专题提升(三) 数式规律型问题
数字规律题

数字规律题Revised on November 25, 2020数字规律题规律探析问题,是近几年中考数学里比较经典的考点问题。
数字规律问题的探析,就是其中的一个重要分支。
1、数列型数字问题探找规律例1、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为.解析:仔细观察这一数列中的各个数字的构成特点,不难发现如下;第一个数是1,第二个数数1+1,第三个数是1+1+3,第四个数是1+1+3+5,第五个数是1+1+3+5+7,第六个数是1+1+3+5+7+9,为了使规律凸显的明显,我们不妨把第一个数1也写成两个数的和的形式,为1+0,这样,就发现数字1是固定不变的,规律就蕴藏在新数列0,1,4,9,16 中,而0,1,4,9,16 这些数都是完全平方数,并且底数恰好等于这个数字对应的序号与1的差,即1=1+(1-1)2,2=1+(2-1)2,5=1+(3-1)2,10=1+(4-1)2,17=1+(5-1)2,26=1+(5-1)2,这样,第n个数为1+(n-1)2,找到数列变化的一般规律后,就很容易求得任何一个序号的数字了。
因此,第八个数就是当n=8时,代数式1+(n-1)2的值,此时,代数式1+(n-1)2的值为1+(8-1)2=50。
所以,本空填50。
例2、古希腊数学家把1,3,6,10,15,21,……,叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为 199解析:本题中数列的数字,不容易发现其变化的规律。
我们不妨利用函数的思想去试一试。
当序号为1时,对应的值是1,有序号和对应的数值构成的点设为A ,则A (1,1);当序号为2时,对应的值是3,有序号和对应的数值构成的点设为B ,则B (2,3);当序号为3时,对应的值是6,有序号和对应的数值构成的点设为C ,则C (3,6); 因为,21213=--,32336=--,所以有:23361213--≠--成立,所以,对应的数值y 是序号n 的二次函数,因此,我们不妨设y=an 2+bn+c ,把A (1,1),B (2,3),C (3,6)分别代入y=an 2+bn+c 中,得:a+b+c=1,4a+2b+c=3,9a+3b+c=6,解得:a=21,b=21,c=0, 所以,y= 21n 2+21n ,因此,当n=100时,y= 21×1002+21×100, 当n=98时,y= 21×982+21×98,因此(21×1002+21×100)-(21×982+21×98)=199,所以该空应该填199。
有理数的规律探索

图②边上格点7个,内部格点 15个,代入公式可求
【点评】本题考查了图形的变化类问题,解题的关键是能够仔细 读题,找到图形内和图形外格点的数目.
[对应训练]
1.在由m×n(m×n>1)个小正方形组成的矩形网格中,研究
1+1 2+2
3+4
4+8
5+16
【点评】本题考查图形的变化规律,找出图形之间的运算规律, 利用规律解决问题.
[对应训练]
2. 如 图 是 由 火 柴 棒 搭 成 的 几 何 图 案 , 则 第 n 个 图 案 中 有 ____2_n_(_n_+__1_)___根火柴棒.(用含n的代数式表示)
1×4 2×6 1×2×2 2×2×3
解析:a1+a2=1+3=4,a2+a3=3+6=9,a3+a4=6+10=16, ...,a399+a400=4002=160000
[对应训练]
4.观察下列等式:
31=3,32=9,33=27,34=81,35=243,36=729,
37=2187,…Fra bibliotek解答下列问题:3+32+33+34+…+32020的末位数
字是( B )
A.0
B.1
C.3
D.7
解析:∵31=3,32=9,33=27,34=81,35=243,36 =729,37=2187…∴末尾数每4个一循环,∵2020÷4 =505,∴3+32+33+34+…+32020的末位数字为1
类型二 数式规律型问题
数式规律型:数式规律问题主要是通过观
察、分析、归纳、验证,然后得出一般性的
数字规律

专题:有关找规律问题近年来,在新课标理念的指导下,参照课程标准的培养目标,各地中考命题在理念上发生了许多变化,以创新精神和实践能力为重点,相继推出了许多题意新颖、构思巧妙、具有相当深度和明确导向的题型,使中考试卷充满了活力,不再像以前那样枯燥乏味。
探索规律型试题体现了数学中的归纳、猜想的思维方法和转化的数学思想.根据给定的信息,结合自已掌握的知识,做出一种可能存在的规律性的结论推断,这就是归纳、猜想的过程.解决这类问题的思路是从简单的、局部的、特殊的情形出发,经过提炼、归纳、猜想,寻找一般规律,其方法与步骤是:(1)认真观察、分析几个特殊情形,寻找规律,加以归纳;(2)大胆猜想出一般性的结论;(3)合理验证结论的正确性。
探索规律问题几乎是各地中考试题中必考题型之一,它比较系统的考查学生的逻辑推理能力,归纳猜想能力,以及运用所学知识和方法分析、解决数学问题的能力。
规律探索问题由于具备题目的视角比较新颖、综合性较强、结构较独特等特点,解决此类问题有一定的难度。
因此更好地解决规律探索型问题已成为众多学生的学习目标。
下面就近几年北京市各城区模拟试题及中考试题的规律探索型问题,谈谈其基本的呈现形式和解决方法。
第一类:数字规律一、a n n a 与例题:(10西城二模)一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数)。
解析:根据所给的具体数值发现规律,3251+=,3272+=,32113+=,32194+=即第几个数即为2的几次方加上3.解答:解:∵3251+=,3272+=,32113+=,32194+=∴第6个整数是67326=+,第n 个整数是32+n (n 为正整数).点评:此类题能够根据所给的具体数值发现共同特征,运用代数式表示这一特征. 练习:1、(10怀柔二模)按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .答案:1125,122+n n2、(09东城一模)按一定规律排列的一列数依次为:21,31,101,151,261,351…,按此规律排列下去,这列数中的第9个数是________. 答案:12)1(1+-+n n二、有限项的规律例题:(10通州一模)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )照这样下去,第8年老芽数与总芽数的比值为 .解析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a ,新芽数是13a ,总芽数是34a ,则比值为3421. 解答:解:第8年的老芽数是21a ,新芽数是13a ,总芽数是34a ,则比值为3421. 点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和. 练习:1、(08石景山一模)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数从小到大的顺序排列为:1,1,2,3,5,8……,则这列数的第8个数是 . 答案:212、(09房山二模)填在下面三个田字格内的数有相同的规律,根据此规律,请填出图4中的数字.5675320531108975答案:7,9,11,176三、正负相间问题(n )1(-与1)1(+-n )例题:(09通州二模)12. 观察并分析下列数据,寻找规律: 0,3,-6,3,-23,15,-32,……那么第10个数据是 ;第n 个数据是 .解析:观察分析可得:各个式子正负相间,且第n 个式子的被开方数为(3n-3).那么第10个数据是33,第n 个数据是33)1(1--+n n .解答:解:∵各个式子正负相间,且第n 个式子的被开方数为(3n-3)∴第10个数据是33 ,第n 个数据是33)1(1--+n n .点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是寻得数据规律为各个式子正负相间,且第n 个式子的被开方数为(3n-3)。
第03讲 规律探究性问题-2022中考数学巅峰冲刺(解析版)

【难点突破】着眼思路,方法点拨,疑难突破;1、解数式规律型问题的一般方法:1当所给的一组数是整数时,先观察这组数字是自然数列、正数列、奇数列、偶数列还是正整数列经过平方、平方加1或减1等运算后的数列,然后再看这组数字的符号,判断数字符号的正负是交替出现还是只出现一种符号,最后把数字规律和符号规律结合起来从而得到结果;2当数字是分数和整数结合时,先把这组数据的所有整数写成分数,然后分别推断出分子和分母的规律,最后得到该组第n项的规律;3当所给的代数式含有系数时,先观察其每一项的系数之间是否有自然数列、正整数列、奇数列、偶数列或交替存在一定的对称性,然后观察其指数是否存在相似的规律,最后将系数和指数的规律结合起来求得结果.数字循环类规律题就是几个数循环出现,解决此类问题时,一般是先求出前几个数,再观察其中隐含的规律,若和序号有关,则第n个数用含n 的式子表示,用n除以循环出现的数的个数,找出余数即可找到对应的结果.2、探索等式规律的一般步骤:1标序数;2对比式子与序号,即分别比较等式中各部分与序数1,2,3,4,…,n之间的关系,把其隐含的规律用含序数的式子表示出来,通常方法是将式子进行拆分,观察式子中数字与序号是否存在倍数或者次方的关系;3根据找出的规律得出第n个等式,并进行检验.3、根据图形寻找点的坐标的变换特点,这类题目一般有两种考查形式:一类是点的坐标变换在直角坐标系中递推变化;另一类是点的坐标变换在坐标轴上或象限内循环递推变化.解决这类问题可按如下步骤进行:1根据图形点坐标的变换特点确定属于哪一类;2根据图形的变换规律分别求出第1个点,第2个点,第3个点的坐标,找出点的坐标与序号之间的关系,归纳得出第M个点的坐标与变换次数之间的关系;3确定第一类点的坐标的方法:根据2中得到的倍分关系,得到第M个点的坐标;确定第二类点坐标的方法:先找出循环一周的变换次数,记为n,用M÷n=ω……q0≤q <n,则第M次变换与每个循环中第q次变换相同,再根据2中得到的第M 个点的坐标与变换次数的关系,得到第M个点的坐标.4、对于求面积规律探索问题的一般步骤:1根据题意可得出第一次变换前图形的面积S;2通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,归纳出后一个图形的面积与前一个图形的面积之间存在的倍分关系;3根据找出的规律,即可求出第M次变换后图形的面积.5、找图形累加型变化规律的一般步骤:1写序号,记每组图形的序数为“1,2,3,…n”;2数图形个数,在图形数量变化时,要数出每组图形表示的个数;3寻找图形数量与序数n的关系,若当图形变化规律不明显时,可利用图示法,即针对寻找第n个图形表示的数量时,先将后一个图形的个数与前一个图形的个数进行比对,通常作差商来观察是否有恒等量的变化,然后按照定量变化推导出第n个图形的个数.【名师原创】原创检测,关注素养,提炼主题;【原创1】如图所示,在这个数据运算程序中,若开始输入的值为2,那么我们要进行的第一次计算是进行偶数程序,结果输出的是1,返回进行第二次运算则按照奇数程序进行运算,输出的是6,…第2022次输出的结果为【解析】:按照数据运算程序设计进行计算发现,输出的结果分别是1,6,3,8,4,2,因此每六次运算程序一个循环,2022÷6=336---3,故第2022次输出恰好是第三次输出的结果,即为3【原创2】发现任意一个偶数减去其12,再减去余下的13,一直减去到余下的此偶数的倒数,结果为1验证(1)10减去其12,再减去余下的13,一直减去到余下的14,一直减到最后余下的110其结果等于几(2)设一个偶数2n,依次减去其12,再减去余下的14,一直减下去,一直减到最后余下的12n,结果等于几并验证发现的结论是否正确。
七年级数学上册专题提升三代数式的求值及应用训练浙教版(2021年整理)

七年级数学上册专题提升三代数式的求值及应用分层训练(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册专题提升三代数式的求值及应用分层训练(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册专题提升三代数式的求值及应用分层训练(新版)浙教版的全部内容。
专题提升三代数式的求值及应用化简求值1.化简并求值:-2(mn-3m2-n)-[m2-5(mn-m2)+2mn],其中m=1,n=-2。
2.化简并求值:-6(a-b)2+7(a-b)2-4(b-a)2,其中a-b=-3。
3.已知:A=3b2-2a2+5ab,B=4ab-2b2-a2,求2A-4B的值,其中a=1,b=-1。
与字母取值无关的问题4.已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,则()A.m=-5,n=-1 B.m=5,n=1 C.m=-5,n=1 D.m=5,n=-15.已知多项式x2+ax-y+b与bx2-3x+6y-3的差的值与字母x的取值无关,求代数式3(a2-2ab-b2)-4(a2+ab+b2)的值.数形结合化绝对值6.(1)有理数a,b,c在数轴上的位置如图所示,化简|a+b|+|b-1|-|a-c|-|1-c|。
(2)有理数a,b,c在数轴上的位置如图所示,化简|a-b|-|c-a|+|-b|.第6题图代数式的应用7.为了能有效地使用电力资源,实行居民峰谷用电,居民家庭在峰时段(上午8:00~晚上21:00)用电的电价为0。
55元/千瓦时,谷时段(晚上21:00~次日晨8:00)用电的电价为0。
2021年中考数学专题复习 专题49 中考数式图规律型试题解法(教师版含解析)

专题49 中考数式图规律型试题解法给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.这类问题成为探索规律性问题。
主要采用归纳法解决。
1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.5.解题方法规律探索问题的解题方法一般是通过观察、类比特殊情况(特殊点、特殊数量、特殊线段、特殊位置等)中数据特点,将数据进行分解重组、猜想、归纳得出规律,并用数学语言来表达这种规律,同时要用结论去检验特殊情况,以肯定结论的正确.【例题1】(2019安徽合肥)观察下列各组式子:①26115 13133⨯-+==⨯;②1262111 353515⨯-+==⨯;③1263117 (575735)⨯-+==⨯ (1)请根据上面的规律写出第 4个式子;(2)请写出第n 个式子,并证明你发现的规律.【答案】(1)1264123797963⨯-+==⨯;(2)()()126121212121n n n n n ⨯-+=-+-⨯+, 证明见解析.【解析】(1)1264123797963⨯-+==⨯ (2)()()126121212121n n n n n ⨯-+=-+-⨯+ 证明:等式左边122121n n =+-+, ()()()()()2212121?2121?21n n n n n n -+=+-+-+ ()()()2122121?21n n n n ++-=-+ ()()6121?21n n n ⨯-=-+ ∵等式右边为()()612121n n n ⨯--⨯+,与等式左边计算出的结果相等, ∴()()126121212121n n n n n ⨯-+=-+-⨯+成立. 【点拨】本题主要考查了分式运算的规律探讨问题,根据题意正确总结归纳出相应的规律是解题关键.【对点练习】(2019湖南益阳)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.【答案】13﹣2=(﹣)2.【解析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(﹣)2(n≥1的整数).写出第6个等式为13﹣2=(﹣)2.【例题2】(2019湖北咸宁)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【答案】﹣384.【解析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384【对点练习】(2019湖南常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是( )A.0 B.1 C.7 D.8【答案】A【解析】首先得出尾数变化规律,进而得出70+71+72+…+72019的结果的个位数字.∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0.【点拨】本题属于数字规律探究的问题。
规律型专题.ppt
(x 1)( x3 x2 x 1) x4 1
……
则 (x 1)( x10 x9 x 1) ____x_1_1___1______
7、如图6,∠AOB=450,过OA到点O的距离分别为 1,3,5,7,9,11,----的点作OA的垂线与OB相 交,得到并标出一组黑色梯形,它们的面积分别为 S1、S2、S3、S4---
观察图中的规律,求出第10个黑色梯形的面积
S4
S3 S2 S1 0 1 3 5 7 9 11 13
图6
S10=__7_6_______
9 8、一个巴尔末的中学教师成功地从光谱数据,5
,
16 12
,
25 21
,
36 32
,
---中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这
种规律,写出第n(n≥1)个数据是___________________.
(2)第n 个图案中有白色地面砖 _(4_n_+_2_) 块
5。如图①是一块瓷砖的图案,用这种瓷砖来铺设地面, 如果铺成一个2×2的正方形图案(如图②),其中完整的 圆共有5个,如果铺成一个3×3的正方形图案(如图③), 其中完整的圆共有13个,如果铺成一个4×4的正方形图案 (如图④),其中完整的圆共有25个.按照这个规律,若 这样铺成一个10×10的正方形图案,则其中完整的圆共有 个.(102+92=181 )
E1D2=D1E1×Sinα=3×0.83 E2D3=D2E2×Sinα=3×0.85
D2E2=E1D2×Sinα=3×0.84 D1
D3E3=E2D3×Sinα=3×0.86
D2
α D3 α
D8E8=3×0.816
αα α
B
E3 E2
中考数学规律型问题专题
中考数学规律型问题专题【例题1】(2019•省达州市)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5 B.﹣C.D.【例题2】(2019•省市)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【例题3】(2019•省市)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.【例题4】(2019)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.【例题5】(2019•庆阳)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是.【例题6】(2019•省市)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣3一、选择题1.(2019)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0 B.1 C.7 D.82.(2018)如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为()A.S=3n B.S=3(n﹣1)C.S=3n﹣1 D.S=3n+13.(2019)按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是()A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+14.(2019)如图,小聪用一面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为()A.22019B.C.D.5.(2019)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A .(,﹣) B .(1,0) C .(﹣,﹣) D .(0,﹣1) 6.(2019·广西贺州)计算++++…+的结果是( ) A .B .C .D .7.(2019•)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .121)1(---n n x B .12)1(--n n x C .121)1(+--n n x D .12)1(+-n n x二、填空题8.(2018)观察下列各式:,,,设n 表示正整数,用关于n 的等式表示这个规律是 .9.(2019)探索与发现:下面是用分数(数字表示面积)砌成的“分 数墙”,则整面“分数墙”的总面积是 .10.(2019·)如图,将从1开始的自然数按下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是 .11.(2019•省)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是,这2019个数的和是.12.(2019•省市)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)13.(2019)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)14.(2019省)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.15. (2019•省市)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x 轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.16.(2019•)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.17.(2019•潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限交于点P1,半径为3的圆与l2在第一象限交于点P2,…,半径为n+1的圆与l n在第一象限交于点P n,则点P n的坐标为.(n为正整数)三、解答题18.(2019)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为a n.所以,数列的一般形式可以写成:a1,a2,a3,…,a n,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为,第5项是.(2)如果一个数列a1,a2,a3,…,a n…,是等差数列,且公差为d,那么根据定义可得到a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,a n﹣a n﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:a n=a1+()d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?19. (2019•)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).答案【例题1】(2019•省达州市)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5 B.﹣C.D.【答案】D.【解析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a2019相同的数即可得解.∵a1=5,a2===﹣,a3===,a4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=【例题2】(2019•省市)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【答案】﹣384.【解析】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1.(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384【例题3】(2019•省市)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.【答案】(﹣22017,22017).【解析】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.由题意得,A1的坐标为(1,0),A2的坐标为(1,),A3的坐标为(﹣2,2),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8),A6的坐标为(16,﹣16),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,∵2019÷6=336…3,∴点A2019的方位与点A23的方位相同,在第二象限,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017【例题4】(2019)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.【答案】13﹣2=(﹣)2.【解析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(﹣)2(n≥1的整数).写出第6个等式为13﹣2=(﹣)2.【例题5】(2019•庆阳)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是.【答案】13a+21b.【解析】由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b【例题6】(2019•省市)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣3【答案】D.【解析】直线y=x与x轴的成角∠B1OA1=30°,可得∠OB2A2=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知A1B1=1,B2A2=OA2=2,B3A3=4,…,B n A n =2n﹣1;根据勾股定理可得B1B2=,B2B3=2,…,B n B n+1=2n,再由面积公式即可求解;解:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=,B2B3=2,…,B n B n+1=2n,∴S1=×1×=,S2=×2×2=2,…,S n=×2n﹣1×2n=。
三、规律探索问题重新整理
三、规律探索问题规律性问题(又叫归纳猜想型问题),其特点是给出一组具有某种特定关系的数、式、图形;或给出与图形有关的操作变化过程;或给出某一具体的问题情境,通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论。
主要包括:题型一.数列型规律探索题1.数字或字母型数列(1).(2015·临沂)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2 015个单项式是( )A.2 015x2 015B.4 029x2 014C.4 029x2 015D.4 031x2 015(2).(2017·郴州中考)已知123357a a a2510=-==-,,,45911a a1726==-,,…,则a8=________.(3).(2005年威海市中考题)一组按规律排列的数:,,,,,……请你推断第9个数是2.由图形转化成数列(1).(2017·烟台中考)用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为( ) A.3n B.6n C.3n+6 D.3n+3(2). (2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形有个小圆. (用含n 的代数式表示)(3)(2017·酒泉中考)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为________,第2017个图形的周长为________.第1个图形第 2 个图形第3个图形第 4 个图形(4).如图,小明作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积.然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积.用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第10个正△A 10B 10C 10的面积是( )A .B .C .D .(5).(2017·德州中考)观察下列图形,在一个三角形中,分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,……将这种做法继续下去(如图2、图3、…),则图6中挖去三角形的个数为3.求和型数列(1)(2017·临沂中考)将一些相同的“○”按如图所示摆放,观察每个图形中“○”的个数,若第n 个图形中“○”的个数是78,则n 的值是 ( ) A.11 B.12 C.13D.14(2)(2017·淮安中考)将从1开始的连续自然数按以下规律排列:……则2017在第________行.(3).如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)根据这个规律探索可得,第100个点的坐标为____________.(4)(2017·滨州中考)观察下列各式:211131321124242113535=-⨯=-⨯=-⨯⋯,,,,请利用所得结论,化简代数式()2222132435n n 2⋯⨯⨯⨯+++++(5).(2017·绵阳中考)如图所示,将形状、大小完全相同的“·”和线段按照一定规律摆成下列图形,第1幅图形中“·”的个数为a 1,第2幅图形中“·”的个数为a 2,第3幅图形中“·”的个数为a 3,…以此类推,则123191111a a a a +++⋯+的值为 ()2061589431A.B. C. D.21848407604.“相互联系型”数列(1)(2017·日照中考)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为 ( ) A.23 B.75 C.77 D.139【思路点拨】由题干图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23, (26),由此可得a,b.(2)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .74 (3).如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( )11 12 12 13 16 13 14 112 112 14A. 160B.1168C.1252D.1280题型二 循环周期型规律探索题(1)(2017·岳阳中考)观察下列等式:21=2,22=4,23=8, 24=16,25=32,26=64,…,根据这个规律,则21+22+23 +24+ (22017)的末尾数字是( ) A.0 B.2 C.4 D.6(2).(2017·扬州中考)在一列数:a 1,a 2,a 3,…,a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是 ( ) A.1 B.3 C.7 D.9(3).(2017·天门中考)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,……按此作法进行下去,则点P 2017的坐标为________.0 2 8 4 2 4 6 22 4 6 844(4).(2017·连云港中考)如图所示,一动点从半径为2的☉O上的A0点出发,沿着射线A0O 方向运动到☉O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到☉O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到☉O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到☉O上的点A4处;……按此规律运动到点A2017处,则点A2017与点A0间的距离是( )A.4B.2C.2D.0题型三图形面积、弧长、线段等规律探索题(1)(2017·衢州中考)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________,翻滚2017次后AB中点M经过的路径长为________.(2)(2017·达州中考)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )(3)(2017·湖州中考)如图,已知∠AOB=30°,在射线OA上取点O1,以O1为圆心的圆与OB相切;在射线O1A上取点O2,以O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以O3为圆心,O3O2为半径的圆与OB相切;…;在射线O9A上取点O10,以O10为圆心,O10O9为半径的圆与OB相切.若☉O1的半径为1,则☉O10的半径长是________.。
专题26 代数式的值(拓展提高)(解析版)
专题2.6 代数式的值(拓展提高)一、单选题1.已知代数式x+2y -1的值是2,则代数式2x+4y+1的值是( ) A .1 B .4C .7D .不能确定【答案】C【分析】先由已知求出x+2y 的值,再代入所求代数式可得答案. 【详解】解:由已知:x+2y-1=2, ∴x+2y=3,∴2x+4y+1=2(x+2y)+1 =2×3+1=7, 故选C .【点睛】本题考查代数式的求值,由已知得到代数式所含式子的值是解题关键. 2.已知实数x ,y 满足|x ﹣1|+(y +2)2=0,则代数式(x +y )2015的值为( ) A .﹣1 B .1C .2015D .﹣2015【答案】A【分析】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. 【详解】解:根据题意得:x ﹣1=0,y +2=0, 解得:x =1,y =﹣2,则(x +y )2015=(1﹣2)2015=﹣1. 故选:A .【点睛】此题考查绝对值的非负性,已知字母的值求代数式的值,正确理解非负数的性质是解题的关键. 3.若231a a +=,则代数式25152a a +-的值为( ) A .0 B .1C .2D .3【答案】D【分析】把2515a a +变形为25a 3)a +(,整体代入计算即可. 【详解】∵231a a +=, ∴25152a a +- =25a 3)2a +-( =5-2=3. 故选D.【点睛】本题考查了代数式的值,通过变化系数,实施整体思想代入计算是解题的关键. 4.有理数a ,b ,c 均不为0.且0a b c ++=,设||||||a b c x b c c a a b=+++++,则代数式21212010x x -+的值是( ) A .2010 B .1990 C .2030或1990 D .2010或1990【答案】C【分析】根据题意可得a ,b ,c 中不能全同号,必有一正两负或两正一负,a =-(b +c ),b =-(c +a ),c =-(a +b ),则可得||a b c +,||b c a +,||c a b+的值为两个+1,一个-1或两个-1,一个+1,即可求得x 的值,代入即可求得答案.【详解】解:由a ,b ,c 均不为0,知b +c ,c +a ,a +b 均不为0, ∵a +b +c =0,∴a =-(b +c ),b =-(c +a ),c =-(a +b ),又a ,b ,c 中不能全同号,故必一正二负或一负二正, ∴||a b c +,||b c a +,||c a b+中必有两个同号,另一个符号相反, 即其值为两个+1,一个-1或两个-1,一个+1, ∴||||||a b c x b c c a a b=+++++=±1, ∴21212010x x -+=211212010-+=1990,或21212010x x -+=()()2112112010--⨯-+=2030, 故选C .【点睛】本题考查了代数式求值,注意分类讨论思想的应用.能得到||a b c +,||b c a +,||c a b+的值为两个+1,一个-1或两个-1,一个+1是解此题的关键,要注意仔细分析,难度适中.5.如图是一个简单的数值运算程序,当输入n 的值为时4,则输出的结果为( )A .16B .12C .132D .140【答案】C【分析】根据题意当n=4时,代入代数式n2﹣n中,计算出结果与28比较,当结果大于28时输出结果,当结果小于28时,则返回n的值为第一次计算结果,再次计算即可得出答案.【详解】解:n=4时,n2﹣n=42﹣4=12,因为12<28,所以再次进行运算程序,n=12,n2﹣n=122﹣12=132,因为132>28,所以当输入n=4时,输出值为132.故选:C.【点睛】本题主要考查了代数式求值及有理数混合运算,根据题意进行合理运算是解决本题的关键.6.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖,如果按图1、图2、图3…的次序铺设地砖,把第n个图形用图n表示,那么图2021中的白色小正方形地砖的块数比黑色小正方形地砖的块数多()A.8089 B.8084 C.6063 D.14147【答案】A【分析】由图形可知图ⓝ的白色小正方形地砖有(7n+5)块,黑色小正方形有3n块,由此得出白色小正方形比黑色小正方形多4n+5块,依此代入数据计算即可.【详解】解:由图形可知:第1个图形12块白色小正方形,3块黑色小正方形,第2个图形19个白色小正方形,6块黑色小正方形,第3个图形26个白色小正方形,9块黑色小正方形,则图ⓝ的白色小正方形地砖有(7n+5)块,黑色小正方形有3n块∴白色小正方形比黑色小正方形多(7n+5)-3n=4n+5块当n=2021时,4n+5=4×2021+5=8089.故选:A.【点睛】本题考查了规律型:图形的变化,解决这类问题首先要从简单图形入手,抓住随着“层数”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.二、填空题7.若231a b -=,则2392018a b -+=_____. 【答案】2021【分析】将2392018a b -+变形为23(3)2018a b -+,再把231a b -=代入求值即可. 【详解】解:∵231a b -=∴223920183(3)2018312018320182021a b a b -+=-+=⨯+=+= 故答案为:2021.【点睛】此题主要考查了代数式求值,注意要灵活运用整体代入法. 8.若实数x ,y 满足 ()x y x -+++=22940,则2y x =_____ 【答案】16【分析】根据平方式和绝对值的非负性求出x 、y 值,代入所求代数式中求解即可. 【详解】解:∵实数x ,y 满足 ()x y x -+++=22940,且 ()x y -+≥2290,40x +≥, ∴2x ﹣y +9=0且x +4=0, 解得:x =﹣4,y =1, ∴22y x =(-4)=16, 故答案为:16.【点睛】本题考查代数式求值、平方式和绝对值的非负性、解二元一次方程组、有理数的乘方运算,利用非负性求出x 、y 是解答的关键.9.已知2237m n -+=-,则代数式21284n m -+的值等于__________. 【答案】-24【分析】计算212828n m -=-后代入计算即可 【详解】∵2237m n -+=-, ∴212828n m -=-, ∴21284n m -+ = -28+4= -24.故答案为:-24.【点睛】本题考查了等式条件型整体代入计算求值,观察代数式的特点,灵活变化系数,运用整体代入的思想计算是解题的关键.10.如果10a b -+=,则221a b -+=_________. 【答案】1-【分析】由已知可以得到2a −2b 的值,再把所得值代入2a −2b +1即可得解. 【详解】解:由题意可得: a -b =-1, 所以2a −2b +1 =2(a -b )+1 =2×(-1)+1 =-1, 故答案为-1.【点睛】本题考查整式的化简求值,关键是把所求整式变形成能用已知字母或已知整式表示成的形式 . 11.已知代数式23a a -的值为6,则代数式2926a a -+的值为______. 【答案】-3【分析】构造等式23a a -=6,同乘以-2后,整体代入计算即可. 【详解】∵23a a -=6, ∴22612a a -+=-,∴2926a a -+=9+(-12)=-3, 故答案为:-3.【点睛】本题考查了条件等式型的代数式求值,准确构造条件等式,并灵活进行变形,后整体代入是解题的关键.12.已知:55432(2)x ax bx cx dx ex f +=+++++,求b d +的值为 _________. 【答案】90【分析】先令x =1,即可求出a +b +c +d +e +f =243①;再令x =﹣1,得到﹣a +b ﹣c +d ﹣e +f =1②,①+②可得b +d +f =122,最后令x =0,可得f =32,由此即可求得b +d 的值. 【详解】解:令x =1,得:a +b +c +d +e +f =243①;令x=﹣1,得﹣a+b﹣c+d﹣e+f=1②,①+②得:2b+2d+2f=244,即b+d+f=122,令x=0,得f=32,则b+d=b+d+f﹣f=122﹣32=90,故答案为:90.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.有一个数值转换器的原理如图所示,若开始输入x的值是23,可发现第1次输出的结果是3-,第2次输出的结果是1,第3次输出的结果是2-,依次继续下去…,第2021次输出的结果是________.【答案】-1【分析】根据数值转换器依次求出前几次的输出的数值,再根据数值的变化规律求解.【详解】解:第4次输出的结果是2,第5次输出的结果是-1,第6次输出的结果是1,第7次输出的结果是-2,第8次输出的结果是2,第9次输出的结果是-1,所以,从第5次开始,每4次输出为一个循环组依次循环,(2021-4)÷4=504…1,所以,第2021次输出的结果是-1.故答案为:-1.【点睛】本题考查了代数式求值,根据数值转换器求出从第5次开始,每4次输出为一个循环组依次循环是解题的关键.14.在公园内,牡丹按正方形种植,在它的周围种植芍药,下图反映了牡丹的列数(n)和芍药的数量规律,那么当15n=时,芍药的数量为_______株.【答案】120.【分析】观察图形,四角各一株,每边按1,3,5,7…增加,总增加4×每边增加株数,总株数为4+4(2n -1)=8n ,然后代入求值即可.【详解】解:由图可得,当1n =时,芍药的数量为4148+⨯=株, 当2n =时,芍药的数量为43416+⨯=株, 当3n =时,芍药的数量为45424+⨯=株, 当4n =时,芍药的数量为47432+⨯=株,…, 第n 个图芍药的数量为()44214848n n n +-=+-=株, ∴当15n =时,芍药的数量8n =815120⨯=株. 故答案为:120.【点睛】本题考查图形规律探究问题,认真观察图形,去掉四角各一株,每边增加规律容易发现,列代数式表示规律,会求代数式的值,根据规律列代数式是解题关键.三、解答题15.已知a ,b ,c ,d ,x ,y 均为有理数,按要求解答下列问题:(1)已知a ,b 互为相反数,c ,d 互为倒数,则a +b = ,cd = ; (2)在(1)的条件下,若x ,y 满足|x +23|+|y ﹣13|=0,求﹣2(a +b )﹣cd +x ﹣y 的值. 【答案】(1)0,1;(2)﹣2【分析】(1)根据题意,可得:a +b =0,cd =1; (2)根据x ,y 满足|x +23|+|y ﹣13|=0,可得:x +23=0,y ﹣13=0,据此求出x 、y 的值,将x 、y ,a +b ,cd 值代入,即可求出﹣2(a +b )﹣cd +x ﹣y 的值是多少. 【详解】解:(1)∵a ,b 互为相反数,c ,d 互为倒数, ∴a +b =0,cd =1; 故答案为:0、1.(2)∵x ,y 满足|x +23|+|y ﹣13|=0, ∴x +23=0,y ﹣13=0,解得x =﹣23,y =13,∴﹣2(a +b )﹣cd +x ﹣y =﹣2×0﹣1+(﹣23)﹣13=0﹣1﹣1 =﹣2.【点睛】考查了相反数、倒数的定义以及绝对值非负性的应用.同时考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.非负性:几个非负数的和为0时,这几个非负数都为0.16.某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套,如果每套比原销售价降低10元销售,则每天可多销售100套,该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论.(每套西服的利润=每套西服的销售价-每套西服的进价). (1)按原销售价销售,每天可获利润______元; (2)若每套降低10元销售,每天可获利润______元;(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套,按这种方式:若每套降低10x 元(04,x x ≤≤为正整数).①则每套的销售价格为_______元(用代数式表示); ②则每天可销售_______套西服(用代数式表示); ③则每天共可以获利润________元(用代数式表示);④根据以上的测算,如果你是该商场的经理,你将如何确定商场的销售方案,使每天的获利最大? 【答案】(1)8000;(2)9000;(3)①290-10x ;②200+100x ;③(40-10x )(200+100x );④每套比原销售价降低10元销售,可使每天的获利最大.【分析】(1)根据题目中数据可以求得按原销售价销售,每天可获得的利润; (2)根据题目中数据可以求得每套降低10元销售,每天可获得的利润; (3)①根据题意可以用代数式表示出每套的销售价格; ②根据题意可以用代数式表示出每天的销售量; ③根据题意可以用代数式表示出每天获得的利润;④将x 的取值代入计算,再比较,从而可得结论.【详解】解:(1)按原销售价销售,每天可获利润为:(290-250)×200=8000(元), 故答案为:8000;(2)若每套降低10元销售,每天可获利润为:(290-10-250)(200+100)=9000(元), 故答案为:9000; (3)①由题意可得,每套的销售价格为:(290-10x )元, 故答案为:(290-10x );②每天可销售:(200+100x )套, 故答案为:(200+100x );③每天共可以获利润为:(290-10x -250)(200+100x )=(40-10x )(200+100x )元, 故答案为:(40-10x )(200+100x ); ④由题意可知0≤x ≤4,x 为正整数,当x =0时,获利=(40-10×0)(200+100×0)=8000(元), 当x =1时,获利=(40-10×1)(200+100×1)=9000(元), 当x =2时,获利=(40-10×2)(200+100×2)=8000(元), 当x =3时,获利=(40-10×3)(200+100×3)=5000(元), 当x =4时,获利=(40-10×4)(200+100×4)=0(元),所以每套降低10元销售时获利最多,作为商场的经理应以每套280元的价格销售. 【点睛】本题考查列代数式和代数式求值,正确表示出每件商品的利润和销量是解题关键. 17.已知代数式533ax bx x c +++,当0x =时,该代数式的值为1-. (1)求c 的值;(2)已知当1x =时,该代数式的值为1-,试求a b c ++的值;(3)已知当3x =时,该代数式的值为10-,试求当3x =-时该代数式的值; (4)在第(3)小题的已知条件下,若有53a b =成立,试比较+a b 与c 的大小? 【答案】(1)-1;(2)-4;(3)-8;(4)a b c +> 【分析】(1)将x =0代入代数式求出c 的值即可; (2)将x =1代入代数式即可求出a +b +c 的值;(3)将x =3代入代数式求出35a +33b 的值,再将x =-3代入代数式,变形后将35a +33b 的值代入计算即可求出值;(4)由35a +33b 的值,变形得到27a +3b =-2,将5a =3b 代入求出a 的值,进而求出b 的值,确定出a +b 的值,与c 的值比较大小即可.【详解】解:(1)把x =0代入代数式,得到c =-1; (2)把x =1代入代数式,得到a +b +3+c =-1, ∴a +b +c =-4;(3)把x =3代入代数式,得到35a +33b +9+c =-10, 即35a +33b =-10+1-9=-18, 当x =-3时,原式=-35a -33b -9-1=-(35a +33b )-9-1=18-9-1=8; (4)由(3)得35a +33b =-18,即27a +3b =-2, 又∵5a =3b ,∴27a +5a =-2, ∴a =116-, 则b =53a =548-,∴a +b =151648--=16->-1, ∴a +b >c .【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 18.观察下列表格中两个代数式及其相应的值,回答问题:(初步感知)(1)根据表中信息可知:a =______;b =______; (归纳规律)(2)表中25x -+的值的变化规律是:x 的值每增加1,25x -+的值就都减少2.类似地,27x -的值的变化规律是:______; (问题解决)(3)请从A ,B 两题中任选一题作答.我选择______题.A .根据表格反应的变化规律,当x ______时,25x -+的值大于27x -的值.B.请直接写出一个含x的代数式,要求x的值每增加1,代数式的值就都减小5,且当0x 时,代数式的值为-7.【答案】(1)1;-3;(2)x的值每增加1,2x-7的值就增加2;(3)A:<3;B:-5x-7【分析】(1)直接将x=2代入代数式计算可得;(2)类似-2x+5的变化规律可得2x-7的变化规律;(3)A:令-2x+5=2x-7,解得x的值,再结合表格中数据变化可得;B:设代数式为mx+n,根据变化规律得到m,再将数值代入得到n,可得结果.【详解】解:(1)当x=2时,a=-2×2+5=1;当x=2时,b=2×2-7=-3;(2)x的值每增加1,2x-7的值就增加2;(3)A:当-2x+5=2x-7时,解得:x=3,∵随着x的增加,2x-7增大,-2x+5减小;反之,随着x的减小,2x-7减小,-2x+5增大;∴当x<3时,-2x+5>2x-7;B:设代数式为mx+n,根据规律可知:当x的值每增加1,代数式的值减少5时,x的系数m=-5,又∵当x=0时,代数式的值为-7,即-5×0+n=-7,解得:n=-7,故代数式为-5x-7.【点睛】本题考查了代数式的有关问题,属于规律性问题和一元一次方程的应用,认真理解题意,利用代数式的有关知识解决问题.19.一次性购物金额促销方案低于300元所购商品全部按九折结算,不低于300元但低于600元所购商品全部按八折结算,600元或超过600元其中前600元按八折结算,超过600元的部分按七折结算.“双十一”已经成为中国电子商务行业的年度盛事,每年这一天成为全民的购物节.在今年的“双十一”期间,某网店举办促销活动,方案如下表所示:(1)如果顾客在该网店一次性购物x 元(600x ≥),求实际付款多少元?(用含x 的代数式表示) (2)某顾客在该店两次购物的商品共计800元.若第一次购物商品的金额为a 元(300a >),求该顾客两次购物的实际付款共多少元?(用含a 的代数式表示)(3)当700a =时,,求该顾客两次购物的实际付款共多少元?【答案】(1)(0.7x +60)元;(2)()()()6403005000.17205006000.2780600800a a a a a ⎧<≤⎪-+<<⎨⎪-+≤<⎩;(3)640元【分析】(1)根据600元或超过600元,其中前600元按八折结算,超过600元的部分按七折结算可列出代数式;(2)分三种情况进行讨论,求出该顾客两次购物的实际付款共多少元即可;(3)将a =700代入(2)中结果计算即可.【详解】解:(1)600×0.8+0.7(x -600)=(0.7x +60)元. 答:实际付款(0.7x +60)元.(2)①当300<a ≤500时,则300≤800-a <500,则两次均按八折结算,∴购物实际付款:()0.80.8800a a +-=0.8×800=640(元);②当500<a <600时,则200<800-a <300,则第一次按八折结算,第二次按九折结算,∴购物实际付款:0.8a +0.9(800-a )=(-0.1a +720)元;③当600≤a <800时,则0<800-a ≤200,则第一次中前600元按八折结算,超过600元的部分按七折结算,第二次按九折结算,∴购物实际付款:600×0.8+0.7(a -600)+0.9(800-a )=(-0.2a +780)元.故本次实际付款=()()()6403005000.17205006000.2780600800a a a a a ⎧<≤⎪-+<<⎨⎪-+≤<⎩;(3)当700a =时,该顾客两次购物的实际付款为:-0.2×700+780=640元.【点睛】本题考查了列代数式,代数式求值,关键明白优惠的方案,从而可求出解.20.小张去水果批发市场采购苹果,他关注了A、B两家苹果铺.这两家苹果品质一样,零售价都为10元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的90%优惠;批发数量超过1000而不超过2100千克,全部按零售价的88%优惠:超过2100千克的按零售价的86%优惠.B家的规定如下表:(1)如果他批发800千克苹果,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克苹果(x在1500以上~2100的范围内),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发2000千克苹果,你能帮助他选择在哪家批发更优惠吗?请通过计算说明理由.【答案】(1)在A家批发为7200元,在B家批发为7390元;(2)A家:8.8x元,B家:8x+1550元;(3)B家更优惠【分析】(1)根据题意和表格可以得到他批发800千克苹果时,在A、B两家批发各需要花费多少钱,从而本题得以解决;(2)根据题意和表格可以得到他批发x千克苹果时(1500<x<2100),在A、B两家批发各需要花费多少钱,从而本题得以解决;(3)将x=2000分别代入(2)求得的两个式子,计算出结果,然后进行比较,即可解答本题.【详解】解:(1)如果在A家批发,则800×90%×10=7200(元)如果在B家批发,则500×95%×10+300×88%×10=4750+2640=7390(元).答:在A家批发为7200元,在B家批发为7390元;(2)在A家批发,则88%x×10=8.8x(元),在B家批发,则500×95%×10+1000×88%×10+(x-500-1000)80%×10=8x+1550(元);(3)在A家,则88%×10×2000=17600(元),在B家,则500×95%×10+1000×88%×10+500×80%×10=17550(元),所以选择B家更优惠.【点睛】本题考查了列代数式,此题的关键是学生要利用商家的优惠政策,读懂政策,按政策计算出你批发的总钱数进行比较.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题提升(三)数式规律型问题
(人教版七上P70习题第10题)
如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?
【思想方法】模型化思想和归纳推理的思想在中考中应用广泛,是热点考题之一.1.[2017·烟台改编]用棋子摆出如图所示的一组图形:
……
按照这种规律摆下去,第n个图形用的棋子个数为()
A.3n B.6n
C.3n+6 D.3n+3
2.[2018·重庆]把三角形按如图所示的规律拼图案,其中图案①中有4个三角形,图案②中有6个三角形,图案③中有8个三角形,……按此规律排列下去,则图案⑦中三角形的个数为()
……
A.12 B.14
C.16 D.18
3.[2018·烟台]如图所示图形都是由相同的玫瑰花按照一定的规律摆成的.按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()
……
A.28 B.29
C.30 D.31
4.[2019·武汉]观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;……已知按一定规律排列的一组数:250,251,252,…,299,2100.若250=a,用含a的式子表示这组数的和是()
A.2a2-2a B.2a2-2a-2
C.2a2-a D.2a2+a
5.[2019·甘肃]如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2 019个菱形,则n=________.
6.[2019·大庆]归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②的规律摆下去,摆成第n个“T”字形需要棋子的个数为________.
7.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,则第n个图案中的基础图形的个数为________(用含n的式子表示).
……
8.[2018·泰安]观察“田”字中各数之间的关系:
则c的值为
________.
9.[2019·安顺]将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是________.
10.[2019·枣庄]观察下列各式:
1+1
12+1
22=1+
1
1×2
=1+⎝⎛⎭⎫
1-
1
2,
1+1
22+1
32=1+
1
2×3
=1+⎝⎛⎭⎫
1
2-
1
3,
1+1
32+1
42=1+
1
3×4
=1+⎝⎛⎭⎫
1
3-
1
4,
……
请利用你发现的规律,计算:
1+1
12+1
22+1+
1
22+
1
32+1+
1
32+
1
42+ (1)
1
2 0182+
1
2 0192,
其结果为________________.
11.[2018·孝感]我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,……记a1=1,a2=3,a3=6,a4=10,……那么a9+a11-2a10+10的值是________________.
观察下列等式:
第1个等式:a1=1
1+2
=2-1;
第2个等式:a2=
1
2+3
=3-2;
第3个等式:a3=
1
3+2
=2-3;
第4个等式:a4=1
2+5
=5-2;
……
按上述规律,回答以下问题:
(1)请写出第n个等式:
a n=____________________________________;
(2)a1+a2+a3+…+a n=______________________.
参考答案(完整答案和解析见
PPT 课件之课时作业)
【教材母题】 S =3(n -1),当n =5,7,11时,S 分别是12,18,30. 【中考变形】
1.D 2.C 3.C 4.C 5.1 010 6.3n +2 7.3n +1 8.270 9.2 019 10.2 0182 018
2 019
11.11 【中考预测】 (1)
1n +n +1
=n +1-n (2)n +1-1。