空间角的计算(1)

合集下载

空间角的计算

空间角的计算

空间角的计算(总2页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2第五节 空间角的计算空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。

空间角是异面直线所成的角、直线与平面所成的角及二面角总称。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三计算。

例 1 已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值。

图形的画法位置转换一下呢? 小结:求异面直线所成角的方法:变式 如图,点P 是边长为1的正方形ABED 所在平面外的一点,且PA ⊥平面ABED ,PA=1,又PB EM 21//,求异面直线PM 与BD 所成角的余弦值; 例2 如图,在四棱锥ABCD P -中,⊥PA 平面ABCD ,CD AB //,090=∠DAB ,1===DC AD PA ,2=AB ,M 为PB 的中点.求直线CM 与平面PAC 所成角的余弦值.小结:求斜线与平面所成角的方法:变式1 如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°,E 为线段AB 的中线,将△ADE 沿直线DE 翻折成△A′DE ,使平面A′DE ⊥平面BCD ,F 为线段A′C 的中点.求FM 与平面A′DE 所成角的大小。

变式 2 已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA⊥平面AC ,且2BC =,1PA AD AB ===,取PC 的中点M ,求直线DM 与平面PBD 所成角的正弦值。

例3 如图,点P 是边长为1的正方形ABED 所在平面外的一点,且PA ⊥平面ABED ,PA=1,PB EM 21//,且∠DME=90°,EMBPA MCBPADEMBPMA /F ED C BA3求平面PDM 与平面ABED 所成角的余弦值。

空间角的计算

空间角的计算

空间角的求法(一)异面直线所成的角:]2,0(平移法:平移其中一条或两条使之成为相交直线所成的角。

题型一 求异面直线所成的角例1:正方体ABCD —A 1B 1C 1D 1中, (1) 求AC 与D A 1所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求A 1C 1与EF 所成角的大小. 练习1.如图, 正方体ABCD -A 1B 1C 1D 1中, 异面直线A 1B 与AD 1所成角的余弦值为 ;异面直线A 1B 与DC 1所成角为 ;异面直线A 1B 与CC 1所成角为 。

2.在长方体ABCD -A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3求异面直线A 1B 与B 1C 所成角的余弦值。

3.如图,在四棱锥P —ABCD 中,PO ⊥底面ABCD , O 为AD 中点,侧棱P A =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD , AD =2AB =2BC=2,. (1)求异面直线PB 与CD 所成角的余弦值;b ′Oba(二)直线和平面所成的角[0,2π] 定义法:(1)经过斜线上一点作面的垂线;(2)找出斜线在平面内的射影,从而找出线面角;(3)解直角三角形 题型二 求线面角例2:如图,正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面ABCD 所成角的大小。

练习1:在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的θ大小(用三角函数值表示).D1C1A1B1ABCDE(三)二面角[0,180]oo定义1(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角 定义2(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角二面角的平面角的特点:1) 角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。

求空间角的方法-高考数学一题多解

求空间角的方法-高考数学一题多解

求空间角的方法-高考数学一题多解一、攻关方略空间角的探究是立体几何的一类重要题型.空间的角包括异面直线所成的角、直线与平面所成的角、二面角,求空间角首先要把它转化为平面角(即降维策略的应用),然后用代数的方法、三角的方法求解,或者直接用向量的方法求解,异面直线所成角的范围是0,2π⎛⎤ ⎥⎝⎦,直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦,二面角的范围是[]0,π.1.异面直线所成角的求解(1)平移法.在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线;也可在两条异面直线外空间选择“特殊点”,分别作两条两异面直线的平行线(单移或双移).(2)补形法.把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,从而发现两条异面直线间的关系.(3)向量法.建立适当的空间直角坐标系,求出两异面直线所在向量的坐标,代入向量夹角公式即可求出.求异面直线AB 与CD 的夹角θ,cos AB CD AB CDθ⋅= .2.直线与平面所成角的求解(1)直接法.通过斜线上某个特殊点作出平面的重线段,连接垂足和斜足,找出线面角(斜线段和斜线段在平面上的射影所成的角),在直角三角形中求解.(2)向量法.建立适当的空间直角坐标系,求出平面的法向量的坐标和斜线段所在直线的向量坐标,代入向量夹角公式,求出法向量与斜线段所在直线的夹角θ,则直线与平面所成角为2πθ⎛⎫- ⎪⎝⎭,求直线l 与平面α所成角θ,sin PM n PM nθ⋅=⋅ (其中n 为平面α的法向量,M 为l 与α的交点,P 为l 上不同于M 的任一点).3.二面角的求解(通常通过平面角求解)(1)定义法.直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角,在相应的平面图形中计算.(2)三垂线法.已知二面角其中一个面内一点到另一个面的垂线,用三垂线定理或其逆定理作出平面角,在直角三角形中计算.(3)垂面法.已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线,所成的角即为平面角,二面角的平面角所在的平面与棱垂直.(4)射影法.利用面积射影公式:cos S S θ=射影截面,其中θ为平面角的大小.(5)向量法.建立适当的空间直角坐标系,求出两个平面的法向量,然后代入向量夹角公式,求出两法向量的夹角θ,则两个平面的二面角的平面角为()πθ-或θ.求二面角θ,有1212cos n n n n θ⋅= (1n ,2n 分别为两个平面的法向量)对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法.真可谓:三维化二维紧扣定义,转化与归纳配合运用,求空间角妙据迭出,施向量法更添风采.【典例】如图30-5所示,四棱锥P ABCD -中,PA ⊥底面ABCD .AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解题策略本题主要考查空间直线和平面平行关系的证明以及求直线与平面所成角的正弦值.第(1)问,可以利用线面平行的判定定理证明,也可以用纯向量法或向量坐标法证明;第(2)问,可以通过作出相应射影角求解,若结合等体积法求点A 到平面PMN 的距离也会对解题带来方便,建立空间直角坐标系,利用空间向量求解直线与平面所成角的正弦值也是好方法.应指出的是:直线l 与平面α所成角θ与直线的方向向量d 和平面的法向量n 的夹角,d n 不是一回事,两者之间关系为sin cos ,d n θ= .第(1)问策略一立体几何方法:由线线平行⇒线面平行策略二纯向量法,即证明MN 向量与平面PAB 内两个不共线向量满足共面向量定理策略三向量坐标法,即证明MN 向量与平面PAB 的法向量垂直第(2)问策略一转化为求斜线AN 与其与平面PMN 内射影所成角策略二运用等体积法求点A 到平面PMN 的距离,再求线面角策略三运用向量坐标法求向量AN 与平面PMN 的法向量所成角的余弦值,即为AN 与平面PMN 所成角的正弦值(1)证法一(立体几何常规证法:先证线线平行,再推得线面平行)由已知得223AM AD ==,取BP 的中点T ,连接AT 、TN ,如图30-6所示.由N 为PC 的中点知TN BC ∥,122TN BC ==.又AD BC ∥,故TN AM ∥,四边形AMNT 为平行四边形,于是MN AT ∥.∵AT ⊂平面PAB ,MN ⊄平面PAB ,∴MN ∥平面PAB .证法二(纯向量法)如图30-6所示,由已知得223AM AD ==,N 为PC 的中点,以向量AB 、AD 、AP 为基底,有()12MN AN AM AP AC AM =-=+- ()12AP AB BC AM =++- ()1112222AP AB AM AM AP AB =++-=+ .∴MN 、AP 、AB 共面,又MN ⊄平面PAB ,∴MN ∥平面PAB .证法三(向量坐标法)取BC 中点E ,连接AE ,易证AE BC ⊥,即AE AD ⊥,AE A 为原点建立空间直角坐标系,如图30-7所示.则()0,0,0A ,()0,0,4P,)2,0B -,()0,2,0M,,1,22N ⎫⎪⎪⎝⎭,1,22MN ⎫=-⎪⎪⎝⎭ ,()0,0,4AP =,)2,0AB =- .可取平面PAB的法向量()n = ,则0MN n ⋅= ,MN n ⊥ .∴MN ∥平面PAB .(2)解法一(立体几何方法一:转化为求射影角)如图30-8所示,取BC 中点E ,连接AE 、CM ,易证AE BC ⊥,MC AE ∥,CM BC ⊥,CM ⊥平面PAD .作AG PM ⊥,垂足为点G ,易证AG ⊥平面PMC .连接NG ,则∠ANG 为AN 与平面PMN (即平面PMC )所成的角.易求得52AN =,AG =,sin 25AG ANG AN ∠==.解法二(立体几何方法二:等积法求距离再求线面角)由已知图30-5,平面PMN 即平面PMC ,由P ANC A PMC V V --=易求得点A 到平面PMN 的距离h =设AN 与平面PMN (即平面PMC )所成的角为θ,则sin h AN θ=.正方向,建立如图30-7所示的空间直角坐标系A xyz -,由题意知()0,0,4P ,()0,2,0M,)2,0C,,1,22N ⎫⎪⎪⎝⎭.()0,2,4PM =-,2PN ⎫=-⎪⎪⎝⎭,2AN ⎫=⎪⎪⎝⎭.设(),,n x y z = 为平面PMN 的法向量,则00n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩,即240,20.y z x y z -=⎧+-=可取()0,2,1n = .于是cos 25n AN n AN n AN⋅⋅== .则直线AN 与平面PMN所成角的正弦值为25.【点评】第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁.【针对训练】1.在三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为______.2.如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD.(1)证明:PA BD ⊥;(2)若PD AD =,求二面角A PB C --的余弦值.3.如图所示,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE EC ⊥,2AB BE EC ===,G ,F 分别是线段BE ,DC 的中点.(1)求证://GF 平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值.4.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,且2PA AB ==,3AD =,E 是棱BC 上的动点,F 是线段PE 的中点.(1)求证:PB ⊥平面ADF ;(2)若直线DE 与平面ADF 所成的角为30°,求EC 的长.(2020·北京卷)5.如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1//BC 平面1AD E ;(2)求直线1AA 与平面1AD E 所成角的正弦值.(2022·浙江)6.如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =.(1)证明:EF DB ⊥;(2)求DF 与面DBC 所成角的正弦值.7.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,PO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.8.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.9.如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.10.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案:1.6【分析】解法一:先证明四边形11BB C C 为矩形,再由中位线定理得到异面直线1AB 与1BC 所成角等于EF 与BF 所成的角,由此利用余弦定理即可求得所求余弦值;解法二与解法三:利用补形法得到异面直线1AB 与1BC 所成角,再分别求得所需要的边,结合余弦定理即可求得所求余弦值;解法四:建立空间直角坐标系,求出各点坐标,从而利用向量夹角的坐标表示求得所求;解法五:由向量线性运算的几何意义得到1111BC BA AA AC =++ ,1111AB AAA B =+ ,从而利用数量积运算求得1BC ,1AB = ,111BC AB ⋅= ,由此可求得所求.【详解】解法一:(直接平移法)如图所示,作1A O ⊥底面ABC ,由1160BAA CAA ∠=∠=︒可知,AO 为∠BAC 的角平分线,且AO BC ⊥,BC ⊥面1AA O ,1BC AA ⊥,于是1BC BB ⊥,四边形11BB C C 为矩形,取AC 的中点E ,连接1B C 交1BC 于点F ,则F 为1B C 的中点,1111,22EF AB EF AB =//,所以异面直线1AB 与1BC 所成角等于EF 与BF 所成的角,即∠BFE 或其补角,设三棱柱的棱长为2,由题意即可得BE =112EF AB ==112BF BC ==于是222cos26BF EF BE BFE BF EF +-∠==⋅,故异面直线1AB 与1BC 解法二:(补形法一)在三棱柱111ABC A B C -的上底面补一个大小相同的三棱柱111222A B C A B C -,如图所示,连接12B C 、2AC 且2AC 交11A C 于D ,则12AB C ∠或其补角为异面直线1AB 与1BC 所成角,设1AB =,易得1AB ==121B C BC ==,22AC AD ===所以在12AB C △中,有22212cosAB C +-∠==.故异面直线1AB 与1BC 解法三:(补形法二)将三棱柱补为平行六面体,再放同样的一个平行六面体,如图所示,1C BE ∠就是异面直线1AB 与1BC 所成的角,设棱长为1,在1A AB △中,易求得1AB =,即BE ,在11A C E △中,易求1C E =1BC AA ⊥,则1BC CC ⊥,从而在1BCC中,求得1BC =在1BC E △中,由余弦定理得1cos 6C BE ∠=.解法四:(向量坐标法)如图所示,以A 为原点,过1A 作1A M ⊥平面ABC 于M ,则M 必在x轴上,且1cos A AM ∠=1sin A AM ∠=设棱长为1,则1A ⎛,1,02B ⎫⎪⎪⎝⎭,1,02C ⎫-⎪⎪⎝⎭,所以1112AB AA AB =+=,1112AC AA AC =+=- ,故11BC AC AB =-=-⎝ ,设异面直线1AB 与1BC 所成角为θ,则1111cos 6BC AB BC AB θ⋅== .解法五:(纯向量法)不妨设AB 长为1,因为1111BC BA AA AC =++ ,1111AB AA A B =+ ,所以()2211112BC BA AA AC =++= ,()2211113AB AA A B =+= ,则1BC =1AB = ,又因为()()111111111BC AB BA AA A C AA A B ⋅=++⋅+= ,设异面直线1AB 与1BC 所成角为θ,则1111cos 6BC AB BC AB θ⋅=故答案为:6.2.(1)证明见解析(2)7-【分析】(1)利用题设条件可证BD AD ⊥、BD PD ⊥,从而可得BD ⊥平面PAD ,故可证PA BD ⊥,我们也可以利用利用空间向量及其坐标运算来证明PA BD ⊥.(2)利用向量或建立空间直角坐标系可求二面角的余弦值,也可以利用定义构建二面角的平面角来求其余弦值,也可以利用补体将二面角转化为二面角Q PB A --的大小来进行计算.【详解】(1)证法一:∵60DAB ∠=︒,2AB AD =,由余弦定理得22222cos 603BD AD AB AD AB AD =+-⨯︒=,故BD =,从而222BD AD AB +=,故BD AD ⊥.又PD ⊥底面ABCD ,而BD ⊂底面ABCD ,可得BD PD ⊥,而,,AD PD D AD PD =⊂ 平面PAD ,∴BD ⊥平面PAD ,而PA ⊂平面PAD ,故PA BD ⊥.证法二:∵PD ⊥平面ABCD ,BD ⊂底面ABCD ,∴PD BD ⊥,0PD BD ⋅= .∴()()PA BD PD DA BD DA BD DA BA AD ⋅=+⋅=⋅=⋅+ 2222cos 0DA BA AD AD AB DAB AD AD AD =⋅-=⋅∠-=-= ,∴PA BD ⊥ ,即PA BD ⊥.证法三:作DE AB ⊥,垂足为E ,分别以DE 、DC 、DP 为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.令AD a =,则1,,022A a a ⎛⎫- ⎪ ⎪⎝⎭,3,,022B a ⎛⎫ ⎪ ⎪⎝⎭,()0,2,0C a .设()0,0,P z,由于1,,22PA a a z ⎛⎫=-- ⎪ ⎪⎝⎭,3,,02DB a ⎫=⎪⎪⎝⎭ ,则221333,,,,002244PA DB a z a a a ⎫⎫⋅=--⋅=-=⎪⎪⎪⎪⎝⎭⎝⎭,于是PA DB ⊥ ,即PA BD ⊥.(2)解法一:因为PD ⊥底面ABCD ,而BC ⊂底面ABCD ,故PD BC ⊥,由(1)中证明可得BD AD ⊥,而//BC AD ,故//BD BC ,因为,,BD PD D BD PD ⋂=⊂平面PDB ,故BC ⊥平面PDB ,而PB ⊂平面PDB ,故BC PB ⊥,而AM PB ⊥,平面APB ⋂平面PBC PB =,故二面角A PB C --的大小等于MA 与BC 所成角的大小,设为θ.设1PD AD ==,则2AB =,BD =∴2PB =,PA =.在PAB中,cos 4APB ∠==,而APB ∠为三角形内角,故sin 4APB ∠=,故42AM ==,142PM ==,故32BM =,在ADC △中,2222cos120527AC AD DC AD DC =+-⨯︒=+=,故AC =又()22AC AM MB BC =++ 222222AM MB BC AM MB AM BC MB BC=+++⋅+⋅+⋅2222cos AM MB BC AM BC θ=++- .∴797144θ=++,解得cos θ=∴二面角A PB C --的余弦值为解法二:以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D xyz -,则()1,0,0A,()B,()C -,()0,0,1P.()AB =-,()1PB =- ,()1,0,0BC =- .设平面PAB 的一个法向量为(),,n x y z = ,则00n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩,即0,0.x z ⎧-+=⎪⎨-=⎪⎩,取1y =,则x z =,故n = .设平面PBC 的一个法向量为m,同理可求(0,1,m =-.cos ,m n == ,而二面角A PB C --的平面角为钝角,故二面角A PB C --的余弦值为7-.解法三:由解法一的计算可得BC ⊥平面PDB ,而BC ⊂平面PBC ,故平面PBC ⊥平面PDB ,即二面角D PB C --的大小为90︒.过A 作AM PB ⊥,垂足为M ,连接DM ,如图所示.由(1)中证明可得AD BD ⊥,而PD ⊥平面ABCD ,AD ⊂平面ABCD ,故PD AD ⊥,PD BD D ⋂=,,PD BD ⊂平面PBD ,故AD ⊥平面PBD ,PB ⊂平面PBD ,故AD PB ⊥,而,,,AM PB AD AM A AD AM ^=Ì平面ADM ,故PB ⊥平面ADM ,但DM ⊂平面ADM ,故DM PB ^.∴AMD ∠是二面角A PB D --的平面角.设1PD AD ==,则2AB =,BD =2PB =.在Rt PBD △中,2PD DB DM PB ⨯==,在Rt ADM △中,2AM =.∴sin 7AD AMD AM ∠==,∴二面角A PB C --的余弦值为cos(90)sin AMD AMD ︒+∠=-∠=-.解法四:由解法一的计算可得BC ⊥平面PBD ,而PB ⊂平面PBD ,故BC PB ⊥.如图所示,过点B 在平面PAB 内作直线BE PB ⊥,交PA 的延长线于点E ,则∠EBC 是二面角A PB C --的平面角.设1PD =,由解法一的计算可得:1AD BC ==,2AB =,BD =AC =PA =,2PB AB ==,且cos 4APB ∠=,sin 4APB ∠=故tan BE BPAPB∠=,∴BE =PE =在Rt PDC 中,由勾股定理求得PC =,在PAC △中,因为222AC PA PC =+,故PA PC ⊥.故在Rt PEC 中,有EC ==在BEC 中,由余弦定理得cos7CBE ∠==-.∴二面角A PB C --的余弦值为7-.解法五:将四棱锥补成直四棱柱,如图所示,则二面角A PB C --的大小与二面角Q PB A --的大小互补.由解法一可得BC PB ⊥,而//PQ BC ,∴PQ PB ⊥.设点Q 到平面PAB 的距离为h ,则由Q PAB B AQP V V --=得1133PAB PQA hS BD S =⋅△△.设1PD =,则PA =,BD =2PB AB ==,12APB S =△211=22PQA S AD =△,∴h =于是二面角Q PB A --的正弦值为h PQ =.∴二面角A PB C --的余弦值为7-.3.(1)证明见解析;(2)23.【分析】(1)利用线面平行的判定定理即得;(2)利用射影法,结合条件求出AEF △及BEC 的面积进而即得;利用坐标法,求出平面BEC 和平面AEF 的法向量,由向量夹角的余弦值即得;利用直接法,延长BC 、AF 交于点Q ,作BR QE ⊥,交QE 的延长线于点R ,连接AR ,可得∠ARB 是二面角A EQ B --的平面角,结合条件即得.【详解】(1)将五面体ABCDE 置于正方体AMDN BECP -之中,如图所示,显然题设的条件全部满足,取AE 的中点H ,连接HG ,FG ,∵////HG AB CD ,即//HG DF ,又1HG DF ==,∴四边形HGFD 是平行四边形,∴//GF DH ,又∵DH ⊂平面ADE ,GF ⊄平面ADE ,∴//GF 平面ADE ;(2)解法一(射影法):设平面AEF 与平面BEC 所成锐二面角的大小为θ,∵AB ⊥平面BCE ,FC ⊥平面BCE ,∴AEF △在平面BCE 上的射影为BEC ,易得AE =EF =3AF =,∴cos AEF ∠==sin AEF ∠=∴132AEF S =⨯=△,又∵12222BEC S =⨯⨯=△,∴2cos 3BEC AEF S S θ==△△.解法二(向量法):如图,分别以射线BE 、BP 、BA 为x 、y 、z轴建立空间直角坐标系,∵正方体棱长为2,则()0,0,2A ,()2,0,0E ,()2,2,1F ,显然()0,0,2BA = 是平面BECP 的法向量,设平面AEF 的法向量为()2,,n x y = ,则n AE ⊥ ,即()()2,,2,0,20n AE x y ⋅=⋅-= ,解得2y =,则n AF ⊥ ,即()()2,,2,2,10n AF x y ⋅=⋅-= ,解得=1x -,∴()2,1,2n =- ,设所求锐二面角的大小为θ,则()()2,1,20,0,22cos 323n BA n BAθ-⋅⋅===⨯ .解法三(直接法):如图,延长BC 、AF 交于点Q ,因为2BE=,BC CQ ==45EBQ ∠=︒,由余弦定理可得(222222cos 2224202EQ BE BQ BE BQ EBQ =+-⋅∠=+-⨯⨯=,即EQ =在BEQ 中,由正弦定理,得sin sin 45BQ EQ BEQ =∠︒,∴sin BEQ ∠=,显然90BEQ ∠>︒,作BR QE ⊥,交QE 的延长线于点R ,连接AR ,∴AB ⊥平面BCE ,QE ⊂平面BCE ,∴AB ⊥QE ,又BR QE ⊥,,AB BR B AB =⊂ 平面ABR ,BR ⊂平面ABR ,∴QE ⊥平面ABR ,AR ⊂平面ABR ,∴QE ⊥AR ,∴∠ARB 是二面角A EQ B --的平面角,设其大小为θ,在BER △中,2BR ==在Rt ABR 中,由勾股定理,得AR =∴2cos 3BR AR θ==.4.(1)证明见解析;(2)2.【分析】(1)方法一,取棱PB ,PC 的中点分别为M ,N ,利用线面垂直的判断定理可得AD ⊥平面PAB ,进而可得PB ⊥平面ADF ;方法二,利用坐标法,求出AD ,AF 向量和向量BP 的坐标表示,证明垂直即得;(2)方法一,作EH 垂直MN 于点H ,则30EDH ∠=︒,结合条件即得;方法二,利用坐标法,根据线面角的向量求法可得求出E 点坐标,即得.【详解】(1)方法一:分别取线段PB 、PC 的中点M 、N ,易知点M 、N 、F 共线,∵PA AB =,∴PB AM ⊥,又∵PA ⊥平面ABCD ,AD ⊂平面ABCD ,∴PA ⊥AD ,又四边形ABCD 是矩形,AD AB ⊥,∵,PA AB A PA ⋂=⊂平面PAB ,AB ⊂平面PAB ,∴AD ⊥平面PAB ,PB ⊂平面PAB ,∴PB AD ⊥,又PB AM ⊥,,AD AM A AD =⊂ 平面ADF ,AM ⊂平面ADF ,因此PB ⊥平面ADF ;方法二,以A为原点建立空间直角坐标系,设()2,,0E t 、1,,12t F ⎛⎫ ⎪⎝⎭,则()0,3,0AD = ,1,,12t AF ⎛⎫= ⎪⎝⎭ ,()2,0,2BP =- ,∴0BP AD ⋅= ,0BP AF ⋅= ,∴BP AD ⊥,BP AF ⊥,,AD AF A AD =⊂ 平面ADF ,AF ⊂平面ADF ,因此PB ⊥平面ADF ;(2)方法一:由于平面ADF 即为平面AMND ,且PB ⊥平面ADF ,PB ⊂平面PBC ,∴平面PBC ⊥平面AMND ,又平面PBC ⋂平面AMND MN =,在平面PBC 内,作EH 垂直MN 于点H ,则EH ⊥平面AMND ,∴30EDH ∠=︒,∵EH BM ==∴ED =因此2CE =,即EC 的长为2;方法二:∵()2,3,0DE t =- ,平面ADF 的法向量为()2,0,2BP =- ,∴由12BP DE BP DE ⋅= ,解得1t =,∴2CE =,即EC 的长为2.5.(1)证明见解析;(2)23.【分析】(1)方法一,根据线面平行的判定定理即得;方法二,利用坐标法,可求出向量1BC 及平面1AD E 的法向量进而即得;(2)延长1CC 到F ,使得1C F BE =,连接EF ,交11B C 于G ,作11C H DG ⊥,垂足为H ,利用线面垂直的判定定理可得1D G ⊥平面1C FH ,进而可得可知∠1C FH 为直线1AA 与平面1AD G 所成的角,结合条件即得;利用坐标法,根据线面角的向量求法即得;利用等体积法,求出点到平面的距离进而即得.【详解】(1)[方法一]:几何法如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//B C A D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄ 平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;[方法二]:空间向量坐标法以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD = ,()0,2,1AE = ,设平面1AD E 的法向量为(),,n x y z = ,由100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩ ,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =- .又∵向量()12,0,2BC = ,()12201220BC n ⋅=⨯+⨯+⨯-= ,又1BC ⊄ 平面1AD E ,1//BC ∴平面1AD E ;(2)[方法一]:几何法延长1CC 到F ,使得1C F BE =,连接EF ,交11B C 于G ,又∵1//C F BE ,∴四边形1BEFC 为平行四边形,∴1//BC EF ,又∵11//BC AD ,∴1//AD EF ,所以平面1AD E 即平面1AD FE ,连接1D G ,作11C H DG ⊥,垂足为H ,连接FH ,∵1FC ⊥平面1111D C B A ,1D G ⊂平面1111D C B A ,∴11FC D G ⊥,又∵111FC C H C ⋂=,1FC ⊂平面1C FH ,1C H ⊂平面1C FH ,∴直线1D G ⊥平面1C FH ,又∵直线1D G ⊂平面1D GF ,∴平面1DGF ⊥平面1C FH ,∴1C 在平面1D GF 中的射影在直线FH 上,∴直线FH 为直线1FC 在平面1D GF 中的射影,∠1C FH 为直线1FC 与平面1D GF 所成的角,根据直线1//FC 直线1AA ,可知∠1C FH 为直线1AA 与平面1AD G 所成的角,设正方体的棱长为2,则111C G C F ==,1D G =∴1C H ,∴FH =∴112sin 3C H C FH FH ∠==,即直线1AA 与平面1ADE 所成角的正弦值为23.[方法二]:向量法由上知平面平面1AD E 的法向量()2,1,2n =- ,又∵()10,0,2AA = ,∴11142cos ,323n AA n AA n AA ⋅==-=-⨯⋅ ,∴直线1AA 与平面1AD E 所成角的正弦值为23.[方法三]:几何法+体积法如图,设11B C 的中点为F ,延长111,,A B AE D F ,易证三线交于一点P,因为111,////BB AA EF AD ,所以直线1AA 与平面1AD E 所成的角,即直线1B E 与平面PEF 所成的角,设正方体的棱长为2,在PEF !中,易得PE PF EF =,可得32PEF S = ,设当1B 到平面PEF 的距离为1B H ,由11B PEF P B EF V V --=,得113111123232B H ⨯⋅=⨯⨯⨯⨯,整理得123B H =,所以1112sin 3B H B EH B E ∠==,所以直线1AA 与平面1AD E 所成角的正弦值为23.[方法四]:纯体积法设正方体的棱长为2,点1A 到平面1AED 的距离为h ,在1AED △中,113AE AD D E ===,2221111cos 25D E AE AD AED D E AE +-∠===⋅,所以1sin AED ∠=13AED S = ,由1111E AA D A AED V V --=,得111111133AD A AED S A B S h ⋅=⋅ ,解得43h =,设直线1AA 与平面1AED 所成的角为θ,所以12sin 3h AA θ==.6.(1)证明见解析;【分析】(1)方法一,使用几何方法证明,作DH AC ⊥交AC 于H ,利用面面垂直的性质可得DH ⊥平面ABC ,然后利用线面垂直的判定定理可得EF ⊥平面BHD ,即得;方法二,利用坐标法即得;方法三,使用了两垂直角的三余弦定理得到60BCD ∠=︒,进而证明;(2)方法一使用几何做法,作HG BD ⊥于G ,由题可得HCG ∠即为所求角,结合条件即得;方法二使用空间坐标系方法,即得;方法三使用空间向量法;方法四使用三余弦定理法即得;方法五采用等体积转化法可得H 到平面DBC 的距离,进而即得.【详解】(1)[方法一]:几何证法作DH AC ⊥交AC 于H ,连接BH ,∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥,∵45ACB ACD ∠=∠=︒,∴2CD BC CH =⇒=,在CBH 中,22222cos 45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥.由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H = ,BH ⊂平面BHD ,DH ⊂平面BHD ,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥;[方法二]:空间向量坐标系方法作DO AC ⊥交AC 于O ,∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DO ⊂平面ADFC ,∴DO ⊥平面ABC ,以O 为原点,建立空间直角坐标系如图所示,设OC =1,∵45ACB ACD ∠=∠=︒,2DC BC ==∴BC ()()110,0,1,0,1,0,,,022D C B ⎛⎫ ⎪⎝⎭,∴11,,122BD ⎛⎫=-- ⎪⎝⎭ ,11,,022BC ⎛⎫=- ⎪⎝⎭,所以11·044BD BC =-= ,∴BC ⊥BD ,又∵棱台中//BC EF ,∴EF ⊥BD ;[方法三]:三余弦定理法∵平面ACFD ⊥平面ABC ,∴1cos cos cos cos 45cos 452BCD ACB ACD ∠=∠∠=︒︒=,∴60BCD ∠=︒,又∵DC =2BC ,∴90CBD ∠=︒,即CD BD ⊥,又∵//EF BC ,∴EF DB ⊥;(2)[方法一]:几何法因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角,作HG BD ⊥于G ,连接CG ,由(1)可知,BC ⊥平面BHD,因为平面BCD ⊥平面BHD ,而平面BCD 平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD ,即CH 在平面DBC 内的射影为CG ,所以HCG ∠即为所求角,在Rt HGC 中,设BC a =,则CH =,BH DH HG BD ⋅==,∴sin 3HG HCG CH ∠==,故DF 与平面DBC[方法二]:空间向量坐标系法设平面BCD 的法向量为(),,n x y z =r ,由(1)得11,,122BD ⎛⎫=-- ⎪⎝⎭ ,11,,022BC ⎛⎫=- ⎪⎝⎭,∴1102211022n BD x y z n BC x y ⎧⋅=--+=⎪⎪⎨⎪⋅=-+=⎪⎩,令1x =,则()1,1,1n = ,又()0,1,0OC =,cos ,3n OC == 由于//DF OC ,∴直线DF 与平面DBC[方法三]:空间向量法以{,,}CH CB CD为基底,不妨设22DC BC ==,则45,45,60DB CH HCB HCD DCB ==∠=∠=︒∠=︒︒(由(1)的结论可得),设平面DBC 的法向量为n xCH yCB zCD =++ ,则由00n CD n CB ⎧⋅=⎪⎨⋅=⎪⎩,得2400x y z x y z ++=⎧⎨++=⎩,取1z =,得32n CH CB CD =-++ ,设直线DF 与平面DBC 所成角为θ,则直线HC 与平面DBC 所成角也为θ,由公式得||sin ||||HC n HC n θ⋅=== [方法四]:三余弦定理法由45ACB ACD ∠=∠=︒,可知H 在平面DBC 的射影G 在DCB ∠的角平分线上,设直线DF 与平面DBC 所成角为θ,则HC 与平面DBC 所成角也为θ,由(1)的结论可得60BCD ∠=︒,由三余弦定理,得cos 45cos30cos θ=︒⋅︒,cos θ=,从而sin 3θ=.[方法五]:等体积法设H 到平面DBC 的距离为h ,设1DH =,则1,,22HC DC BC BD ====,设直线DF 与平面DBC 所成角为θ,由已知得HC 与平面DBC 所成角也为θ.由H DBC D HBC V V --=,1111601sin 451322322h ⨯︒⨯=⨯⨯⨯︒⨯,求得h所以3sin 1h HC θ===7.(1)证明见解析;.【分析】(1)方法一,利用勾股定理即及线面垂直的判定定理即得;方法二,利用坐标法即得;方法三,利用线面垂直,结合勾股定理可证出;方法四,利用空间基底法即得;(2)方法一,利用坐标法及面面角的向量求法即得;方法二,利用几何法,作出二面角,求解三角形进行求解二面角,即得;方法三,利用射影面积法求解二面角.【详解】(1)[方法一]:勾股运算法证明由题设,知DAE 为等边三角形,设1AE =,则DO =1122CO BO AE ===,所以64PO DO ==,4PC PB PA ====,又ABC 为等边三角形,则2sin 60BA OA = ,所以BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,所以PA ⊥平面PBC ;[方法二]:空间直角坐标系法不妨设AB =4sin 60==︒=AB AE AD ,由圆锥性质知DO ⊥平面ABC ,所以===DO ==PO 因为O 是ABC 的外心,因此AE BC ⊥,在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点, OW 方向为x 轴正方向,OE 方向为y 轴正方向,OD 方向为z 轴正方向,建立空间直角坐标系O xyz -,则(0,2,0)A -,B ,(C ,(0,2,0)E ,P .所以(0,AP = ,(=- BP ,=- CP ,故0220⋅=-+= AP BP ,0220⋅=-+= AP CP ,所以AP BP ⊥,AP CP ⊥,又BP CP P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,故AP ⊥平面PBC ;[方法三]:因为ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE BC ⊥,因为DO (即PO )垂直于底面,BC 在底面内,所以PO BC ⊥,又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO AE O =I ,又PO ⊂平面PAE ,AE ⊂平面PAE ,所以BC ⊥平面PAE ,又因为PA ⊂平面PAE ,所以PA BC ⊥,设AE BC F = ,则F 为BC 的中点,连结PF ,设DO a =,且PO ,则2AF a =,2PA =,12PF a =.因此222+=PA PF AF ,从而PA PF ⊥,又因为PF BC F = ,PF ⊂平面PBC ,BC ⊂平面PBC ,所以PA ⊥平面PBC ;[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE AD DE ==,易得OD =,因为=PO ,所以=PO R ,以,,OA OB OD 为基底,OD ⊥平面ABC ,则=+=-+AP AO OP OA ,6=+=-+BP BO OP OB OD ,且212OA OB R ⋅=- ,0OA OD OB OD ⋅=⋅= ,所以66⎛⎫⎛⎫⋅=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭AP BP OA OB2106⋅--+=OA OB OA OB OD ,故0AP BP ⋅= ,所以AP BP ⊥,即AP BP ⊥,同理AP CP ⊥,又BP CP P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,所以AP ⊥平面PBC ;(2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y轴建立如图所示的空间直角坐标系,则111(,0,0),(0,0,((,,0)244444E P B C ---,1(,444PC =--,1(,)444PB =--,1(,0,)24PE =- ,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,得11111100x x ⎧--=⎪⎨-+-=⎪⎩,令1x =,得111,0z y =-=,所以1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎪⎨⋅=⎪⎩,得22222020x x ⎧--=⎪⎨--=⎪⎩,令21x =,得223z y ==,所以m = ,故cos,5||||n mm nn m⋅==⋅,设二面角B PC E--的大小为θ,由题可知二面角为锐二面角,所以cos5θ=;[方法二]:几何法设=BC AE F,易知F是BC的中点,过F作//FG AP交PE于G,取PC的中点H,连接GH,则∥HF PB,由PA⊥平面PBC,得FG⊥平面PBC,PC⊂平面PBC,∴FG⊥PC,由(1)可得,222BC PB PC=+,得PB PC⊥,所以FH PC⊥,又,FH GF F FH=⊂平面GHF,GF⊂平面GHF,∴PC⊥平面GHF,GHÌ平面GHF,∴GH PC⊥,所以GHF∠是二面角B PC E--的平面角,设圆O的半径为r,则3sin602︒==AF AB r,2AE r=,12=EF r,13EFAF=,所以14=FG PA,1122==FH PB PA,12=FGFH,在Rt GFH中,1tan2∠==FGGHFFH,cos5∠=GHF,所以二面角B PC E--的余弦值为5.[方法三]:射影面积法如图所示,在PE上取点H,使14HE PE=,设BC AE N=,连结NH,由(1)知14NE AE=,所以∥NH PA,故NH ⊥平面PBC ,所以,点H 在面PBC 上的射影为N,故由射影面积法可知二面角B PC E --的余弦值为cos PCNPCHS θS = ,在PCE中,令=PC PE 1CE =,易知= PCE S ,所以34PCH PCE S S == ,又1328PCN PBC S S == ,故38cos 5PCN PCHS θS == ,所以二面角B PC E --.8.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得BC ⊥平面1A AMN ,根据线面平行的性质定理可得11//B C EF ,然后根据面面垂直的判定定理即得;(2)利用几何法,作出线面角,结合条件即得;利用向量法,利用线面角的向量求法即得.【详解】(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB ,1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥,又 侧面11BB C C 为矩形,1BC BB ∴⊥,又1//MN BB ,∴MN BC ⊥,又MN AM M ⋂=,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN ,又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又 11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =,11//B C EF ∴,//EF BC ∴,又BC ⊥ 平面1A AMN ,∴EF ⊥平面1A AMN ,又EF ⊂ 平面11EB C F ,∴平面11EB C F ⊥平面1A AMN ;(2)[方法一]:几何法如图,过O 作11B C 的平行线分别交1111,A B A C 于点11,E F ,连接11,,,AE AO AF NP ,由于//AO 平面11EB C F ,11//E F 平面11EB C F ,11= AO E F O ,AO ⊂平面11AE F ,11E F ⊂平面11AE F ,所以平面11//AE F 平面11EB C F ,又因平面11 AE F 平面111=AA B B AE ,平面11EB C F ⋂平面111=AA B B EB ,所以11//EB AE ,因为111B C A N ⊥,11B C MN ⊥,1A N MN N = ,1A N ⊂平面1AA NM ,MN ⊂平面1AA NM ,所以11B C ⊥平面1AA NM ,又因1111∥E F B C ,所以11⊥E F 平面1AA NM ,所以1AE 与平面1AA NM 所成的角为1∠E AO ,令2AB =,则11=NB ,由于O 为111A B C △的中心,故112233==OE NB ,在1Rt AE O 中,122,3===AO AB OE ,由勾股定理得1=AE所以111sin 10∠==E O E AO AE ,由于11//EB AE ,直线1B E 与平面1A AMN[方法二]:几何法因为//AO 平面11EFC B ,平面11 EFC B 平面1=AMNA NP ,AO ⊂平面1AMNA ,所以//AO NP ,因为//ON AP ,所以四边形OAPN 为平行四边形,由(1)知EF ⊥平面1AMNA ,则EF 为平面1AMNA 的垂线,所以1B E 在平面1AMNA 的射影为NP ,从而1B E 与NP 所成角的正弦值即为所求,在梯形11EFC B 中,设1EF =,过E 作11EG B C ⊥,垂足为G ,则3==PN EG ,在直角三角形1B EG 中,1sin ∠B EG即直线1B E 与平面1A AMN [方法三]:向量法由(1)知,11B C ⊥平面1A AMN ,则11B C为平面1A AMN 的法向量,因为//AO 平面11EB C F ,AO ⊂平面1A AMN ,且平面1A AMN ⋂平面11EB C F PN =,所以//AO PN ,由(1)知11//,AA MN AA MN =,即四边形APNO 为平行四边形,则==AO NP AB ,因为O 为正111A B C △的中心,故13==AP ON AM ,由面面平行的性质得111111,33=∥EF B C EF B C ,所以四边形11EFC B 为等腰梯形.由P ,N 为等腰梯形两底的中点,得11PN B C ⊥,则11110,⋅==++= PN B C EB EP PN NB 111111111623+-=-B C PN B C PN B C ,设直线1B E 与平面1A AMN 所成角为θ,AB a =,则211111113sin θ⋅== a EB B C EB B C 所以直线1B E 与平面1A AMN[方法四]:基底法不妨设2===AO AB AC ,则在直角1AAO中,13AA =.以向量1,,AA AB AC为基底,从而1,2π= AA AB ,1,2π= AA AC ,,3π= AB AC ,1111123=++=+ EB EA AA A B AB AA ,BC AC AB =-,则1= EB ||2BC = ,所以112()3⎛⎫⋅=+⋅-= ⎪⎝⎭EB BC AB AA AC AB 2224333⋅-=- AB AC AB ,由(1)知BC ⊥平面1A AMN ,所以向量BC为平面1A AMN 的法向量,设直线1B E 与平面1A AMN 所成角θ,则111sin cos ,10||θ⋅===EB BC EB BC EB BC ,故直线1B E 与平面1A AMN所成角的正弦值为sin 10θ=.9.(1)证明见解析;7.【分析】(1)方法一:通过证明直线1//C E AF ,根据平面的基本事实二的推论即可证出;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出.(2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出;方法四:利用三面角的余弦公式即可求出.【详解】(1)[方法一]:利用平面基本事实的推论。

3.2.3空间的角的计算

3.2.3空间的角的计算
问题情境
我们知道,两个平面所成的角是用二面角的平面角来度 量.这就是说,空间的二面角最终可以通过转化,用两条相交 直线所成的角来度量.
如何用向量的方法来求空间二面角的大小呢?
1
建构数学
在定义了平面的法向量之后,我们就可以用平面的法向量来求两个 平面所成的角.
方法一:转化为分别是在二面角的两个半平面内且与棱都垂直的两 条直线上的两个向量的夹角(注意:要特别关注两个向量的方向).
如图:二面角 α-l-β 的大小为 θ,A,B∈l,AC α,BD β, AC⊥l,
BD⊥l ,则 θ=< AC , BD >=< CA , DB >.
l
A
ቤተ መጻሕፍቲ ባይዱ
C
B D
2
数学应用
例 3 在正方体 ABCD A1B1C1D1 中, 求二面角 A1 BD C1 的大小.
3
练一练
如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,PA=AB,∠ABC=60°, ∠BCA=90°,点 D,E 分别在棱 PB 和 PC 上,且 DE//BC.
①求证:BC⊥平面 PAC; ②当 D 为 PB 的中点时,求 AD 与平面 PAC 所成的角的大小; ③是否存在点 E,使得二面角 A-DE-P 为直二面角?并说明理由.
4
回顾小结
本节课学习了以下内容: 1.用向量方法解决二面角的计算问题. 2.注重数形结合,注重培养我们的空间想象能力.
5

高中数学空间的角的计算

高中数学空间的角的计算

面-线-面
0,2
语言叙述
二面角 半平面-线-半平面
0,
语言叙述或符号表示
要点三:直线和平面的夹角 1. 有关概念 斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫作平面的斜.线.,斜 线和平面的交点叫作斜.足.. 射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫作斜线在这个平 面上的射影. 斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面 的夹角. 如图, l 是平面 的一条斜线,斜足为 O , OA 是 l 在平面 内的射影, POA 就是直 线 l 与平面 的夹角.
3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念 半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面. 二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角 -a- 或 - AB - .
2
(2)区别: 构成 范围
表示法
平面间的夹角
2
5
举一反三:
【变式 1】 如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD , PD DC ,点 E 是 PC 的中点,作 EF ⊥ PB 交 PB 于点 F .
(1)求证: PB ⊥平面 EFD ;
(2)求平面 与平面 的夹角的大小.
【变式 2】在四棱锥 P ABCD 中,侧面 PCD ⊥底面 ABCD ,PD ⊥ CD ,E 为 PC 中点, 底面 ABCD 是直角梯形, AB ∥ CD , ADC=90 , AB AD PD 1, CD 2 . 设 Q 为侧
11
一、选择题
S
C
B
D
A

空间几何中的角度与距离计算

空间几何中的角度与距离计算

空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。

通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。

本文将介绍空间几何中常用的角度计算方法和距离计算方法。

一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。

常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。

在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。

余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。

2. 矢量法矢量法是一种基于向量运算的角度计算方法。

通过将空间中的两个向量进行运算,可以得到它们之间的夹角。

常见的向量法角度计算包括点乘法和叉乘法。

(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。

可以通过点乘法计算向量之间的夹角。

(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。

可以通过叉乘法计算向量之间的夹角。

3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。

通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。

三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。

二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。

常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。

对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。

欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。

立体几何中空间角的求法

立体几何中空间角的求法

立体几何中空间角的求法立体几何是高中数学的核心内容之一,在高考中占有很大的比重。

考查的知识点、题型等相对稳定,但对学生的空间概念、逻辑思维能力、空间想象能力及运算能力要求较高,而且在2010年高考立体几何试题对转化与化归思想、数形结合思想、割补思想等数学思想的考查也体现的淋漓尽致,而高考对立体几何中空间角的考查一直是热点内容,更成为必考内容,空间角是立体几何中一个重要概念,它是空间图形的一个突出的量化指标,是空间图形位置关系的具体体现,故在历届高考试题中频繁出现,求解方法也多种多样,本文就是空间角常用的方法--传统法与空间向量法。

一、异面直线所成的角θ∈[ 0°,90°](1)传统方法:平移转化法或补形法,使之成为两相交直线所成的角,放入三角形中利用余弦定理计算,若求得的角为钝角,则这个角的补角才为所求。

(2)空间向量法:设异面直线ab与cd所成的角为θ,则cos θ = cos〈,〉参考例题:例1,如图在四棱锥o-abcd中,底面abcd是边长为1的菱形,∠abc= ,oa⊥面abcd,oa=2,m为oa的中点,则异面直线ab与md所成角的大小为()a. b. c. d. π解析:(法1)∵cd∥ab ∴∠mdc为异面直线ab与md所成的角(或其补角)在△abc中,ab=1,∠abc= ,bc=1 ,∴ac2=2-又oa⊥面abcd ∴rt△amc中,am2=1,∴mc2=3-又cd=1 md=∴在△mdc中,cos∠mdc= = ∴∠mdc=(法2)作ap⊥cd于p,分别以ab、ap、ao所在直线为x、y、z 轴建立空间直角坐标系。

则a(0,0,0), b(1,0,0), d(- ,,0),o(0,0,2), m(0,0,1)设ab与md所成的角为θ,又 =(1,0,0) =( - ,,-1)∴cosθ= = ∴θ=二、直线与平面所成的角θ∈[ 0°,90°](1)传统方法:先找到(或作出)过斜线上一点垂直于平面的直线,斜足与垂足的连线就是斜线在平面内的射影,该斜线与射影的夹角就是所求的角,然后放入直角三角形中求解。

空间角的求法

空间角的求法

PCDBA 空间角的求法空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。

空间角是异面直线所成的角、直线与平面所成的角及二面角总称。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三计算。

异面直线所成的角的范围:090θ<≤ (一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。

【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE,则PC 与BD 所成的角为PCE ∠或它的补角。

CEBD ==PE=∴由余弦定理得 222cos 2PC CE PE PCE PC CE +-∠==⋅∴PC 与BD 所成角的余弦值为63 (二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D 为AC 中点。

求异面直线1AB与1BC 所成角的余弦值。

【答案】125A 1C 1CBAB 1 DCP二、直线与平面所成角直线与平面所成角的范围:090θ≤≤ 方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC内的射影O 在AB 上,求直线PC 与平面ABC 所成的角的大小。

【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 所成角设AB 的中点为D ,连接,PD CD 。

AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。

不妨设2PA =,则1,3,4OD OP AB ===2223,13CD OC OD CD ∴==+=在Rt OCP ∆中,339tan 13OP OCP OC ∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间角的计算(1)
【基础平台】
1.正方体1
11
A B C D A B C D -中,1A B 与平面11BB D D 所成角的大小为 ( )
A .90
B .60
C .45
D .30 2


异面
直线
所成

的范围是
( )A .0,
2π⎛⎫
⎪⎝

B .0,
2π⎡⎫
⎪⎢⎣

C .0,
2π⎛⎤
⎥⎝

D .0,
2π⎛⎫
⎪⎝

3.已知异面直线a 与b 所成的角为40 ,过空间一点O 且与,a b 都成70 角的直线有 条;
4.在A B C 中,M ,N 分别是A B A C ,的中点,PM ABC ⊥平面,18BC M P ==,,P N 和平面ABC 所成的角为_______;
【自主检测】
1.一直线l 与平面α斜交成θ角,则直线l 与平面α内所有直线所成的角中,关于最大角
和最小角的叙述中,正确的是 ( )A .最小角θ,最大角
2
π
B .最小角θ,最大角πθ-
C .最小角θ,无最大角
D .最小角0,最大角θ
2.在正方体中1111ABC D A B C D -,表面对角线与1AD 成60 的角有 ( )A .4条 B .6条 C .8条 D .10条
3.正方体1111ABC D A B C D -中,,E F 分别是11,BB C C 的中点,则A E 与B F 所成角的余弦为( ) A .
15
B .15
-
C .
25
D .25
-
4.在直三棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,M 是1C C 的中点,Q 是
B C 中点,点P 在11A B 上,则直线PQ 与直线A M 所成的角等于_______;
5.在正方体1111ABC D A B C D -中,,M N 分别是11,AB A B 的中点,1BC 与平面1M N D D 所成角的正切值为_______;
6.在棱长为1的正方体1111ABC D A B C D -中,E F G ,,分别是11D D BD BB ,,的中点 (1)求证:EF C F ⊥;
(2)求EF CG 与所成角的余弦值.
7.如图,正方体1111ABC D A B C D -中,
,,,,,E F G H K L 分别是棱 111111,,,,,AB BB B C C D D D D A
的中点,
(1)求证:,,,,,E F G H K L 共面; (2)求证:1A C EFG H K L ⊥平面;
(3)求1D B 与平面E F G H K L 所成角的正弦值.
【拓展延伸】
已知平行六面体1111ABC D A B C D -中,底面是边长为3的正方形,棱15AA =,
1160BAA D AA ∠=∠=

(1)求A C 与1BC 所成角的余弦;
(2)P 为B C 的中点,在棱1A A 上是否存在一点Q ,使得1PQ BC ⊥.
空间角的计算(1)
【基础平台】
1.D .2.C .3.3.4.30

【自主检测】
1.A .2.A .3.A.4. 90 .5.1
3
. 6.(1)略(2)1
3
.7.(1)提示:证,,H G EF K L
共面,(2)略(3)13

【拓展延伸】
(1)7
,(2)提示:令1AQ AA λ= ,63
130
λ=,存在。

相关文档
最新文档