应用较广。

首先,对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。

系统控制结构框图如下:图 1 直线一级倒立摆闭环系统图图中KD(s) 是控制器传递函数,G(s) 是被控对象传递函数。

考虑到输入r(s) = 0,结构图可以很容易的变换成:图 2 直线一级倒立摆闭环系统简化图该系统的输出为:其中num ——被控对象传递函数的分子项den ——被控对象传递函数的分母项numPID ——PID 控制器传递函数的分子项denPID ——PID 控制器传递函数的分母项通过分析上式就可以得到系统的各项性能。

由(3-13)可以得到摆杆角度和小车加速度的传递函数:PID 控制器的传递函数为:需仔细调节PID 控制器的参数,以得到满意的控制效果。

在控制的过程中,小车位置输出为:通过对控制量v 双重积分即可以得到小车位置。

四.仿真步骤及结果图 3 直线一级倒立摆PID 控制MATLAB 仿真模型其中PID Controller 为封装(Mask )后的PID 控制器,双击模块打开参数设置窗口 先设置PID 控制器为P 控制器,令0,0,===kd ki kp ,得到以下仿真结果图4从图4中可以看出,闭环控制系统持续振荡,周期约为0.7s 。

(完整)倒立摆实验报告

(完整)倒立摆实验报告

专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。

当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。

直线一级倒立摆PID控制实验报告

直线一级倒立摆PID控制实验报告

直线一级倒立摆PID 控制实验报告一、实验目的本实验的目的是让实验者理解并掌握 PID 控制的原理和方法,并应用于直线一级倒立摆的控制,PID 控制并不需要对系统进行精确的分析,因此我们采用实验的方法对系统进行控制器参数的设置。

二、实验设备直线一级倒立摆;安装有MATLAB 软件的PC 机;运动控制卡主机箱。

三、实验步骤及结果1、PID 控制参数设定及仿真对于 PID 控制参数,我们采用以下的方法进行设定:由实际系统的物理模型:(s)V (s)=0.027250.0102125s 2−0.26705 在 Simulink 中建立如图1所示的直线一级倒立摆控制模型:图1直线一级倒立摆 PID 控制 MATLAB 仿真模型先设置 PID 控制器为P 控制器,令K p =9,K i =0,K D =0,得到以下仿真结果:图2 参数设置窗口图3直线一级倒立摆P控制仿真结果图(K p=9)从图3中可以看出,控制曲线不收敛,因此增大控制量,令Kp =50,Ki=0,KD=0,得到以下仿真结果:图4直线一级倒立摆P控制仿真结果图(K p=50)从图4中可以看出,闭环控制系统持续振荡,周期约为 0.6s。

为消除系统的振荡,增加微分控制参数KD ,令 Kp=50, Ki=0, KD=16 ,得到仿真结果如下:图5直线一级倒立摆PD控制仿真结果图(K p=50,K D=16)从图5中可以看出,系统稳定时间过长,大约为7秒,因此再增加微分控制参数KD ,令:Kp=50, Ki=4, KD=16,仿真得到如下结果:图6直线一级倒立摆 PID 控制仿真结果图(K p=50,K i=4,K D=16)由于 PID 控制器为单输入单输出系统,所以只能控制摆杆的角度,并不能控制小车的位置,所以小车会往一个方向运动。

2、PID 控制实验1) 打开直线一级倒立摆 PID 控制界面入下图6所示:图6直线一级倒立摆 MATLAB 实时控制界面2) 双击"PID"模块进入 PID 参数设置,如下图7所示:图7 参数设置窗口把仿真得到的参数输入 PID 控制器,保存参数。

实验七 直线一级倒立摆根轨迹控制实验

实验七 直线一级倒立摆根轨迹控制实验

实验七直线一级倒立摆系统根轨迹校正和仿真一、实验目的(1)了解直线倒立摆系统的组成以及系统建模的过程;(2)学习根轨迹法设计控制器的原理和方法;(3)学习用MA TLAB&SIMULINK对倒立摆系统建立模型的方法,并仿真实现;(4)学习用MA TLAB实现倒立摆控制器的设计,并仿真实现;(5)了解根轨迹校正实时控制方法和过程。

二、实验设备(1)直线倒立摆实验装置(2)电控箱(3)GT-400-SV-PCI运动控制卡(4)计算机(5)软件要求:Matlab6.5以上版本软件,VC++6.0软件,板卡自带Device Manager,倒立摆实时控制软件。

三、实验原理3.1 倒立摆系统组成(见附录4)3.2 倒立摆系统模型(见附录4)3.3 根轨迹分析闭环系统瞬态响应的基本特性与闭环极点的位置紧密相关,如果系统具有可变的环路增益,则闭环极点的位置取决于所选择的环路增益,从设计的观点来看,对于有些系统,通过简单的增益调节就可以将闭环极点移到需要的位置,如果只调节增益不能满足所需要的性能时,就需要设计校正器,常见的校正器有超前校正、滞后校正以及超前滞后校正等。

根据附录中公式(15)得到倒立舞者开环传递函数,输入为小车的加速度,输出为倒立摆系统摆杆的角度,被控对象的传递函数为:给系统施加脉冲扰动,输出量为摆杆的角度时,系统框图如下:图7-1 直线一级倒立摆闭环系统图(脉动干扰)考虑到输入r(s) = 0,结构图变换成:图7-2 直线一级倒立摆闭环系统简化图(脉动干扰)该系统的输出为:其中num ——被控对象传递函数的分子项;den ——被控对象传递函数的分母项;numlead 、denlead ——控制器超前环节传递函数的分子项;numlag 、denlag ——控制器滞后环节传递函数的分子项和分母项;k ——控制器增益实际系统的开环传递函数为:可以看出,系统有两个零点,有两个极点,并且有一个极点为正。

一阶倒立摆课程设计报告

一阶倒立摆课程设计报告

哈尔滨工业大学控制科学与工程系控制系统设计课程设计报告姓名:院(系):英才学院专业:自动化班号:任务起至日期: 2011 年8 月22 日至 2011 年9 月9 日课程设计题目:直线一级倒立摆控制器设计已知技术参数和设计要求:本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。

系统内部各相关参数为:M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。

设计要求:1.推导出系统的传递函数和状态空间方程。

用Matlab进行阶跃输入仿真,验证系统的稳定性。

2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为:(1)稳定时间小于5秒;(2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。

3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度和小车位移x的稳定时间小于3秒(2)x的上升时间小于1秒(3)的超调量小于20度(0.35弧度)(4)稳态误差小于2%。

一.直线一阶倒立摆简介倒立摆是进行控制理论研究的典型实验平台。

倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。

近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

直线一级倒立摆系统的状态空间极点配置控制设计详细实验报告

直线一级倒立摆系统的状态空间极点配置控制设计详细实验报告

一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。

也可以利用非线性控制理论对其进行控制。

倒立摆的非线性控制正成为一个研究的热点。

2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

由于机构的限制,如运动模块行程限制,电机力矩限制等。

为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。

一阶直线倒立摆双闭环PID控制仿真报告

一阶直线倒立摆双闭环PID控制仿真报告

目录摘要 (2)一、一阶倒立摆系统建模 (3)1、对象模型 (3)2、电动机、驱动器及机械传动装置的模型 (4)二、双闭环PID控制器设计 (5)1、仿真验证 (6)2、内环控制器的设计 (9)3、系统外环控制器设计 (12)三、仿真实验 (15)1、绘图子程序 (15)2、仿真结果 (16)四、结论 (18)摘要本报告旨在借助Matlab 仿真软件,设计基于双闭环PID 控制的一阶倒立摆控制系统。

在如图0.1所示的“一阶倒立摆控制系统”中,通过检测小车的位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC )完成。

图0.1 一阶倒立摆控制系统分析工作原理,可以得出一阶倒立摆系统原理方框图:图0.2 一阶倒立摆控制系统动态结构图本报告将借助于“Simulink 封装技术——子系统”,在模型验证的基础上,采用双闭环PID 控制方案,实现倒立摆位置伺服控制的数字仿真实验。

一、一阶倒立摆系统建模1、对象模型如图1.1所示,设小车的质量为m 0,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向的力为F ,O 1为摆角质心。

θxyOFF xF x F yF yllxO 1图1.1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其中心的转动方程为θθθcos sin y l F l F J x-= (1-1) 2)摆杆重心的水平运动可描述为)sin (22x θl x dtd m F += (1-2)3)摆杆重心在垂直方向上的运动可描述为)cos (22y θl dtd m mg F =- (1-3)4)小车水平方向上的运动可描述为220dtxd m F F x =- (1-4)由式(1-2)和式(1-4)得F ml x m m =⋅-⋅++)sin (cos )(20θθθθ (1-5) 由式(1-1)、(式1-2)和式(1-3)得θθθsin g cos 2ml x ml ml J =⋅++ )( (1-6) 整理式(1-5)和式(1-6),得⎪⎪⎩⎪⎪⎨⎧++-+-⋅+⋅=-++-⋅+++=))((cos sin )(cos sin cos cos ))((cos sin sin )()(x 2022202222220222222m l J m m l m m l m m l m F m l l m m m m l J g l m m l J lm F m l J θθθθθθθθθθθθ(1-7) 以上式1-7为一阶倒立摆精确模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线一级倒立摆控制一、课程设计目的学习直线一级倒立摆的数学建模方法,运用所学知识设计PID控制器,并应用MATLAB进行仿真。

通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。

二、课程设计要求1. 应用动力学知识建立直线一级倒立摆的数学模型(微分方程形式),并建立系统的开环传递函数模型。

2. 运用经典控制理论知识,按设计要求设计控制器。

3. 应用MATLAB的Simulink建立控制系统的仿真模型,得出仿真结果。

4. 控制要求:※小车的位置x和摆杆角度的稳定时间小于10秒;※阶跃响应摆杆角度的摆幅小于2°;※θ有≤8°扰动时,摆杆的稳定时间小于三秒。

对比仿真结果与控制要求,修正设计值,使之满足设计要求。

三、控制系统建模过程1、控制对象示意图图1.控制对象示意图图中对象参数:M 小车质量1.32kg l 摆杆转动中心到杆质心的距离0.27mm 摆杆质量0.132kg F 作用在系统上的外力1/ 10/ 102X 小车位移θ 摆杆与竖直方向的夹角,以垂直向上为起始位置,取逆时针方向为正方向。

b 小车摩擦阻尼系数 0.1N/m/sec 2. 控制系统模拟结构图:图2.系统的模拟结构图其中G1(s )表示关于摆角θ的开环传递函数,D(S)表示PID 控制器的传递函数,G2(s )表示小车位移x 的传递函数。

由于摆角与垂直向上方向夹角为0时为平衡状态,故摆角的理想输出值应为R (S )=0。

3. 建模过程:T图3.小车及摆杆的受力分析图如图3所示,对小车及摆杆进行受力分析,得到以下平衡方程:对小车有: 22..................................(1)dx d xF F b N M dt dt=--=∑小车对摆杆有:2222(cos ) (2)(cos ).............................(3)d F N m x l dt d Fmg P m l l dtθθ==-=-=-∑∑水平竖直/ 103转矩:2222sin cos ...................................(4)1 (5)23ll d T I Pl Nl dt mr I dr ml l θθθ-==+==∑⎰为使摆杆直立,需使θ≪1,则有sin ,cos 1θθθ≈≈, 线性化(2)(3)(4)方程得:2222() (6)0.......................................................................(7)..............................d N m x l dtmg P d I Pl Nl dtθθθ=--==+................................(8) 由(1)(5)(6)(7)(8)式联立解得:222222222() (9)4 (10)3d x d dxF M m ml b dt dt dtd d xmgl ml ml dt dtθθθ=+-+=- 对(9)(10)两式进行拉式变换,得:22222()()()()()4()()()3F S M m s X s Mls s bsX s mgl s ml s s mls X s θθθ=+-+=- 传递函数:13222432()3()()(4)43()3()43()()(4)43()3s sG s F s Ml ml s bls M m gs gbX s ls gG s F s Ml ml s bls M m gs gbsθ==++-+--==++-+-将数值带入后得到系统的传递函数:132224323() 1.461240.10842.6888 2.941.0829.4() 1.461240.10842.6888 2.94sG s s s s s G s s s s s =+---=+--四、应用Simulink建立仿真模型进行实验1.控制系统的simulink仿真结构图及仿真结果其中 PID控制器的传递函数参数的初步范围可以由劳斯判据确定,具体过程如下:设PID控制器的传递函数为1()P I DD s K K K ss=++,则以θ为输出量的系统特征方程为/ 104/ 105111()()0P ID K K K s G s s+++= 整理得321.46124(30.108)(342.6888)(3 2.94)0D P I s K s K s K +++-+-=通过劳斯判据可以确定,若使系统稳定,则有0.48708(3 2.94)0.98,0,14.22960.1083I I D P DK K K K K ->>>++通过模拟系统反复实验,根据PID 各个参数的作用进行数值调整,得到使系统满足要求的PID 控制器的传递函数为:1()90092650D s s s=++2. 系统响应曲线在单位阶跃输入下,θ(t )的响应曲线为:从该响应曲线可以看出,此时系统的稳定时间小于10s ,且摆杆的摆幅小于2度,满足控制要求。

θ≤的扰动时,θ(t)的响应曲线为:当有8o此时,摆杆的稳定时间小于3s,满足控制要求。

扰动脉宽为0.3s时θ(t)的响应曲线6/ 10在单位脉冲(脉宽0.3s≤)输入下,θ(t)的响应曲线为:在单位阶跃输入下x(t)的响应曲线为:7/ 10在单位脉冲(脉宽0.3s)输入下x(t)的响应曲线为:五、实习总结经过两个星期的实习,我们学习了直线一级倒立摆的数学建模方法,运用所学知识成功设计出了PID控制器,并应用Matlab进行了仿真。

最终使系统响应的超调量小于20%,将,t t调整到了最好的状态,精确的满足了所要求的各个系统性能指标。

通过本p s次实习,我们建立了理论知识与实体对象之间的联系,加深和巩固了所学的控制理论知识。

在实验开始阶段,由于对PID控制器各个参数的控制原理及作用不甚明了,没有将系统的时域性能指标与响应的仿真波形相结合,导致盲目调整,给实验的进行带来了极大的困难。

但是在后期通过查阅相关资料书籍,并结合所学知识,逐步对PID控制器各参数的控制范围进行了进一步的确定,从而得到了使系统响应波形满足控制要求的参数。

以下即我们通过实习,对PID控制器及其参数调整所做出的总结:1. PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID8/ 10/ 109控制,又称PID 调节。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。

PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P )控制比例控制器的传递函数为()c p G s k =比例控制器是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

它的作用是调整系统的开环增益,提高系统的稳态精度,加快响应速度。

当比例控制值增大时,系统的时间常数和阻尼系数均减小,但是过大的开环增益不仅会使系统的超调量增大,而且会使系统的稳定裕度变小,对高阶系统来说,甚至会使系统变得不稳定。

仅有比例控制时系统输出存在稳态误差(Steady-state error )。

积分(I )控制积分控制器的传递函数为:1()c i G s T s=在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

采用积分器可以提高系统的型别,消除或减小系统的稳态误差,使系统的稳态性能得到改善。

但是单独引用积分器会影响系统的稳定性,并使系统的反应速度降低。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D )控制微分控制器的传递函数为:()c d G s T s =在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

2.本实验中PID控制器的参数整定过程及经验实验中,首先通过计算系统的特征方程式,应用劳斯稳定性判据计算出PID控制器的参数起始范围,此时所得到的计算数据并不能使系统达到所需要求,必须经过系统模拟进行调整和修改。

因此通过对控制系统进行simulink仿真试验,使输入脉冲r(t)=10(t)(为使系统的超调量更加清晰直观便于计算),根据PID控制器各参数的作用进行调整,使系统响应曲线满足要求的超调量范围。

然后,将阶跃输入除去,加入扰动。

由于实际扰动是力,但本实验所要求的扰动为摆杆角度,并不能通过角度得知力的大小,故本系统所加的扰动为角度,且需将此扰动作为输入量进行试验,经反复调整,对控制器参数进行整定与完善,使系统在阶跃输入和增加扰动两种情况下均满足控制要求。

在调整过程中,按照先比例,再积分,后微分的顺序,即先提高系统的稳态精度,加快响应速度,再减小系统的超调量,从而将PID控制器参数确定在某个大致范围,再经过小范围反复调整可以更迅速的将系统调整到使之满足控制要求的范围内。

参考文献:《MATLAB运用参考与指南》,《自动控制学习指导》,西安电子大学出版社《自动控制原理》,清华大学出版社10/ 10。

相关文档
最新文档